* Cur	ry-Howar	d corresp	ondence (1958,1969):
⇒ F ⇒ P	ormulae as Proofs as ob	i types ojects	
	formula	type	example
	P⊃Q	$P \rightarrow Q$	If then

Cor	nnectives in predicative TTs
	$\label{eq:constraint} \begin{array}{l} \mbox{Correspondences between logical connectives in predicative TTs (eg, Martin-Lőf's TT) \\ * Implication P-Q - function type P-Q \\ * Conjunction P-Q - product type P+Q \\ * Disjunction P-Q - disjoint union type P+Q \\ * Universal quantification \forall x:A.P(x) - \prod type \prod x:A.P(x) \\ * Existential quantification \exists x:A.P(x) - \Sigma type \Sigma x:A.P(x) \\ \mbox{Remarks:} \\ * "Correspondence" for \exists: \Sigma not the same as the traditional \exists (\Sigma is "strong" with witnesses, while traditional \exists is "weak"). \\ * Logical equality? \end{array}$
April	2011

+-+-+						
Th	eorem.					
F	for the im	plicatio	nal intut	ionistic	logic and	d
H	for the sim	nply typ	ed λ-ca	culus.		
Th	en,					
*	if Γ⊢M:A, t	then e(Γ)	⊢ ^L A, wh	ere e(Γ)	maps x:A	to A;
	if $\Delta \vdash^{L} A$, the	nГ⊢М	: A for soi	те Г & М	1 such tha	t e(Г) ≡

Implicational pro	positional logic	
(Ax)	$\overline{\Gamma, \ A \vdash A}$	
$(\rightarrow I)$	$\frac{\Gamma, \ A \vdash B}{\Gamma \vdash A \to B}$	
$(\rightarrow E)$	$\frac{\Gamma \vdash A \to B \Gamma \vdash A}{\Gamma \vdash B}$	
where Γ is a	a set of formulas A.	
April 2011		4

C	ny Howards further oxomples	
cu		
•	Predicative calculus with dependent types corresponds to the intuitionistic logic with 1 st -order universal quantification.	r
*	Impredicative calculus with dependent types corresponds to the higher-order intuitionistic logic.	
Acuil	01	6

First-order u	niversal quantification	
(∀I)	$\frac{\Gamma \vdash B}{\Gamma \vdash \forall x.B} (x \not\in FV(\Gamma))$	
$(\forall E)$ where Γ is a s	$\frac{\Gamma \vdash \forall x.B}{\Gamma \vdash [a/x]B}$ set of formulas.	
April 2011		7

Predicativ	ve dependent types				
(Π_T)	$\frac{\Gamma \vdash A: Type \Gamma, \ x: A \vdash B: Type}{\Gamma \vdash \Pi x: A.B: Type}$				
(λ)	$\frac{\Gamma, \ x: A \vdash b: B}{\Gamma \vdash \lambda x: A.b: \Pi x: A.B}$				
(app)	$(app) \qquad \frac{\Gamma \vdash f: \Pi x: A.B \Gamma \vdash a: A}{\Gamma \vdash f(a): [a/x]B}$				
April 2011		8			

- -	ligher-order log	jical systems
	*Eg, Second-or	der propositional logic
	 Formulas: proposi quantification ov Rules: besides th 	sitional variables X, implication $\phi \rightarrow \psi$, and er all propositions $\forall X. \phi$. ne usual rules for implication, we have
	(∀I)	$\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall X.\phi} (X \not\in FV(\Gamma))$
	$(\forall E)$	$\frac{\Gamma \vdash \forall X.\phi}{\Gamma \vdash [\psi/X]\phi}$
	oril 2011	

Impr	edicative types
🔹 In	predicative type systems
*	F and F [™] (Girard 1972, Reynolds 1974)
*	CC (Coquand & Huet 1988)
	ECC/UTT (Luo 1989/1994)
	CIC (as implemented in Coq)
🔹 Pro	op – impredicative universe
	F (2 nd -order) allows quantification over all propositions.
	♦ Eg, ∀X:Prop.X (the logical falsity)
*	F ^ω (ω-order) allows quantification over connectives as well.
	◆ Eg, ∀X:Prop→Prop→Prop (for all binary connectives,)
*	CC (w-order + dependency) allows quantification over predicates
	as well.
	Image Interpretent to the second

Prop – universe of log	ical propositions
$\frac{\Gamma \ valid}{\Gamma \vdash Prop: Type}$	$\frac{\Gamma \vdash A : Prop}{\Gamma \vdash A : Type}$
Intuitively, Prop : Type and	Prop ⊆ Type
April 2011	11

II-types/u	niversal quantification with Pro	p
(П _T)	$\frac{\Gamma \vdash A: Type \Gamma, \ x: A \vdash B: Type}{\Gamma \vdash \Pi x: A.B: Type}$	
(П _P)	$\frac{\Gamma \vdash A: Type \Gamma, \ x: A \vdash P: Prop}{\Gamma \vdash \Pi x: A.P: Prop}$	
(λ)	$\frac{\Gamma, \ x: A \vdash b: B}{\Gamma \vdash \lambda x: A.b: \Pi x: A.B}$	
(<i>app</i>)	$\frac{\Gamma \vdash f: \Pi x: A.B \Gamma \vdash a: A}{\Gamma \vdash f(a): [a/x]B}$	
П _т for П-ty	pes and Π_p for universal quantification s rules for predicative Π -types)	
(0, ргечюй		
April 2011		12

Logical ope	rators in, eg, UTT	
$\forall x: A. P[x]$	$=_{df} \Pi x: A.P[x]$	
$P_1 \supset P_2$	$=_{df} \forall x: P_1.P_2$	
true	$=_{df} \forall X: Prop. \ X \supset X$	
false	$=_{df} \forall X: Prop. X$	
$P_1 \& P_2$	$=_{df} \forall X: Prop. \ (P_1 \supset P_2 \supset X) \supset X$	
$P_1 \lor P_2$	$=_{af} \forall X : Prop. \ (P_1 \supset X) \supset (P_2 \supset X) \supset X$	
$\neg P_1$	$=_{dt} P_1 \supset \mathbf{false}$	
$\exists x: A. P[x]$	$=_{df} \forall X: Prop. \ (\forall x: A. (P[x] \supset X)) \supset X.$	
April 2011		13

Why are these definitions reasonable?	
Staar in douction relimination rules are all derivable. Staar plas	
Conjunction If P and Q are provable, so is P & Q. If P & Q is provable, so are P and Q.	
 Falsity false has no proof in the empty context (logical consistency). false implies any proposition. 	
April 2011	14

Logi	c-enriched type theories
* C	urry-Howard naturally leads to <i>intuitionistic</i> logics.
	What about, say, <i>classical</i> logics?
🍫 B	ut:
	Type-checking and logical inference are orthogonal.
	They can be independent with each other.
	In particular, the embedded logic of a type theory is not necessarily intuitionistic.
	Type theories are not just for constructive mathematics.
🍫 A	possible answer to the above question:
	Logic-enriched type theories (LTTs)

TTa in	
I IS IN	
❖An l	.TT consists of
♦ Lo	gic: Connectives & rules declared as constants for Prop.
	Eg, ⊃: Prop→Prop→Prop
	$\Rightarrow_{I} : (P,Q:Prop) P \rightarrow Q \rightarrow (P \Rightarrow Q)$
	\supset_{E} : (P,Q:Prop) (P \supset Q) \rightarrow P \rightarrow Q
	▷ Can be classical. Eg, Peirce : (P,Q:Prop) ((P \rightarrow Q) \rightarrow P) \rightarrow P
	Prop is a kind, not a type. In particular, no quantification over Prop.
 In 	ductive data types: eg, Nat – elimination over Type, plus
♦ In	duction rule: one associated with each inductive type; eg, P : (Nat)Prop $p_0: P(0) p_s: (x:Nat)P(x) \rightarrow P(x+1)$
	Ind _{Nat} (P,p ₀ ,p _s) : (x:Nat)P(x)
 Form 	nally formulated in LF/PAL ⁺
April 2011	16

Red	uction	and	proof nor	malisatio	on
	wo aspect Formulae Proofs-as	s of Cu e-as-typ s-object	Irry-Howard corr bes (as explicated s rs ??	espondence so far)	
e E	Eg, β-reduc leduction, elim rule.	tion co where	prresponds to pro an intro rule is ir	oof normalisa mmediately f	ation in natural ollowed by an
	(A)				
	В	(8)	}}}}	(8)	
	А→В	A		Α	
	В			В	
April 20	11				17

Re	evision Questions
•	 What is the Curry-Howard correspondence? How to interpret the logical operators in a predicative TT? What are the two aspects in Curry-Howard correspondence?
*	 How to define all logical operators by means of ∀ in an impredicative TT?
	 Why are such definitions reasonable? What are the differences between the interpretations of logical operators in predicative/impredicative TTs?
*	 What is the basic idea behind a logic-enriched type theory?

A 1	
NY 18	H. Curry and R. Feys. Combinatory Logic, Vol 1. North Holland, 1958.
* M	N. Gambino and P. Aczel. The generalised type-theoretic interpretation of constructive set heory. J. Symbolic Logic 71(1), 2006.
* V C	W. Howard. The formulae-as-types notion of construction. In To HB Curry: Essays on Combinatory Logic, 1980. 1969.
÷۲	Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.
♦ Z	Z. Luo. A type-theoretic framework for formal reasoning with different logical foundations NCS 4435, 2006.
A 💠 a	M. Sorensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Studies in Log and the Foundations of Mathematics, Vol 149. Elsevier, 2006.