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Abstract. In this paper, we look at the issue of gradability within for-
mal semantics in modern type theories (MTT-semantics). Specifically,
we look at both gradable adjectives and nouns, and show that the rich
typing mechanisms afforded by MTT-semantics can give us a natural
account of gradability. Gradable adjectives take indexed nouns as their
arguments, while gradable nouns are Σ-types where their first projection
is a degree parameter. Furthermore, we provide a standard polymorphic
measure function applicable to all gradable adjectives and nouns. We
also look at multidimensional adjectives and use enumerated types to
capture multidimensionality. We formalize our account in the Coq proof
assistant and check its formal correctness. Lastly, we briefly describe a
recent proposal of model gradability by means of subtype universes in
MTTs that can potentially give a unifying treatment of gradability for
both regular gradable adjectives, but also multidimensional ones.

1 Introduction

The term gradable adjectives refers to the class of adjectives that involve some
kind of grading property/parameter that allows them to be quantified according
to it. For example, in the case of small and large, the grading parameter is size.
Gradable adjectives have comparative and superlative forms and can be further
modified by degree adverbs (e.g. much). Besides gradable adjectives, one also
finds cases of gradable nouns, i.e. cases where the gradable element is not an
adjective, but rather a noun:

(1) John is an enormous idiot/ He is a big stamp collector.

In (1), the most natural reading is not one of large physical size, but rather of
the nominal holding to a high degree.
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There are furthermore adjectives that can be quantified across more than one
dimension. For example in the case of tall, there is only one dimension involved,
tallness. This is not the case for adjectives like healthy and sick, which are called
multidimensional. Following [47], two different classes of multidimensional ad-
jectives are distinguished: positive and negative. The idea is that every positive
adjective has a negative counterpart, i.e. its antonym (e.g. healthy and sick).
What is different between the two is the form of quantification over dimensions
in each case. Positive adjectives involve universal quantification over dimensions,
while negative adjectives existential quantification. For example, for someone to
be considered healthy, s/he must be healthy in all dimensions, whereas for some-
one to be considered sick, it suffices to be sick across one dimension only. In order
for this intuition to be borne out more clearly, the exception phrase headed by
except can be used. The interesting bit here is that this phrase is only compati-
ble with universal quantification. As seen below, ‘healthy’ is compatible with an
‘except’ phrase, while ‘sick’ is not:

(2) Dan is healthy except with respect to blood pressure

(3) # Dan is sick except with respect to blood pressure

In this paper, we look at both gradable adjectives/nouns and multidimen-
sional ones from the perspective of formal semantics in modern type theories
(MTT-semantics) [35, 10], arguing that MTT-semantics provides us with the
mechanisms to give reasonable formal semantics accounts of these phenomena.
The structure of the paper is as follows: in section 2, we give a brief introduc-
tion to MTT-semantics, concentrating on the features that are mostly relevant
to the analyses in this paper. In section 3, we present our analysis of gradable
and multidimensional adjectives/nouns. In section 4, we formalize our account
in the Coq proof assistant and check its correctness. In section 5, we provide a
brief investigation of an alternative way to deal with gradability by using recent
work in Type Theory on subtype universes. Lastly, in section 6, we conclude and
discuss some future work.

2 Modern Type Theories: A Brief Introductioin

Formal semantics in modern type theories (MTT-semantics) [35, 10] has been
proposed as an alternative to Montague Semantics, and various semantic ac-
counts have been given within this paradigm for a wide range of linguistic phe-
nomena [32, 35, 11, 50, 8]. We use the term Modern Type Theories (MTTs) to
refer to a class of type theories which have dependent types, inductive types and
other powerful and expressive typing constructions. MTTs can be predicative,
such as Martin-Löf’s intensional type theory [39, 44], and impredicative, such
as the Unified Theory of dependent Types (UTT) [30]. In this paper, we shall
employ UTT complemented with the coercive subtyping mechanism [31, 36].

In this section we provide a brief introduction to MTTs, concentrating mostly
on the features that are most relevant to this paper.



2.1 Many-Sortedness, Common Nouns as Types and Subtyping

A key difference between MTT-semantics and Montague semantics (MS) lies in
the interpretation of common nouns (CNs). In [42], the underlying logic (Church’s
simple type theory [13]) is ‘single-sorted’ in the sense that there is only one type,
e, of all entities. The other types such as the type of truth values, i.e. t, and the
function types generated from types e and t do not stand for types of entities.
Thus, no fine-grained distinctions between the elements of type e exist, and as
such, all individuals are interpreted using the same type. For example, John and
Mary have the same type in simple type theory, i.e. the type e of individuals. An
MTT, on the other hand, can be regarded as a ‘many-sorted’ logical system in
that it contains many types. In this respect, MTTs can make fine-grained distinc-
tions between individuals and use those different types to interpret subclasses of
individuals. For example, one can have John : Man and Mary : Woman, where
Man and Woman are different types. Another very basic difference between
MS and MTTs is that common nouns in MTTs (CNs) are usually interpreted as
types [45] rather than sets or predicates (i.e., objects of type e → t) as in MS.
The CNs ‘man, human, table’ and ‘book’ are interpreted as types Man, Human,
Table and Book, respectively. Then, individuals are interpreted as being of one
of the types used to interpret CNs.

This many-sortedness has the welcome result that a number of semantically
infelicitous sentences involving category mistakes, which are however syntacti-
cally well-formed, like e.g. ‘he ham sandwich walks’ can be explained easily. This
is because a verb like ‘walks’ will be specified as being of type Animal→ Prop,
while the type for ‘ham sandwich’ will be Food or Sandwich:

(4) the Ham sandwich : Food

(5) walk : Human→ Prop

The idea that common nouns should be interpreted as types rather than
predicates has been argued in [34] on philosophical grounds as well. There, it is
claimed that the observation found in [20] according to which common nouns,
in contrast to other linguistic categories, have criteria of identity that enable
them to be compared, counted or quantified, has an interesting link with the
constructive notion of set/type: in constructive mathematics, sets (types) are
not constructed only by specifying their objects but they additionally involve an
equality relation. The argument is then that the interpretation of CNs as types
in MTTs is explained and justified to a certain extent. Extensions and further
theoretical advances using the CNs as types approach can be found in [12] and
an extension of the idea that CNs further specify their identity criteria with a
case study on counting with numerical quantifiers under copredication cases is
given in [9]

Interpreting CNs as types rather than predicates has also a significant method-
ological implication: compatibility with subtyping. For instance, one may intro-
duce various subtyping relations by postulating a collection of subtypes (physical
objects, informational objects, eventualities, etc.) of the type Entity [2]. It is a



well-known fact that if CNs are interpreted as predicates as in traditional Mon-
tagovian settings, introducing such subtyping relations would cause problems.
This is because the contravariance of function types would predict that given
the subtyping relation A ≤ B, B → Prop ≤ A → Prop would be the case (the
opposite relation than the one needed). Substituting A with type Man and B
with type Human, we come to understand why interpreting CNs as predicates
is not a good idea if we want to add a subtyping mechanism.

The subtyping mechanism used in the MTT endorsed in this paper is that of
coercive subtyping [31, 36]. Coercive subtyping can be seen as an abbreviation
mechanism: A is a (proper) subtype of B (A ≤ B) if there is a unique implicit
coercion c from type A to type B and, if so, an object a of type A can be used in
any context CB [ ] that expects an object of type B: CB [a] to be legal (well-typed)
and equal to CB [c(a)].

To give an example: assume that both Man and Human are base types. One
may then introduce the following as a basic subtyping relation:

(6) Man ≤ Human

2.2 Σ-types, Π-types, Indexed Types and Universes

Dependent Σ-types. One of the basic features of MTTs is the use of Dependent
Types. A dependent type is a family of types that depend on some values. The
constructor/operator Σ is a generalization of the Cartesian product of two sets
that allows the second set to depend on values of the first. For instance, ifHuman
is a type and Male : Human→ Prop, then the Σ-type Σh : Human. Male(h)
is intuitively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types, then
Σ(A,B), or sometimes written as Σx : A.B(x), is a type, consisting of pairs
(a, b) such that a is of type A and b is of type B(a). When B(x) is a constant
type (i.e., always the same type no matter what x is), the Σ-type degenerates
into product type A×B of non-dependent pairs. Σ-types (and product types) are
associated projection operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b,
for every (a, b) of type Σ(A,B) or A×B.

The linguistic relevance of Σ-types can be directly appreciated once we un-
derstand that, in its dependent case, Σ-types can be used to interpret linguistic
phenomena of central importance, like adjectival modification (see above for in-
terpretation of modified CNs) [45]. For example, handsome Man is interpreted
as a Σ-type (7), the type of handsome men (or more precisely, of those men
together with proofs that they are handsome):

(7) Σm : Man handsome(m)

where handsome(m) is a family of propositions/types that depends on the man
m.

Dependent Π-types. The other basic constructor for dependent types is Π. Π-
types can be seen as a generalization of the normal function space where the



second type is a family of types that might be dependent on the values of the first.
A Π-type degenerates to the function type A → B in the non-dependent case.
In more detail, when A is a type and P is a predicate over A, Πx:A.P (x) is the
dependent function type that, in the embedded logic, stands for the universally
quantified proposition ∀x:A.P (x). For example, the following sentence (8) is
interpreted as (9):

(8) Every man walks.

(9) Πx : Man.walk(x)

Π-types are very useful in formulating the typings for a number of linguistic
categories like VP adverbs or quantifiers. The idea is that adverbs and quantifiers
range over the universe of (the interpretations of) CNs and as such we need a way
to represent this fact. In this case, Π-types can be used, universally quantifying
over the universe CN. (10) is the type for VP adverbs while (11) is the type for
quantifiers:3

(10) ΠA : CN. (A→ Prop)→ (A→ Prop)

(11) ΠA : CN. (A→ Prop)→ Prop

Further explanations of the above types are given after we have introduced the
concept of type universe below.

Indexed Types. An indexed type is a type of dependent type. They are families
of types that are indexed by a parameter whose type is usually a simple one.
Indexed types here will be used in the main analysis of gradable adjectives, as
we will assume that gradable adjectives do not take simple CN types as their
arguments but rather CN types indexed with a parameter. For example, we can
think of the type representing humans along with their heights. We can do this
using indexed types by considering the family of types Human : Height→ Type
indexed by heights: Human(n) is the type of humans of height n.

Type Universes. An advanced feature of MTTs, which will be shown to be very
relevant in interpreting NL semantics in general as well as adjectival modification
specifically, is that of universes. Informally, a universe is a collection of (the
names of) types put into a type [40].4 For example, one may want to collect all
the names of the types that interpret common nouns into a universe CN : Type.
The idea is that for each type A that interprets a common noun, there is a name

3 The type for adverbs was proposed for the first time in [33].
4 There is quite a long discussion on how these universes should be like. In particular,

the debate is largely concentrated on whether a universe should be predicative or
impredicative. A strongly impredicative universe U of all types (with U : U and
Π-types) is shown to be paradoxical [21, 19] and as such logically inconsistent. The
theory UTT we use here has only one impredicative universe Prop (representing
the world of logical formulas) together with an infinitely many predicative universes
which as such avoids Girard’s paradox (see [30] for more details).



A in CN. For example,

Man : CN and TCN(Man) = Man.

In practice, we do not distinguish a type in CN and its name by omitting the
overlines and the operator TCN by simply writing, for instance, Man : CN.

Having introduced the universe CN, it is now possible to explain (10) and
(11). The type in (11) says that for all elements A of type CN, we get a function
type (A→ Prop)→ Prop. The idea is that the element A is now the type used.
To illustrate how this works let us imagine the case of quantifier some which
has the typing in (11). The first argument we need, has to be of type CN. Thus
some human is of type (Human → Prop) → Prop given that the A here is
Human : CN (A becomes the type Human in (Human → Prop) → Prop).
Then given a predicate like walk : Human→ Prop, we can apply some human
to get (some Human)(walk) : Prop. Similar considerations apply for (10).

3 Gradability in MTT-semantics

In this section, we present an MTT account of a number of aspects of gradable
and multidimensional adjectives.

3.1 Gradable Adjectives.

A standard assumption in the literature is that gradable adjectives involve some
kind of measurement. Usually, this measurement is assumed to be a degree ar-
gument, whose presence or not, is then considered to be the main difference
between gradable and non-gradable adjectives. This extra argument has been
proposed to be formally encoded in the adjective’s typing as in [3, 49, 23], or not
as in [29, 41, 25, 48].

The account we are going to pursue here is one where the the arguments of
gradable adjectives are not of simple types, but rather types indexed by degree
parameters (dependent types). In MTT-semantics, the universe CN of common
nouns are refined into subuniverses of CNs each of which is indexed by a degree.
For example, the collection represented by the common noun human may be
refined into the family of types indexed by heights: Human : Height → Type
and Human(n) is the type of humans of height n.5 We can then define a function
height that returns the value of the height-index of a human; i.e., height(i, h) is
the height of human h:

(12) height : Πi : Height. Human(i)→ Height

(13) height(i, h) = i.

5 Informally, this family of types of humans are more refined than the type Human
of all humans. Formally, we’d have HHuman(i) ≤ Human.



With these assumptions in line, we may consider the semantic interpretation
of tall to mean that the height of the human concerned is larger than some given
standard n:

(14) tall : Πi : Height. Human(i)→ Prop

(15) tall(i, h) = height(i, h) ≥ n

The above definition for tall specifies that for any i of type Height, tall takes a
human argument indexed with i and returns the proposition saying that i, the
height of the human, is greater than or equal to a natural number n, which stands
for the contextually restricted parameter – humans taller than n are regarded
as tall. In a similar fashion, we can define the comparatives, where the RHS of
(17) is the same as i > j:

(16) taller than : Πi, j : Height. Human(i)→ Human(j)→ Prop

(17) taller than(i, j, h1, h2) = height(i, h1) > height(j, h2).

From this definition, we can easily prove that, for example, if height(i, h1) ≥
height(j, h2) and tall(j, h2), then tall(i, h1).

The natural question to ask at this point is the following: where does this
contextual parameter come from? In what we have provided so far, it is just a
number that does not depend on anything. A better and more intuitive way to
refer to this contextual parameter is to make its value dependent on the noun, the
adjective, and sometimes even some other contextual information. These latter
three parameters in MTT-semantics are represented as a type, a predicate and
a context (in type theory), respectively. In order to fornalize this idea, we use
polymorphism and type dependency. First, we introduce the universe of (totally
ordered) degree types, Degree. As examples of degrees, one would find in Degree
types such as Height, Weight and Width, among many others. The inference
rules of CNG are given below, the second of which says that CNg(D) is a subtype
of CN and the third is an example of an introduction rule for CNg:

D : Degree

CNg(D) : Type

D : Degree A : CNg(D)

A : CN

i : Height

Human(i) : CNg(Height)

We can now introduce the polymorphic standard, STND. First, for any common
noun A, let ADJ(A) be the type of syntactic forms of adjectives whose semantic
domain is A. For instance, TALL : ADJ(Human), where TALL strands for the
syntax of tall. Then, STND takes a degree D, a D-indexed common noun A
and (the syntax of) an adjective whose domain is A, and returns the relevant
standard for the adjective:

(18) STND : ΠD : Degree. ΠA : CNG(D). ADJ(A)→ D

The next thing to consider in giving a more proper definition for tall, is
a polymorphic type that is not restricted to Human arguments with Height
parameters only. Tall can be used with types of non-humans: for example one can



talk about a tall building or a tall cat. On the other hand, uses like tall democracy
or tall mind do not seem to be felicitous, at least without some sort of contextual
coercion. Using eitherHuman(i) as argument for tall or a polymorphic argument
based over the universe CN will undergenerate and overgenerate respectively. One
can try to use a subuniverse of CN, CNPHY that basically includes all physical
objects (types Phy and its subtypes). In this respect, we can introduce the
universe CNPHY with the following introduction rule:

A:CN, A < Phy

A : CNPHY

With this rule and assuming that every physical object has a height, we are now
in a position to upgrade the definition for tall (we assume that the argument A
is implicit in the definition):

(19) tall : ΠA : CNPHY .Πi : Height.A(i)→ Prop

(20) tall(i, h) = height(i, h) ≥ STND(Height,Human, TALL).

Note that indexing on the noun by means of a degree gives us for free the
fact that we are not talking about tallness in general but tallness with respect
to the relevant class (represented by the type Human in the above example). In
order to understand its importance, this indexing seems to be doing the work
done by using the dot combinator of [26] to compose comparison classes with
adjectives in the work of [24]. To give an example, let us say that one needs
to compose tall with its comparison class, say basketball player (represented as
BB). The typings we have are as follows: BB : e→ t and tall : e→ d. However,
we need functional application to return: BB(tall) : e→ d. As obvious, normal
functional application will not work here. Thus, the dot combinator is used to
remedy this. This additional and arguably not well-motivated extra machinery
is not needed in our case. Furthermore, the polymorphic STND function can
be seen as a more straightforward interpretation of Kennedy’s context sensitive
function from measure functions (adjectives basically) to degrees [24]. Lastly,
one may consider standards that are dependent on other contextual information
as well: for example, whether something is regarded as an expensive car might
depend on where it is considered. In that case, the STND function may take an
additional parameter of locations that would take this into account.

Remark 1 (CN and its subuniverses). Type universes help us in MTT-semantic
formalizations. For example, we have used the universe CN as the universe that
makes polymorphism over all common nouns possible and allows adequate typing
for phenomena like VP-adverbs and subsective adjectives to be provided:

(21) V PADV : ΠA : CN. (A→ Prop)→ (A→ Prop)

(22) ADJSUBS : ΠA : CN. A→ Prop

Furthermore, we have used the universe CNPHY in our analysis of ‘tall’, in
order to restrict the domain of polymorphism to the subuniverse that includes



all physical objects and their subtypes. Other similar useful subuniverses can
be constructed in order to help us in our semantic representations. Consider
for example the subsective adjective ‘skilful’. According to what we have been
saying so far, it is of the type given in (22). Digging a bit deeper, one can see that
‘skilful’ is not really compatible with arguments that are not of type Human,
or at least of type Animal. For example, one cannot talk about a skilful carpet
or a skilful democracy. Thus, one could update the definition for ‘skilful’ taking
these issues into consideration. On the assumption that ‘skilful’ is only relevant
for human arguments, polymorphism is on the subuniverse CNH , i.e. the universe
including types Human and its subtypes:

(23) skilful : ΠA : CNH . A→ Prop

An important question is, of course, how can we decide what the relevant
universe is in each case? Well, one way to do it is by linguistic investigation
as typically done in formal linguistics, i.e. getting judgments of native speakers
that will help us decide the elements of the universe to be formed. Another
way to do that is to use existing lexical-semantics resources that might contain
such information. For example, in [7], the authors experiment with JeuxdeMots
[27], a rich lexical-semantic network constructed using GWAPs [1], in order to
extract information relevant for multi-typed systems, e.g. common noun types,
subtyping relations, typings for predicates etc. We believe that such connections
should be explored in future work combining lexical-semantic information drawn
from linguistic resources with rich formal semantics formalisms like the one we
are describing in this paper.

The other question one need to answer is whether such subuniverses are
formally coherent in the sense that their introduction is logically okay. One has
to be careful when constructing such universes. Some universes can be formally
paradoxical even though they may seem justified from a linguistic perspective.6

Thus, a better way to put what we have been saying is the following: we construct
meaningful universes based either on linguistic intuitions and/or information
from lexical/semantic networks, but only when we can formally justify it, i.e.
to prove meta-theoretically that the incorporation of the new universe into the
original type theory is OK (e.g., logically consistent, among other properties).
The universes such as CNPHY and CNH are what we call subtype universes
studied recently by Maclean and the second author [37], see §5. ut

3.2 Gradable Nouns

As already discussed in the introduction, gradable nouns concern gradability
cases where the relevant gradable element is not an adjective, but rather a noun,
as (24) illustrates.

(24) John is an enormous idiot. / He is a big stamp collector.

6 For example, the type theory studied by Martin-Löf in [38] has a type U of all types
(and hence, U : U) and has been proven to be logically inconsistent [21, 19].



Indexed types, as already mentioned, are a type of dependent types, i.e. families
of types indexed by a parameter whose type is usually a simple one. We have
used indexed types so far in our treatment of gradable adjectives. The question is
whether we can extend the usage of indexed types to gradable nouns as well. We
will argue that this is indeed possible. What we want to propose here is that the
distinction between nouns and adjectives is still clear: adjectives are taken to be
predicates, nouns are taken to be types. At the same time, however, we assume
that gradable nouns like idiot and gradable adjectives like tall both involve a
degree parameter, albeit an abstract one in the former case. A natural way to
capture this idea, i.e. abstract nouns being types but still involving a degree
parameter, is to use Σ-types and assume that the first projection is actually the
abstract parameter. To do this, we consider the type family IHuman : Idiocy →
Type indexed by idiocy degrees of type Idiocy : Degree, where Idiocy is a type
whose objects form a total order and can be compared to each other by, for
example, a ≥-relation. Then, idiot can be represented by means of (25):

(25) Idiot = Σi : Idiocy.IHuman(i)× (i ≥ STND(Idiocy,Human, IDIOTIC))

An idiot is thus a triple (i, h, p) where h is a human whose idiocy degree i is
larger than or equal to the standard of being an idiot. Note that this account
has not only similarities with the ideas proposed in [14] but also brings out a
connection with gradable adjectives in the sense that both gradable adjectives
and gradable nouns involve a degree parameter. However, these two are clearly
different in terms of their formal status, adjectives being predicates while nouns
types.

Let us now consider enormous idiot. The interpretation we want to get in this
case is one where someone is an idiot to a very high degree. This means that this
degree must be (much) higher than the degree of idiocy needed for someone to be
considered an idiot (the standard STND(Idiocy,Human, IDIOTIC) in (25)).
In order to capture that, we first propose that enormous can be interpreted as
having the following type, where PHYD : CNg(D) is the type of physical objects
indexed by D:

(26) enormous : ΠD : Degree ΠA : D → CNg(D) Πd:D. (A(D)→ Prop)

Then we propose the following definition for ‘enormous’, for D : Degree, A :
D → CNg(D), d : D, and a : A(D):

(27) Enormous(D)(A)(d)(a) = d ≥ STND(D,PHYD, ENORMOUS)

We are now ready to interpret enormous idiot (D and A arguments are implicit):

(28) Enormous Idiot = Σh : Idiot. enormous((π1(h), π2(π1(h)))
where STND(D,PHYD, ENORMOUS) ≥ STND(Idiocy,Human, IDIOTIC)

Enormous idiot is thus a pair, where the first projection consists of a proof of
being an idiot h (Idiot itself also a Σ-type, see (25)) and the second projection
requires that the standard of idiocy associated with the first projection of the
second projection of h is greater than the standard for enormous.



3.3 Multidimensional Adjectives

Multidimensional adjectives are adjectives that can be quantified across different
dimensions. Adjectives like sick and healthy fall into this category. Following [47],
two different classes of multidimensional adjectives are distinguished: positive
and negative. The idea is that every positive adjective has a negative counterpart,
i.e. its antonym (e.g. healthy and sick). What is different between the two is the
form of quantification over dimensions in each case. Positive adjectives involve
universal quantification over dimensions, while negative adjectives existential
quantification. For example, for someone to be considered healthy, s/he must be
healthy in all dimensions, whereas sick, it suffices to be sick across one dimension
only. In order for this intuition to be borne out more clearly, the exception
phrase except can be used. The interesting bit here is that this phrase is only
compatible with universal quantification. As seen below, ‘healthy’ is compatible
with ‘except’, but ‘sick’ is not:

(29) Dan is healthy except with respect to blood pressure

(30) # Dan is sick except with respect to blood pressure

This intuition can be implemented in an MTT setting using an inductive type
for multiple dimensions. Consider an adjective like healthy. In order for someone
to be considered healthy, one must be able to universally quantify over a number
of “health” dimensions: cholesterol, blood pressure etc. To formalize this, one can
introduce the inductive type Health of type Degree as follows:7

(31) Health : Degree = heart | blood pressure | cholesterol

We assume that the adjective healthy is of the the following type (we use Human
as a simple type rather than a type-valued function as used earlier):

(32) healthy : Health→ Human→ Prop

We can now use this parameter as a primitive to define Healthy and Sick as
follows:

(33) Healthy = λx : Human.∀h : Health. healthy(h, x)

(34) Sick = λx : Human.¬(∀h : Health. healthy(h, x))

Note that, for multidimensional adjectives, each dimension may be gradable.
For example, when we say that a healthy person is a person healthy in all dimen-
sions, it basically means that each dimension surpasses a standard of healthiness.
Take the dimension ‘blood pressure’ as an example: a child x : Child ≤ Human
is healthy as far as blood pressure is concerned may mean that the blood pres-
sure of x is less than some threshold with respect to children. (See §5 for formal
details.)

7 The inductive type Health is a finite type (also called an enumeration type), some-
times written as {heart, blood pressure, cholesterol}.



Remark 2. With respect to multidimensional adjectives, there are a number of
complications that need to be addressed. For example, the nature of the quanti-
fier associated with positive adjectives does not seem to always be the universal
quantifier. Sassoon and Fadlon [46] define quantificational multidimensional ad-
jectives in the following sense:

Quantificational adjectives like optimistic often involve counting of di-
mensions. As a default, entities fall under them iff they are classified
under sufficiently many (e.g., some, most or all) dimensions.

Of course, this is not a problem in itself. One can modify the account w.r.t
different adjectives as involving different quantificational force:

(35) Healthy = λx : Human. [all,some,most]h:Health.healthy(h, x)

The choice of quantifier can be context dependent. One can assume that the
quantifier quantifies over relevant dimensions in specific contexts. The defini-
tion of Healthy can be overloaded, picking the relevant dimensions in each case
(relevant means available in that context). This is similar to the overloading
technique as proposed by the second author to deal with homonymy [33].

ut

3.4 Multidimensional Nouns

A further interesting discussion w.r.t multidimensionality concerns multidimen-
sional nouns. For example, a noun like ‘bird’, at least according to theories
like Prototype and Exemplar theories,8 is argued to involve a rich couple of di-
mensions, i.e. in order for something to count as a bird, a couple of different
dimensions (for example, dimensions like winged, small, can breed, etc.) have
to be taken into consideration. Then, the idea is that the conceptual structure
of a noun like ‘bird’ will involve an ideal value for each dimension. A similar-
ity measure is mapping entities to degrees, representing how far from the ideal
dimensions of the prototype the values for the respective entities are. This is
represented as a weighted sum. The important thing, skipping formal details, is
summarized in the following passage:

The distances of x from the prototypical values in the different bird dimen-
sions integrate into a unique degree in the given noun by means of averaging
operations, like weighted-sums... [Sassoon, 2013]

The above passage argues that dimensions integrate (another way of putting
it is collapse) into a unique degree, and, thus, are not accessible for quantification
as it is the case with multidimensional adjectives. Viewing common nouns as
types seems to be compatible with this claim. The idea is as follows: in order for
an object to be of a CN type, the standard of membership w.r.t the weighted sum
of its similarity degrees to the ideal values in the dimensions of the noun has to
be exceeded.9 Actually, [46] revises later on her view, and talks about weighted

8 See [47] for references to the relevant literature.
9 See [43] for more details on this approach.



products in the case of these type of nouns. Somewhere in the middle between
this two types of multidimensionality, i.e. multidimensional adjectives like healthy
and multidimensional nouns like bird, we find social nouns like linguist, artist.
These seem to behave like multidimensional adjectives, in that their dimensions
seem to be accessible for quantification as witness the example below:

(36) He is an artist in many respects.

Such cases are then argued to represent intermediate cases, where the di-
mensions are integrated into a single degree, albeit the relevant operation is one
of weighted sum and not product. The argument is that these dimensions are
made easier available to quantification in these cases. This might then mean that
the types become more elaborate in these cases. Consider the case for artist, and
consider the inductive type for all its dimensions (we note them here as a1, a2, a3
pending a more serious discussion of what these dimensions really are):

(37) Inductive Art : D = a1 | a2 | a3

Now, one can think that in cases where social nouns make their dimensions
accessible, what happens is that some sort of quantification is at play in the form
of a Σ type, where the first projection is just a type Human, while the second
projection specifies that all dimensions of artistry hold of this human above the
relevant standard. Our definition for artist is given below:10

(38) artist = Σh : Human.∀a : Art.DIMCN (h, a)

Notice, that the above is still a type and not a predicate. One can think
that the creation of such types should be in general available, as even non-social
nouns, e.g. natural-kind nouns like duck, can be sometimes, context allowing,
used in a way that seems to make their dimensions available. For example, one
can imagine a context where the following is true:

(39) My dog is a cat in most respects.

Thus, it seems that the operation to turn simple types into Σ types that
make their dimensions available, is a more general one, and should be restricted
w.r.t context and general world-knowledge considerations.

There are far more issues to consider when one looks at multidimensional
adjectives (and nouns). However, we cannot go into detail into all these issues
here. This topic deserves a separate paper in its own right. We direct the inter-
ested reader to [47] and [46] for literature review and a detailed exposition of
the complexity of the phenomenon in question.

4 Coq Implementation

In this section, we present a Coq implementation for the different issues we have
been discussing in this paper. But first things first. What is Coq? Simplifying

10 With DIMCN : ΠD : Degree.Human→ D → Prop.)



things a bit, the main idea behind Coq can be roughly summarized as follows:
you use Coq in order to see whether propositions based on statements previously
pre-defined or user defined (definitions, parameters, variables) can be proven or
not. Coq is a dependently typed proof assistant implementing the calculus of
Inductive Constructions (CiC, see [18]). This means that the language used for
expressing these various propositions is an MTT. This is a good start, at least
for people using MTTs for NL semantics. Coq “speaks” so to say the language
we use to interpret linguistic semantics. Given that Coq is in effect a reasoning
engine, there are at least ways that can be used in studying linguistic semantics,
to an extent overlapping with each other: a) as a formal checker for the semantic
validity of proposed accounts in NL semantics and b) Natural Language Inference
(NLI), i.e. reasoning with NL.

Remark 3 (interim note on installation). Coq can be installed easily for all plat-
forms by visiting the system’s website.11 You can also get it using Macports,
Homebrew or Nix. For mac and linux users, it is recommended to use Proof
General,12 a Coq interface for emacs that provides support for several proof as-
sistants. ut

Remark 4 (the type system implemented in Coq). The main difference between
the type system that Coq implements [18] and the MTT we have been using so
far (the type theory UTT [30]) is the use of coinductive types in Coq. Coinductive
types are not used in any way in what we have been presenting so far, neither
used in the Coq implementations. There are other minor differences between the
two systems, but these are out of the scope of this paper, and play no important
role in understanding the discussion in this section. ut

Let us start with the formalization of gradable adjectives. We formulate the
Degree universe Tarski-style in Coq:

(* Degree is type of names of degrees

d : Degree corresponds to type D(d) *)

(* So, Degree is a Tarski universe! *)

(* Here is an example with three degrees. *)

Require Import Omega.

Inductive Degree: Set:= HEIGHT | AGE | IDIOCY.

Definition D (d: Degree):= nat.

Definition Height := D(HEIGHT).

Definition Age:= D(AGE).

Definition Idiocy:= D(IDIOCY).

The code comments are enough to explain what is going on here: Degree is the
type of names of degrees and d : Degree corresponds to type D(d). The next
step is to formalize the universe CNg, and then the context dependent standard,
i.e. STND function:

11 http://coq.inria.fr/download.
12 https://proofgeneral.github.io



(* Universe CN_G of indexed CNs *)

Definition CN_G (_:Degree) := Set.

Parameter STND: forall d:Degree, forall A: CN_G(d), ADJ d A -> D(d).

Note that, in Coq, forall stands for Π. With the previous parameter and defi-
nitions, tall can be defined:

Definition tall (h:Human):= ge (height h) (STND HEIGHT Human TALL).

With this at hand, one can define taller ::

Definition taller_than (h1:Human) (h2:Human):= gt (height h2)

(height h1).

The next part involves formalizing gradable nouns, more specifically pro-
viding the type for idiot and the definitions for enormous and enormous idiot.
The definitions follow closely the ones proposed in the paper. Enormous idiot is
expressed as a Dependent Record Type: 13

(**Definition for Idiot**)

Definition Idiot:= sigT(fun x: Idiocy=> prod (IHuman x)

(ge x (STND IDIOCY Human IDIOTIC))).

Definition enormous (d:Degree)(A:CN_G(d))(d1: D d) :=

fun P: A => ge (d1) (STND d (PHY(d))(ENORMOUS d)).

Record enormousidiot: Set:= mkeidiot

{h:> Idiot; EI: enormous IDIOCY

(IHuman(projT1(h)))(projT1(h))(projT1(projT2(h)))

/\ ge (STND IDIOCY (PHY(IDIOCY))(ENORMOUS IDIOCY))

(STND IDIOCY Human IDIOTIC)}.

We continue with multidimensional adjectives. What we want to do in this
case is implement the main idea we have been discussing in §3.3, namely the use
of enumerated types in order to implement the many-dimensions aspect of multi-
dimensional adjectives. Taking healthy as our example, we define the enumerated
type Health that includes various health dimensions and then define adjectives
sick and healthy, as involving universal quantification over the dimensions in
healthy, and existential quantification in sick :

Definition Degree:= Set.

Inductive Health: Degree:= Heart|Blood|Cholesterol.

Parameter Healthy: Health->Human->Prop.

Definition sick:= fun y: Human => ~ (forall x: Health, Healthy x y).

Definition healthy:= fun y: Human => forall x: Health, Healthy x y.

This suffices to give us the basic inferences with respect to multidimensional
adjectives. For example one can prove that if John is healthy then he is healthy
with respect to cholesterol, blood pressure and heart condition, if John is sick
it suffices that he is not healthy across one dimension etc. These theorems,
a number of other similarly relevant ones, as well as the formalization of the
multidimensional noun artist, can be found in the Appendix A.2.

13 Dependent Record Types in Coq are just syntactic sugar for Σ-types.



5 Modelling Gradability with Subtype Universes

Gradable adjectives and the related multidimensional cases provide challenging
examples for MTT-semantics. This has led to further studies to develop type-
theoretic mechanisms to formally deal with such phenomena. Recently, Maclean
and the second author [37] have developed subtype universes for MTTs, which
have interesting applications to programming and NL semantics. For the latter,
they have pointed out that, employing subtype universes, one can obtain a nice
semantics for gradable adjectives. We give a brief description here.

A subtype universe is a type that represents a collection of subtypes: for any
type H, the universe U(H) represents the collection of all subtypes of H. Such
subtype universes can be specified formally by the following formation rule (UF )
and introduction rule (UI), where A ≤ H is the shorthand for ‘A ≤c H for some
coercion c’ in the framework of coercive subtyping [36]:

(UF )
Γ ` H : Type

Γ ` U(H) : Type
(UI)

Γ ` A ≤ H : Type

Γ ` A : U(H)

Such type universes can be quantified over to form other propositions. For ex-
ample, the proposition ∀X:U(H).P (X) says that P holds for all subtypes of H.
This, among other things, gives a nice treatment of bounded quantification of
the form ∀A ≤ H. P (A) as proposed by Cardelli and Wegner [6], whilst avoiding
the type checking issues traditionally associated with it. Also, Maclean and Luo
have, for the first time, proved that extending MTTs with subtype universes
preserves logical consistency [37], which is indispensable for a type theory to be
used as a foundational semantic language.

Gradable adjectives such as ‘tall’ and ‘healthy’ can be modelled in MTT-
semantics with the help of subtype universes. For example, let T be a type
universe whose objects are base types H such as Human and Building for which
the property height : H → Prop makes sense. Then, the type of tall can be
given by means of subtype universes as in (40), which can be rewritten as (41)
by means of bounded quantification as a notational abbreviation. So, tall is
a predicate on subtypes of the base types. For instance, if Human : T and
socrates : Man ≤ Human, then tall(Human,Man, socrates) is a proposition.
Given a threshold function ξ : ΠH:T.(U(H) → Nat), one may define tall as
tall(H,A, x) = height(x) ≥ ξ(H,A).

(40) tall : ΠH:TΠA:U(H). (A→ Prop)

(41) tall : ΠH:TΠA ≤ H. (A→ Prop)

Note that, in modelling gradable adjectives as above, we have made use of the
fact that applicability of gradable adjectives respects the usual subtyping rela-
tions (for example, if ‘tall’ can be applied to a type, it can be applied to any of
its subtypes as well).

Multidimensional adjectives such as ‘healthy’ can also be modelled by means
of subtype universes. For example, ‘healthy’ may be given the type (42) which



can be rewritten as (43) in bounded quantification.

(42) Healthy : ΠA:U(Human). (A→ Prop)

(43) Healthy : ΠA ≤ Human. (A→ Prop)

With healthy thresholds ξi : ΠA ≤ Human.Nat with indexes i such as BP (for
blood pressure), we have, for A ≤ Human, Healthy(A, x) =

∧
i χi(A, x), where

χi’s are the corresponding propositions: for instance, χBP (A, x) = BP (x) ≤
ξBP (A), where A is a subtype of Human examples of which include, for example,
Boy and Woman.

Remark 5. As briefly described above, the approach to modelling gradability by
means of subtype universes [37] results in simple semantic constructions and it
is attractive and promising for modelling other linguistic features as well. It is
worth remarking that most of the type constructions in the account in §3 are
subtype universes to some extent. For example, CNPHY is a subtype universe of
those subtypes of Phy which are in CN as well. An in-depth comparative study
would be interesting and may require further work. ut

6 Conclusions and Future Work

In this paper, we have shown the use of MTT-semantics in the study of gradabil-
ity. More specifically, we have shown that the rich typing mechanisms afforded
by MTT-semantics can provide us with natural interpretations for both gradable
and multidimensional adjectives/nouns. We have implemented the proposed ac-
counts in the Coq proof-assistant and have checked their correctness. We have
also briefly sketched an approach to modelling gradability by means of the re-
cently studied notion of subtype universes. As mentioned, a comparative study
of the two approaches to gradability is called for and left as future work.

One other issue that we have not looked at here and can be part of our
future work is vagueness. In plain words, vagueness makes deciding what counts
for something to be an X, where X is a gradable predicate (usually an adjective),
difficult. There are three main problems associated with vagueness, the first one
already mentioned and addressed in this paper: a) context dependency, b) the
existence of borderline cases and c) the fact that vague adjectives (and predicates
in general) give rise to the sorites Paradox. In the way our account stands, we
cannot capture vagueness. We believe that this kind of problem needs to involve
some kind of probabilistic reasoning. Indeed, a couple of researchers have pointed
this out and have produced a body of research to this direction [22, 28, 4, 5].
At the moment, the authors do not know of any successful work in combining
probability with dependent types and some new idea would be needed in order
to study probabilistic type theories.14

14 The work on probability in TTR (see, for example, [17]) studies probability in a set-
theoretical system, because TTR [15, 16] is not a type theory, as the term is usually
understood, but rather a set-theoretic notational system.
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A Coq code

A.1 Gradable Adjectives

(* Degree is type of names of degrees --*)

(*d: Degree corresponds to type D(d) *)

(* So, Degree is a Tarski universe! *)

(* Here is an example with three degrees. *)

Require Import Omega.

Inductive Degree: Set:= HEIGHT | AGE | IDIOCY |

Definition D (d: Degree):= nat.

Definition Height:= D(HEIGHT).

Definition Age:= D(AGE).

Definition Idiocy:= D(IDIOCY).

(* Universe CN_G of indexed CNs *)

Definition CN_G (_:Degree) := Set.

Parameter Human: CN_G(HEIGHT).

Parameter John Mary Kim : Human.

Parameter height: Human->Height.

(** Type of physical objects indexed with a degree**)

Parameter PHY : forall d: Degree, CN_G(d).

(* ADJ(D,A) of syntax of adjectives whose domain is A : CN_G(d) *)

Parameter ADJ: forall d:Degree, CN_G(d)->Set.

Parameter TALL SHORT: ADJ HEIGHT Human.

Parameter IDIOTIC: ADJ IDIOCY Human.

Parameter ENORMOUS: forall d: Degree, ADJ d (PHY(d)).

(* STND *)

Parameter STND: forall d:Degree, forall A:CN_G(d), ADJ d A -> D(d).

(* semantics of tall, taller_than *)



Definition tall (h:Human):= ge (height h) (STND HEIGHT Human TALL).

Definition taller_than (h1:Human) (h2:Human) := gt (height h2) (height h1).

Theorem TALLER:

taller_than Mary John /\ height Mary =

170 -> gt (height John) 170.

cbv. intro. omega. Qed.

Theorem trans:

taller_than Mary John /\ taller_than Kim Mary ->

taller_than Kim John.

cbv. intro. omega. Qed.

(**Definition for Idiot**)

Parameter IHuman : Idiocy -> CN_G(IDIOCY).

Definition Idiot:=

sigT(fun x: Idiocy=> (sigT (fun y: (IHuman x)

=> (ge x (STND IDIOCY Human IDIOTIC))))).

Definition enormous (d:Degree)(A:CN_G(d))(d1: D d)

:= fun P: A => ge (d1) (STND d (PHY(d))(ENORMOUS d)).

Record enormousidiot: Set:= mkeidiot

{h1:> Idiot; EI1: enormous IDIOCY

(IHuman(projT1(h1)))(projT1(h1))(projT1(projT2(h1)))

/\ ge (STND IDIOCY (PHY(IDIOCY))(ENORMOUS IDIOCY))(STND IDIOCY Human IDIOTIC) }.

(*From enormous idiot it follows that there exists an idiot such

that their standard of idiocy is higher or equal to

the standard for idiotic humans*)

Theorem ENORMOUS1:

enormousidiot -> exists H: Idiot,

projT1(H) >= STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY).

cbv. firstorder. Qed.

(*From enormous idiot it follows that there exists an idiot such

that their standard of idiocy is higher or equal to both

the standard for enormous idiots and the standard for idiotic

humans*)

Theorem ENORMOUS2:

enormousidiot -> exists H: Idiot,

projT1(H) >= STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY)

/\ projT1(H) >= (STND IDIOCY Human IDIOTIC).

cbv. firstorder. unfold Idiot in h2. exists h2. firstorder.

unfold enormous in H. firstorder. elim h2. intros. destruct p.

omega. Qed.



(*From enormous idiot it follows that there exists an idiot such

that their standard of idiocy is higher or equal to the standard

for enormous idiots and idiotic humans and also the standard for

enormous idiots is higher than that for idiotic humans*)

Theorem ENORMOUS3:

enormousidiot -> exists H: Idiot,

projT1(H) >= STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY)

/\ projT1(H) >= (STND IDIOCY Human IDIOTIC)

/\ STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY)

>= (STND IDIOCY Human IDIOTIC).

cbv. firstorder. unfold Idiot in h2. exists h2. firstorder.

unfold enormous in H. firstorder. elim h2. intros.

destruct p.

omega. Qed.

A.2 Multidimensional Adjectives

(*Dealing with multidimensional adjectives Health as an inductive

type where the dimensions are enumerated. This is just an enumerated

type*)

Definition Degree:= Set.

Parameter Human: CN.

Parameter John: Human.

Inductive Health: Degree:= Heart|Blood|Cholesterol.

Parameter Healthy: Health -> Human -> Prop.

Definition sick:=fun y: Human => ~ (forall x : Health, Healthy x y).

Definition healthy:= fun y: Human => forall x: Health, Healthy x y.

Theorem HEALTHY:

healthy John -> Healthy Heart John /\ Healthy Blood John

/\ Healthy Cholesterol John.

cbv. intros. split. apply H.

split. apply H. apply H. Qed.

Theorem HEALTHY2:

healthy John -> not (sick John).

cbv. firstorder. Qed.

Theorem HEALTHY3:

(exists x: Health, Healthy x John) -> healthy John.

cbv. firstorder. Abort.

Theorem HEALTHY4:

(exists x: Health, not (Healthy x John)) -> healthy John.



cbv. firstorder. Abort.

Theorem HEALTHY5:

(exists x: Health, not (Healthy x John)) -> sick John.

cbv. firstorder. Qed.

(*Multidimensional noun Artist*)

Inductive Art: Degree:= a1|a2|a3.

Set Implicit Arguments.

Parameter DIM_CN : forall D: Degree, Human -> D -> Prop.

Record Artist: Set:= mkartist

{h:> Human; EI: forall a: art,

(DIM_CN h a)}.


