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These notes are for Lectures 4 and 5 of the course on Lexical Semantics at the 2011
ESSLLI summer school in Ljubljana, Slovenia. The first three lectures of the course will
be given by Prof Nicholas Asher and the lectures 4 and 5 by myself.

1 Summary on Type-Theoretical Semantics

Type-theoretical semantics. By type-theoretical semantics, we mean the formal se-
mantics in modern type theories. It is a formal semantics in the style of the Montague
semantics [Mon74], but in modern type theories with dependent types and inductive types,
among others, rather than in Church’s simple type theory [Chu40] as employed in the
Montague semantics.1 The powerful type structures in a modern type theory provide new
useful mechanisms for formal semantics of various linguistic features, some of which have
been found difficult to describe in the Montagovian setting.

Examples of modern type theories include

• Martin-Löf’s predicative type theory [ML84, NPS90], and

• the impredicative type theory ECC/UTT [Luo94].

In an impredicative type theory, there is a type Prop of all logical propositions.2

Coercive subtyping. Coercive subtyping [Luo97, Luo99] is an adequate theory of sub-
typing for modern type theories.3 The basic idea is that subtyping is provided by means
of an abbreviation mechanism and, surprisingly, this simple idea provides powerful mech-
anisms for various forms of subtyping.

In computer science, modern type theories have been implemented in the so-called proof
assistants (computer systems that help develop proofs of either mathematical theorems or
correctness of programs) such as Agda [Agd08] and Coq [Coq07], and used in applications
to formalisation of mathematics and verification of programs. The coercion mechanism

1Using the terminology modern type theories, we are trying to distinguish them from Church’s simple
type theory [Chu40] (or Montague’s IL [Mon74]), the basic knowledge of which is tacitly assumed in this
note.

2This is similar to the simple type theory where there is a type t of truth values.
3In contrast, the more traditional notion of subtyping, subsumptive subtyping, is inadequate for modern

type theories. In subsumptive subtyping, the following subsumption rule is adopted:

a : A A ≤ B

a : B

This rule is incompatible with the notion of canonical object, a central notion in modern type theories. In
particular, it violates the property of canonicity, an important one that says intuitively that every object
of a type is equal to a canonical object of that type.
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has been implemented in several proof assistants, including Coq [Coq07, Säı97], Lego
[LP92, Bai99], Matita [Mat08] and Plastic [CL01].

Remarks on type-theoretical semantics and beyond.

• Type-theoretical semantics is very much in the spirit of ‘typing as presuppositions’
as discussed by Asher in [Ash11].

• Type-theoretical semantics provides a promising alternative to the traditional Mon-
tague semantics with nice solutions, some of which are discussed here, to some of
the difficult problems such as copredication as faced in the Montagovian setting.

• It would be interesting to see how far one can go to provide a type-theoretical
semantics.

In the following, we shall give a brief introduction to type-theoretical semantics in
modern type theories with coercive subtyping. I shall try to be intuitive and less technical
so that the students who study linguistics or other less formal subjects can benefit.

2 Type-theoretical Semantics: Basics

We shall introduce the basics of type-theoretical semantics in modern type theories, in
comparison with that in the Montague semantics.

Montague semantics in simple type theory. The Montague semantics is based on
Church’s simple type theory [Chu40], which is a single-sorted logic.4 Here are typical
examples in the Montague semantics, where e is the type of all entities and t the type of
truth values:

• A sentence (S) is interpreted as a proposition of type t.

(1) [[A man walks]] : t.

• A common noun (CN) can be interpreted as a function of type e → t (a subset of
entities).

(2) man : CN

(3) [[man]] : e → t

• A verb (IV) can be interpreted as a function of type e → t (a subset of entities).

(4) walk : IV

(5) [[walk]] : e → t

Then,

(6) [[John walks]] = [[walk]]([[John]]), where [[John]] : e.

(7) [[A man walks]] = ∃m : e. [[man]](m) & [[walk]](m).

4By ‘single-sorted’ here, we mean that there is a type e of all entities. Strictly speaking, there is another
‘sort’/type t of truth values in Church’s simple type theory.
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• An adjective (Adj) can be interpreted as a function of type (e → t) → (e → t) (from
subsets to subsets).

(8) handsome : Adj

(9) [[handsome]] : (e → t) → (e → t)

Then,

(10) [[handsome man]] = [[handsome]]([[man]]).

Type-theoretical semantics in modern type theories. In contrast, a modern type
theory can be considered as a many-sorted logical system, where there are many sorts
called types that may be used to stand for the domains to be represented. These types
include propositional types, inductive types and other more advanced type constructions
such as type universes. We shall introduce them below and explain how they may be used
in type-theoretical semantics.

Because of this many-sortedness, it is natural to interpret the noun phrases as types.
Here are several basic interpretation principles one may adopt in a type-theoretical se-
mantics [Ran94] (compare them with the above interpretation examples in the Montague
semantics):

• A sentence (S) is interpreted as a proposition of type Prop, where Prop is the type
of logical propositions.5

(11) [[A man walks]] : Prop.

• A common noun (CN) can be interpreted as a type.

(12) man, human : CN

(13) [[man]], [[human]] : Type

• A verb (IV) can be interpreted as a predicate over the type D that interprets the
domain of the verb (ie, a function of type D → Prop).

(14) walk : IV

(15) [[walk]] : [[animated]] → Prop

Then, with the subtyping relation [[man]] ≤ [[animated]],6

(16) [[John walks]] = [[walk]]([[John]]), where [[John]] : [[man]].

(17) [[A man walks]] = ∃m : [[man]] . [[walk]](m).

• An adjective (Adj) can be interpreted as a predicate over the type that interprets
the domain of the adjective.

(18) handsome : Adj

(19) [[handsome]] : [[man]] → Prop

Modified CNs can be interpreted by means of Σ-types (see §3.2 beflow). For example,

(20) [[handsome man]] = Σ([[man]], [[handsome]]) : Type.

5In this note, we assume that the impredicative universe Prop exist in the type theory (eg, we use the
impredicative type theory UTT).

6Subtyping is needed for the well-typedness of, eg, [[walk]]([[John]]). See S4 for more details.
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3 Some Features in Modern Type Theories

We shall briefly introduce some features of a modern type theory and their uses in type-
theoretical semantics.

3.1 Embedded logic

Propositions as types. A modern type theory has an embedded logic (or internal logic)
based on the propositions-as-types principle [CF58, How80]. For example, there is a cor-
respondence between the logical implication (P ⊃ Q) and the function type (P → Q), and
the universal quantifier (∀x:A.P (x)) to the dependent Π-type Π(A,P ).

Type of logical propositions. In a so-called impredicative type theory, there is a type
Prop of logical propositions, which is a totality and one can quantify over it to form other
propositions such as ∀P :Prop.P (and this process is regarded as ‘circular’ by predicativists
[Fef05] or ‘impredicative’, in the technical jargon).

We use Prop in linguistic interpretations. As mentioned above, an assertive sentence is
interpreted as a proposition of type Prop and a verb or an adjective as a predicate of type
A → Prop, where A is the domain whose objects the verb or adjective can be meaningfully
applied to.

3.2 Dependent types

Modern type theories contain dependent types. Here are some examples.

Σ-types. Here are some basic laws governing Σ-types.

• If A is a type and B is an A-indexed family of types, then Σ(A,B), or sometimes
written as Σx:A.B(x), is a type.

• Σ(A,B) consists of pairs (a, b) such that a is of type A and b is of type B(a).

• When B(x) is a constant type (i.e., always the same type no matter what x is), the
Σ-type degenerates into product type A×B of non-dependent pairs.

• Σ-types (and product types) are associated projection operations π1 and π2 so that
π1(a, b) = a and π2(a, b) = b, for every (a, b) of type Σ(A,B) or A×B.

In a type-theoretical semantics, modified common nouns are interpreted as Σ-types. For
instance, in the above Example (20), Σ([[man]], [[handsome]]) is the type of handsome men
(or more precisely, of those men together with proofs that they are handsome).

Other dependent types. There are other dependent types. An example is the Π-types
mentioned above: when A is a type and P is a predicate over A, Π(A,P ) or Πx:A.P (x)
is the dependent function type that, in the embedded logic, stands for the universally
quantified proposition ∀x:A.P (x). Π-types degenerates to the function type A → B in the
non-dependent case.

4



3.3 Type Universes

One may collect (the names of) some types into a type called a universe [ML84]. In-
troducing universes can be considered as a reflection principle: such a universe reflects
those types whose names are its objects. In type-theoretical semantics, universes can be
introduced to help semantic interpretations. We explain this by an example.

Type universe of CN interpretations. For instance, one may consider the universe
cn : Type of all common noun interpretations and, for each type A that interprets a
common noun, there is a name A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

Interpretation of adverbs. The universe cn can be used to give semantic interpre-
tations to adverbs [Luo11]. An adverb modifies a verb (an adjective) to result in a verb
(adjective) phrase.7 Since, in a type-theoretical semantics, verbs and adjectives are inter-
preted as predicates over a variety of domains (rather than over a single domain as in the
Montagovian setting), adverbs such as ‘quickly’ in ‘John walked quickly’ and ‘simply’ in
‘That idea is simply ridiculous’ would be interpreted as having the following (‘polymor-
phic’) type:

(21) [[quickly]], [[simply]] : ΠA : cn. (A → Prop) → (A → Prop)

For instance, the following phrase (22) can be interpreted as (23), which is of type
[[animated]] → Prop:

(22) walk quickly

(23) [[quickly]]([[animated]], [[walk]])

4 Coercive Subtyping

Coercive subtyping [Luo97, Luo99] is an adequate theory of subtyping for modern type
theories. A theory of subtyping is crucial for type-theoretical semantics. We describe
below how coercive subtyping may play an important role in this endeavor.

4.1 The basic idea of coercive subtyping

The basic idea of coercive subtyping is to consider subtyping as an abbreviation mecha-
nism: A is a (proper) subtype of B (A ≤ B) if there is a unique implicit coercion c from
type A to type B and, if so, an object a of type A can be used in any context CB[ ]
that expects an object of type B: CB[a] is legal (well-typed) and equal to CB[c(a)]. (See
Figure 1.)

For instance, one may introduce [[man]] ≤ [[human]]. Then, if we assume that [[John]] :
[[man]] and [[shout]] : [[human]] → Prop, the interpretation (25) of (24) is well-typed:

(24) John shouts.

(25) [[shout]]([[John]])

according to the rule of coercive subtyping, because [[man]] ≤ [[human]].

7There are other adverbs. For example, an adverb may modify sentences to result in new sentences
and, similarly to Montague semantics, such adverbs are interpreted as functions from Prop to Prop.
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Figure 1: Pictorial explanation of A ≤c B

4.2 Coercive Subtyping in Type-Theoretical Semantics

The usefulness of coercive subtyping in type-theoretical semantics is explained here with
concrete examples. For further and formal details, see [Luo10] for dot-types and copredi-
cation and [Luo11] for the others.

Basic need for subtyping. Because CNs are interpreted as types in type-theoretical se-
mantics in modern type theories, subtyping is crucially important.8 Consider the following
sentences:

(26) A man is a human.

(27) A handsome man is a man.

(28) Paul walks.

where Paul is a handsome man (ie, [[Paul]] : [[handsome man]] = Σ([[man]], [[handsome]])).
To interpret the above sentences as intended, we need the following subtyping relationships:
(29) is needed for (26), (30) for (27), and both (29) and (30) for (28).

(29) [[man]] ≤ [[human]]

(30) Σ([[man]], [[handsome]]) ≤π1 [[man]], where π1 is the first projection (see §3.2).

Sense enumeration/selection via overloading. The representation of a sense enu-
meration model for anonymous words and the associated automated selection can be done
by overloading (or ad hoc polymorphism) [Str00], which can be supported by coercive sub-
typing. Consider, for example, the anonymous word ‘run’ as in the following sentences:

(31) John runs quickly.

(32) John runs a bank.

In a type-theoretical semantics, we may have the following two different and homonymous
meanings of ‘run’, corresponding to the above uses:

(33) [[run]]1 : [[human]] → Prop

(34) [[run]]2 : [[human]] → [[institution]] → Prop

8Ranta discussed this and called it the problem of multiple categorization of verbs (p62-64 in [Ran94]).
Coercive subtyping provides a satisfactory solution to the problem.
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run : 1run

[run]1 : Human → Prop

[run]2 : Human → Institution → Prop

PPPPPq

�����1
c1

c2

Figure 2: Example of sense enumeration/selection via coercions.

When the different meanings can be distinguished by their types (eg, in the case of ‘run’),
the sense selection model can be represented by means of overloading (or ad hoc polymor-
phism) supported by coercive subtyping. For instance, the sense selection model for the
two meanings of ‘run’ is given by the following two coercions c1 and c2 (see Figure 29):

c1 : 1run → (Human → Prop)

c1(run) = [[run]]1

c2 : 1run → (Human → Institution → Prop)

c2(run) = [[run]]2

This has the effect that, for example, in any context C1[run] that requires an object of
type [[human]] → Prop, we have

C1[run] = C1[c1(run)] = C1[[[run]]1],

and, in any context C2[run] that requires an object of type [[human]] → [[institution]] →
Prop, we have

C2[run] = C2[c2(run)] = C2[[[run]]2].

Therefore, through automated insertions of coercions, the sentences (31) and (32) will
both be interpreted correctly.

Coercion contexts Word meanings are context-sensitive and, in order to express lexical
semantics formally, a formal notion of context that allows declaration of coercions is very
useful. Consider reference transfer in the following utterance (cf., [Nun95]):

(35) The ham sandwich shouts.

It is obvious that (35) is not well-formed, unless it is uttered by somebody in some special
extralinguistic context (e.g., by a waiter in a café to refer to a person who has ordered a
ham sandwich).

A coercion context is a context whose entries may be of the form A ≤c B as well as the
usual form x : A. For instance, the following context may be used to describe the special
circumstances in a café:

(36) ..., [[ham sandwich]] ≤ [[human]], ...

9In Figure 2, 1run is the inductive unit type with ‘run’ as its only object. See Appendix A of [Luo11]
for formal details.
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where the subtyping assumption says that a ham sandwich can be coerced into a person
(i.e., the person who has ordered a ham sandwich). In a context such as (36), the above
sentence (35) can be interpreted satisfactorily as intended.

Local coercions. Consider the following phrases that use the homonym ‘bank’:

(37) the bank of the river

(38) the richest bank in the city

The anonymous word ‘bank’ cannot be disambiguated by the typing of its semantic inter-
pretations: eg, both of the two interpretations [[bank]]1 and [[bank]]2 are types (or they are
of the same ‘type’ Type). Therefore, if we consider two coercions (cf, the above for the
word ‘run’):

c1 : 1bank → Type

c1(bank) = [[bank]]1

c2 : 1bank → Type

c2(bank) = [[bank]]2

Both coercions are of the same type and cannot be used together as they are incoherent.
Such a problem can be solved by introducing local coercions – coercions that are only

effective locally for some terms (expressions in type theory):

(39) coercion 1bank ≤c1 Type in [[(37)]]

(40) coercion 1bank ≤c2 Type in [[(38)]]

The coercions declared locally are only effective in the expressions in the scope of the
keyword in and, therefore, the phrases in (37) and (38) are given semantics (39) and (40),
respectively. as intended.

Dot-types and copredication. Dot-types are proposed by Pustejovsky in his Gen-
erative Lexicon Theory [Pus95]. Researchers have made proposals to model dot-types
including, for example, [AP05, Coo11]. There are arguments about whether these do
capture, and therefore give successful formal accounts of, dot-types. Here, we present a
type-theoretic treatment of dot-types with the help of coercive subtyping, as proposed in
[Luo10], which we believe gives an adequate formal account of dot-types and can hence be
used in a type-theoretical semantics to interpret, for instance, copredication etc.

Our proposal is, intuitively:

• If types A and B do not share components, A •B is a well-formed type.

• If A • B is well-formed, then it is the type of pairs both of whose projections are
coercions.

To explain the notion of component, whose formal definition can be found in [Luo10], it
may be the best to give examples of types A and B which do share components (and hence
cannot form a dot-type A • B). Assume that Phy and Info be the (different) types of
physical objects and informational objects, respectively. Then,

• Phy and Phy share the component Phy (therefore, Phy •Phy is not well-formed).
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• Phy and Info do not share components (therefore, Phy • Info is well-formed).

• Phy and Phy • Info share the component Phy (therefore, Phy • (Phy • Info) is
not well-formed).

Also, we have, [[book]] ≤ Phy • Info.
This notion of dot-types can be formalised in type theory with coercive subtyping

[Luo10]. In particular, if A •B is well-formed, we have

A •B ≤p1 A and A •B ≤p2 B,

where p1 and p2 are the projection operators mapping ⟨a, b⟩ to a and b, respectively.
Dot-types can be used to give satisfactory treatments of, say, copredication. Consider

the following example [Ash11]:

(41) John picked up and mastered the book.

The idea is that the interpretations of the phrases pick up and master should be of the
same type so that the use of and in the above sentence can be interpreted in a straight-
forward way. Now, when we consider the types Phy and Info as above, it is natural that
these phrases have the following types:

[[pick up]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

By coercive subtyping (and contravariance for function types), we have

[[pick up]] : [[human]] → Phy → Prop

≤ [[human]] → Phy • Info → Prop

≤ [[human]] → [[book]] → Prop

[[master]] : [[human]] → Info → Prop

≤ [[human]] → Phy • Info → Prop

≤ [[human]] → [[book]] → Prop

In other words, [[pick up]] and [[master]] can both be used in contexts where terms of type
[[human]] → [[book]] → Prop are required and, therefore, the interpretation of the sentence
(41) can proceed straightforwardly as intended.

Remark In a Montagovian setting, the interpretations of such sentences with copred-
ication can become rather sophisticated. This is because, in Montague semantics, CNs
are interpreted as functional subsets. Such an interpretation seems incompatible with the
subtyping relationships involving Phy and Info. In a type-theoretical semantics with
coercive subtyping, where common nouns are interpreted as types, the interpretation of
sentences with copredication is quite straightforward. 2
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[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[Mon74] R. Montague. Formal Philosophy. Yale University Press, 1974. (Edited by R.
Thomason).

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’s Type
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