
Dependent Record Types Revisited

Zhaohui Luo
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey TW20 0EX, U.K.

zhaohui@cs.rhul.ac.uk

ABSTRACT
Dependently-typed records have been studied in type the-
ory in several previous research attempts, with applications
to the study of module mechanisms for both programming
and proof languages. Recently, the author has proposed an
improved formulation of dependent record types in the con-
text of studying manifest fields of module types. In this
paper, we study this formulation in more details by con-
sidering universes of record types and some application ex-
amples. In particular, we show that record types provide
a more powerful mechanism (than record kinds) in express-
ing module types and additional useful means (as compared
with Σ-types) in applications.

1. INTRODUCTION
Dependently-typed records have been studied in type the-

ory in several previous research attempts [7, 1, 16, 3], with
applications to the study of module mechanisms for both
programming and proof languages. Recently, the author
has proposed an improved formulation of dependent record
types in the context of studying manifest fields of module
types [12]. In this paper, we study this formulation in more
details by considering universes of record types and some
application examples.
First, let us make clear that we study record types, not

record kinds. In a type theory with inductive types, types
include those such as Nat of natural numbers and Σ-types
of dependent pairs, while kinds are at the level of logical
framework used to specify the type theory (e.g., the kind
Type of all types). In the terminology used in this paper,
most of the previous work studies record kinds,1 with [16]
as the only exception. Since kinds have a much simpler
structure than types, it is easier to add record kinds (e.g.,
to ensure label distinctness) than record types, while the
latter is much more powerful. For example, it is possible to

1For example, both [1] and [3] study record kinds – their
‘record types’ are studied at the level of kinds in a logical
framework.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

consider universes of record types, but not for record kinds.
We shall show how such universes can be introduced so that
record types provide a more powerful mechanism than record
kinds in expressing module types. This is illustrated by
means of an example in date refinement.

In formulating dependent record types, we introduce kinds
RType[L] of the record types whose (top-level) labels all
occur in the label set L. The associated label sets in the
kinds RType[L] play a crucial role in forming record types
with distinct labels (among other uses). In particular, unlike
[16], repetition of labels is not allowed when record types are
formed or when records are introduced. Such a requirement
for label distinctness is not only intuitively natural, but use-
ful in some applications, as one of our examples shows. It is
also interesting to note that, in type theory, to ensure label
distinctness is not easy for record types, although it is easy
for record kinds.

It has been a common view held by many researchers that,
because one can easily introduce Σ-types as inductive types
in type theory, dependent record types are not necessary —
they can always be replaced by Σ-types. In this paper, we
argue that such a view is not completely justified — record
types provide some additional useful means that is not avail-
able for Σ-types. As we know, the only difference between a
dependent record type and a Σ-type is that the former has
field labels. We show that, in some applications, the labels
provide a useful mechanism in a finer distinction between
record types so that record types can be used adequately
together with some forms of structural subtyping, while Σ-
types cannot.

The following subsection briefly describes the logical frame-
work LF, establishing notational conventions. Dependent
record types are formulated in §2, where we also discuss sev-
eral issues concerning the design decisions. In §3, we show
how to introduce universes of dependent record types and
illustrate why record types are more powerful than record
kinds by considering an example in data refinement. §4 ex-
plains the usefulness of labels in an adequate use of record
types together with structural subtyping.

1.1 The Logical Framework LF
LF [10] is the typed version of Martin-Löf’s logical frame-

work [15]. It is a dependent type system for specifying type
theories. The types in LF are called kinds, including:

• Type— the kind representing the collection of all types
(A is a type if A : Type);

• El(A) — the kind of objects of type A (we often omit
El); and

• (x:K)K′ (or simply (K)K′ when x ̸∈ FV (K′)) — the
kind of dependent functional operations f which can
be applied to an object k of kindK to form f(k) of kind
[k/x]K′. When f ≡ [x:K]k, f(a) is computationally
equal to [a/x]k.

We use ≡ to denote the syntactical identity (up to
α-conversion) and write M{x} to indicate that x may occur
free in M and subsequently write M{a} for the substitution
[a/x]M .2

When a type theory is specified in LF, its types are de-
clared, together with their introduction/elimination opera-
tors and the associated computation rules. Examples in-
clude

• inductive types such as Nat of natural numbers,

• inductive families of types such as V ect(n) of vectors
of length n, and

• families of inductive types such as

– Π-types Π(A,B) of functions λ(A,B, f) that,
when applied to a of type A, returns an object
that is equal to f(a) of type B(a), and

– Σ-types Σ(A,B) of dependent pairs (a, b)3 with
π1 and π2 being the associated projection opera-
tors.

A → B and A × B will be used for non-dependent
Π-type and Σ-type, respectively.

Type theories thus specified in LF are intensional type the-
ories such as Martin-Löf’s intensional type theory [15] and
the Unifying Theory of dependent Types (UTT) [10]. Inten-
sional type theories have nice meta-theoretic properties in-
cluding Church-Rosser, Subject Reduction and Strong Nor-
malisation (see Goguen’s thesis on the meta-theory of UTT
[4, 5]).

2. DEPENDENT RECORD TYPES
In this section, we present the formulation of dependent

record types, as given in [12], followed by some discussions
on its design decisions.

2.1 A Formulation of Dependent Record Types
A dependent record type is a type of labelled tuples. For

instance, ⟨n : Nat, v : V ect(n)⟩ is the dependent record
type with objects (called records) such as ⟨n = 2, v = [5, 6]⟩,
where dependency has to be respected: [5, 6] must be of type
V ect(2).
Formally, we formulate dependent record types as an ex-

tension of intensional type theories such as Martin-Löf’s
type theory or UTT, as specified in the logical framework
LF. The syntax is extended with record types and records:

R : = ⟨⟩ | ⟨R, l : A⟩
r : = ⟨⟩ | ⟨r, l = a : A⟩

2Usually, we would have instead used M [] for M{ }. In
this paper, however, M{ } is used to differentiate it from
the restriction operator [] for records.
3We use the notation of untyped pairs — see, for example,
[12] for an explanation of how this is possible, thanks to
coercive subtyping.

where we overload ⟨⟩ to stand for both the empty record
type and the empty record. Records are associated with
two operations:

• restriction (or first projection) [r] that removes the last
component of record r;

• field selection r.l that selects the field labelled by l.

The labels form a new category of symbols. For every
finite set L of labels, we introduce a kind RType[L], the
kind of the record types whose (top-level) labels are all in
L, together with the kind RType of all record types:

Γ valid

Γ ⊢ RType[L] kind

Γ valid

Γ ⊢ RType kind

These kinds obey obvious subkinding relationships:

Γ ⊢ R : RType[L] L ⊆ L′

Γ ⊢ R : RType[L′]

Γ ⊢ R : RType[L]

Γ ⊢ R : RType

Γ ⊢ R : RType

Γ ⊢ R : Type

In particular, they are all subkinds of Type. Equalities are
also inherited by superkinds in the sense that, if Γ ⊢ k =
k′ : K and K is a subkind of K′, then Γ ⊢ k = k′ : K′. The
obvious rules are omitted.

The main inference rules for dependent record types are
given in Figure 1. Note that, in record type ⟨R, l : A⟩, A
is a family of types, indexed by the objects of R, and this is
how dependency is embodied in the formulation.

The notion of equality between records is weakly exten-
sional in the sense that two records are equal if their compo-
nents are. This is reflected in the following two rules (similar
rules are used in [1]):

Γ ⊢ r : ⟨⟩
Γ ⊢ r = ⟨⟩ : ⟨⟩

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ r′ : ⟨R, l : A⟩
Γ ⊢ [r] = [r′] : R Γ ⊢ r.l = r′.l : A([r])

Γ ⊢ r = r′ : ⟨R, l : A⟩

For example, for any r : ⟨R, l : A⟩ (r can be a variable), we
have, by the second rule above, that r = ⟨[r], l = r.l : A⟩ :
⟨R, l : A⟩.

There are also congruence rules for record types and the
associated operations, which we omit here. However, it is
worth remarking that we pay special attention to the equal-
ity between record types. In particular, record types with
different labels are not equal. For example, ⟨n : Nat⟩ ≠ ⟨n′ :
Nat⟩ if n ̸= n′.

Notation We shall adopt the following notational conven-
tions.

• For record types, we write ⟨l1 : A1, ..., ln : An⟩ for
⟨⟨⟨⟩, l1 : A1⟩, ..., ln : An⟩ and often use label oc-
currences and label non-occurrences to express depen-
dency and non-dependency, respectively. For instance,
we write

⟨n : Nat, v : V ect(n)⟩

for

⟨⟨⟨⟩, n : NAT ⟩, v : [x:⟨n : NAT ⟩]V ect(x.n)⟩,

where NAT ≡ [:⟨⟩]Nat, and

⟨R, l : V ect(2)⟩ for ⟨R, l : [:R]V ect(2)⟩.

Formation rules

Γ valid

Γ ⊢ ⟨⟩ : RType[∅]
Γ ⊢ R : RType[L] Γ ⊢ A : (R)Type l ̸∈ L

Γ ⊢ ⟨R, l : A⟩ : RType[L ∪ {l}]

Introduction rules

Γ valid

Γ ⊢ ⟨⟩ : ⟨⟩
Γ ⊢ ⟨R, l : A⟩ : RType Γ ⊢ r : R Γ ⊢ a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩

Elimination rules

Γ ⊢ r : ⟨R, l : A⟩
Γ ⊢ [r] : R

Γ ⊢ r : ⟨R, l : A⟩
Γ ⊢ r.l : A([r])

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ [r].l′ : B l ̸= l′

Γ ⊢ r.l′ : B

Computation rules

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩
Γ ⊢ [⟨r, l = a : A⟩] = r : R

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩
Γ ⊢ ⟨r, l = a : A⟩.l = a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : R Γ ⊢ r.l′ : B l ̸= l′

Γ ⊢ ⟨r, l = a : A⟩.l′ = r.l′ : B

Figure 1: The main inference rules for dependent record types.

• For records, we often omit the type information to
write

⟨r, l = a⟩

for

either ⟨r, l = a : [:R]A(r)⟩ or ⟨r, l = a : A⟩.

Such a simplification is possible thanks to coercive sub-
typing (see Appendix A of [12] for an explanation).

2.2 Remarks
Several remarks are in order to explain some of the design

decisions in the above formulation and to compare it with
previous attempts.

Record types v.s. record kinds. It is important to em-
phasise that we have formulated record types, not record
kinds. Record types are at the same level as the other
types such as Nat and A × B; they are not at the level
of kinds such as Type. (For those familiar with previous
work on dependently-typed records, both [1] and [3] study
record kinds — their ‘record types’ are studied at the level of
kinds in the logical framework, while only [16] studies record
types.)
Record types are much more powerful than record kinds.

As explained later in §3, we can introduce universes to reflect
record types, which can then be used to represent module
types in a more flexible way than record kinds in many useful
applications.
Since kinds have a much simpler structure than types, it

is much easier to add record kinds to a type theory than
record types. For example, a record kind must be of the
form ⟨R, l : A⟩ and cannot be of other forms such as f(k),
but this is not the case for a record type. For example, a
record type may be of the form f(k), say

([x:Type]x)(⟨n : Nat, v : V ect(n)⟩)

that is equal to ⟨n : Nat, v : V ect(n)⟩. As a consequence,
it is much easier to study (e.g., to formulate) record kinds.
For instance, it is easy to ensure that the labels in a record

kind are distinct (as in, e.g., [3]), but it is not easy at all if
we consider record types. Let’s discuss this issue now.

Label distinctness in record types. When considering
record types, how can one ensure that the (top-level) labels
in a record type are distinct? Thinking of this carefully,
one would find that it is not clear how it could be done in a
straightforward way.4 It is probably because of this difficulty
that, when record types are studied in [16], a special strategy
called ‘label shadowing’ is adopted; that is, label repetition is
allowed and, if two labels are the same, the latter ‘shadows’
the earlier. For example, for r ≡ ⟨n = 3, n = 5⟩, r.n is equal
to 5 but not 3. This, however, is not natural and may cause
problems in some applications (see, for example, Remark 4
in §4).

In our formulation of dependent record types, we have
introduced the kinds RType[L] of record types whose (top-
level) labels occur in L. This has solved the problem of
ensuring label distinctness in a satisfactory way. (See the
second formation rule in Figure 1.)

It may be worth remarking that the label sets L also play
other useful roles. For example, for a label l ̸∈ L, one may
want to define a functional operationExtend[l](R) =df ⟨R, l :
[x : R]Nat⟩, for all R : RType[L]. Without label sets, it
would be difficult to see how the operations such as Extend[l]
could be defined. (See Appendix A of [12] for a practical ex-
ample in which such operations are used essentially.)

Independence on subtyping. Many previous formula-
tions of dependently-typed records make essential use of
subtyping in typing selection terms [7, 1, 3]. In this respect,
[16] is different and our formulation follows it in that it is
independent of subtyping. We consider this independence
as a significant advantage, mainly because it allows one to

4There is a problem in [1], where the freshness condition of
label occurrence in a formation rule of record kinds has not
been clearly defined — its definition is not easy, if possible at
all, because there are functional terms that result in record
kinds as values. This is similar to the problem with record
types.

adopt more flexible subtyping relations in formalisation and
modelling.

3. UNIVERSES OF RECORD TYPES AND
APPLICATIONS

Universes of dependent record types and their use in ap-
plications are considered in this section. We explain in §3.1
how universes of record types can be introduced and then il-
lustrate their use in §3.2 by giving an example in data refine-
ment which, in particular, shows that record types provide
a more powerful mechanism than record kinds.

3.1 Universes of Dependent Record Types
One may collect (the names of) some types into a type

called a universe [14]. This can be considered as a reflection
principle: such a universe reflects those types whose names
are its objects. For instance, in Martin-Löf’s type theory or
UTT, we can introduce a universe U : Type, together with
T : (U)Type, to reflect the types in Type introduced before
U (see [14] or §9.2.3 of [10]). For example, for Π-types, we
have

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ π(a, b) : U

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ T (π(a, b)) = Π(T (a), [x:T (a)]T (b(x))) : Type

Note that such a universe is predicative: for example, U and
Nat → U do not have names in U .
Similarly, we can consider universes of dependent record

types.5 We introduce the following universes:

• UR[L] to reflect the record types in RType[L] (intro-
duced before UR[L]):

UR[L] : Type and TR[L] : (UR[L])RType[L].

• UR to reflect the record types in RType (introduced
before UR):

UR : Type and TR : (UR)RType.

Names of the record types are introduced into the universes
UR[L] by the rules in Figure 2. For example, the record type
⟨n : Nat, v : V ect(n)⟩ has a name ⟨̄n : nat, v : vect(n)⟩̄ in
UR[{n, v}], where nat is a name of Nat in U and vect :
(Nat)U maps n to a name of V ect(n).
Furthermore, the universes obey the following subtyp-

ing relationship that reflects the subkinding relationship be-
tween the corresponding kinds, where L ⊆ L′:

UR[L] ≤ UR[L
′] ≤ UR ≤ U.

The subtyping relations are given by the rules in Figure 3.

Remark Note that the universes UR[L] and UR do not
have names in U , for otherwise the universes would become
impredicative and the whole system inconsistent.

3.2 Dependent Record Types as Module Types
One of the primary functions of dependent record types

is to represent types of modules. Because record types (but

5Note that we can do this because they are record types, not
record kinds.

not record kinds) can be reflected in universes, as explained
in §3.1, they provide a more powerful mechanism for mod-
ule types than record kinds, as the example below in data
refinement illustrates.

Notation For readability, we shall adopt the following two
notational conventions in this subsection.

• We shall not distinguish types and their names in a
universe. In particular, we shall abuse the notations:
for example, we simply write A → B for both the
function type and its name and ⟨R, l : A⟩ for both the
record type and its name.

• We shall use l1 : A1

...
ln : An

 and

 l1 = a1

...
ln = an

to stand for the record type ⟨l1 : A1, ..., ln : An⟩ and
the record ⟨l1 = a1, ..., ln = an⟩, respectively. For
example, the record type ⟨n : Nat, v : V ect(n)⟩ (cf.,
the notational conventions at the end of §2.1) and its
object ⟨n = 3, v = [a, b, c]⟩ are written as{

n : Nat
v : V ect(n)

}
and

[
n = 3
v = [a, b, c]

]
,

respectively.

We now consider an example to show how record types
can be used to represent module types in data refinement.
The general idea of specification and data refinement in type
theory is set out in [9]. In general, a specification consists
of a type (e.g., a record type), called the structure type,
and a predicate over the type. The following example is
based on an example given in [9]; the key difference is that
record types, instead of Σ-types, are used to represent mod-
ule types. It illustrates the traditional implementation of
stacks by arrays together with pointers.

Example 3.1. We consider a specification of stacks, a
specification of arrays and an implementation of stacks by
means of arrays together with pointers.

• Stack(Nat), a specification of stacks of natural num-
bers. Its structure type Str[Stack(Nat)] can be repre-
sented as the following record type:

Stack : Setoid
empty : Stack.Dom
push : Nat → Stack.Dom → Stack.Dom
pop : Stack.Dom → Stack.Dom

where

Setoid ≡
{

Dom : U
Eq : Dom → Dom → Prop

}
with U being the universe reflecting types in Type in-
troduced before U (see §3) and Prop the type of logical
propositions (as in UTT).

The predicate of Stack(Nat) expresses the axiomatic
requirements of the stack structures including, for ex-
ample, that the book equality Stack.Eq is a congruence
relation and that, for any number n and any stack s,
pop(push(n, s)) is equal to s (i.e.,
Stack.Eq(pop(push(n, s)), s)).

Γ valid

Γ ⊢ ⟨̄⟩̄ : UR[∅]
Γ valid

Γ ⊢ TR[∅](⟨̄⟩̄) = ⟨⟩ : RType[∅]

Γ ⊢ r : UR[L] Γ ⊢ a : (TR[L](r))U l ̸∈ L

Γ ⊢ ⟨̄r, l : a⟩̄ : UR[L ∪ {l}]

Γ ⊢ r : UR[L] Γ ⊢ a : (TR[L](r))U l ̸∈ L

Γ ⊢ TR[L ∪ {l}](⟨̄r, l : a⟩̄) = ⟨TR[L](r), l : [x:TR[L](r)]T (a(x))⟩ : RType[L ∪ {l}]

Figure 2: Introduction of names of record types.

Γ ⊢ r : UR[L] L ⊆ L′

Γ ⊢ r : UR[L′]

Γ ⊢ r : UR[L] L ⊆ L′

Γ ⊢ TR[L′](r) = TR[L](r) : RType[L′]

Γ ⊢ r : UR[L]

Γ ⊢ r : UR

Γ ⊢ r : UR[L]

Γ ⊢ TR(r) = TR[L](r) : RType

Γ ⊢ r : UR

Γ ⊢ r : U

Γ ⊢ r : UR

Γ ⊢ T (r) = TR(r) : Type

Figure 3: Subtyping between universes.

• Array(Nat), a specification of arrays of natural num-
bers. This can be defined similarly. Its structure type
Str[Array(Nat)] can be represented as the following
record type:

Array : Setoid
newarray : Array.Dom
assign : Array.Dom →

Nat → Nat → Array.Dom
access : Array.Dom → Nat → Nat

where indexes are represented by natural numbers (in-
tuitively, assign(A,n, i) and access(A, k) stand for A[i]
:= n and A[k], respectively). The predicate of
Array(Nat) expresses the axioms such as, for any ar-
ray A, any number n and any indexes i and j,
access(assign(A,n, i), j) is equal to n, if i = j, and
access(A, j), if i ̸= j.

• Now, we want to use arrays to implement stacks. We
can define a refinement map

ρ : Str[Array(Nat)] → Str[Stack(Nat)]

as follows: for any record r : Str[Array(Nat)], ρ(r)
is defined to be the record given in Figure 4. In the
implementation, a stack is represented by means of a
record that consists of an array arr and a pointer ptr;
in other words, the type of stacks is refined into the
record type

ρ(r).Stack.Dom ≡
{

arr : r.Array.Dom
ptr : Nat

}
.

Two of such stack representations s and s′ are equal
if their pointers are the same (i.e., s.ptr =Nat s′.ptr,
where =Nat is the propositional equality on Nat) and
accessing both of the representing arrays with an index
i < s.ptr gives the same result.

We can prove that ρ as defined above is indeed a refine-
ment map in the sense that it maps every realisation of
Array(Nat) to a realisation of Stack(Nat).

Remark Note that, in the above example, ρ(r).Stack.Dom
is a record type (not a record kind) and, therefore, it can be
reflected as an object in a type universe. This is why the re-
finement map ρ is well-typed: for example, the record type
ρ(r).Stack.Dom has a name in UR[{Dom,Eq}] ≤ U and,
therefore, ρ(r).Stack is of type Setoid. It is worth pointing
out that, if ρ(r).Stack.Dom were a record kind as studied in
[3], we would not be able to introduce a universe to reflect it
and hence the above example would not go through (in par-
ticular, the refinement map ρ would not be definable).

4. DEPENDENT RECORD TYPES V.S.∑-TYPES
Dependent record types are arguably better mechanisms

than Σ-types when used to represent types of modules. How-
ever, some people may still take the view that, although
they bring convenience to applications, dependent record
types are not necessary — they can always be replaced by
Σ-types. In this section, it is argued that such a view is
not completely justified. In particular, we consider a case to
demonstrate that this is not the case: record types can be
used adequately in some situations while Σ-types cannot.

As we know, the only difference between a dependent
record type and a Σ-type is that the former has field la-
bels. Our case considers the use of module types together
with some form of structural subtyping, in the framework
of coercive subtyping [11], and shows that the labels are ac-
tually useful in making a finer distinction between record
types so that record types can be used adequately in some
applications, while Σ-types cannot as they do not have la-
bels.

ρ(r) =

Stack =

Dom =

{
arr : r.Array.Dom
ptr : Nat

}
Eq = λ(s, s′ : Dom) s.ptr =Nat s

′.ptr &
∀i : Nat.
i < s.ptr ⇒ access(s.arr, i) =Nat access(s

′.arr, i)

empty =

[
arr = r.newarray
ptr = 0

]

push = λ(n : Nat, s : Stack.Dom)

[
arr = assign(s.arr, n, s.ptr)
ptr = s.ptr + 1

]

pop = λ(s : Stack.Dom)

[
arr = s.arr
ptr = s.ptr − 1

]

Figure 4: Refinement map from arrays to stacks.

Module types with structural subtyping. A module
type can be represented in a type theory as either a Σ-type
or a dependent record type (and, in the non-dependent case,
a product type or a non-dependent record type). Here, by
structural subtyping for module types, we mean the follow-
ing subtyping relationships:

• Projective subtyping: a module type is a subtype of
its constituent types. For instance, in the framework
of coercive subtyping and for the first projection,

A×B ≤π1 A and ⟨l1 : A, l2 : B⟩ ≤[] ⟨l1 : A⟩,

where π1 and [] are the first projection operators for
Σ-types and record types, mapping (a, b) to a and ⟨l1 =
a, l2 = b⟩ to ⟨l1 = a⟩, respectively.

• Component-wise subtyping: subtyping relationships prop-
agate through the module types. For example, for
product types (i.e., Σ-types in the non-dependent case,
and similar for record types — see below), if A ≤c A′

and B ≤c′ B′, then A×B ≤d A′ ×B′, where d maps
(a, b) to (c(a), c′(b)) in the component-wise way.

Structural subtyping can be useful for many applications.
For example, when using module types to represent classes
in an object-oriented language such as Java, it would be de-
sirable for these subtyping relationships to hold between the
representing types in order to capture the subclassing rela-
tionships between classes. This is elaborated in the following
example (see [12] for more details.)

Example 4.1. A class in an OO-language consists of two
parts: states and methods. The former can be represented as
a module type and the latter by means of intensional man-
ifest fields as studied in [12]. Here, we omit the details of
how to represent methods but focus on the representation of
states.
For a class C, its states can be represented as a module

type either as A1 × ...× An or ⟨l1 : A1, ..., ln : An⟩, where
Ai’s are types. For example, in the type-theoretic model as
described in [12], if C is a class, then its type of states is
such a module type SC .
In order to obtain a faithful representation, we would like

that the subtyping relationships between the representing types

capture the subclassing relationships between classes. There-
fore, it would be desirable to have SC′ ≤ SC if C′ is a sub-
class of C. This would require that the type of states be a
subtype of its constituent types (SC ≤ Ai or SC ≤ ⟨li : Ai⟩).
In the framework of coercive subtyping, this would amount to
having both projections from the module types as coercions.

Furthermore, the subtyping relations between the constituent
types need to be propagated through the module types and this
requires to have component-wise coercions as well.

Can one consistently make these structural mappings as
coercions — are they coherent?6 Unfortunately, for Σ-types
(or product types), one cannot, for otherwise, coherence is
lost. It is here that the labels of record types play a cru-
cial role in the coherence of these structural subtyping rela-
tions. Particularly, the labels make a special contribution to
a more refined distinction between record types, which is not
available for Σ-types. We begin by explaining the coherence
problem for Σ-types for structural subtyping.

Incoherence of structural subtyping for Σ-types. It is
known from Y. Luo’s thesis [8] that, for Σ-types (and prod-
uct types in the non-dependent case), the following coercions
together are incoherent.

• The first and second projections. Let’s consider the
non-dependent case, where the projections are π1 :
(A × B)A and π2 : (A × B)B, for any A,B : Type.
If we take both projections as coercions, incoherence
happens. For instance, taking both A and B to be
Nat, π1 and π2 are both from Nat×Nat to Nat, but
they are not equal: π1(3, 5) = 3 and π2(3, 5) = 5.

• Either projection and the component-wise coercions.
For example, if the first projection and the component-
wise mappings were coercions, there would be two dif-
ferent coercions from (A×B)×B to A×B: one map-
ping ((a, b1), b2) to (a, b1) (the first projection) and the
other mapping ((a, b1), b2) to (a, b2) (the composition

6Intuitively, coherence is the condition that the coercions
between any two types are unique; that is, a set of coercion
rules is coherent if c = c′ : (A)B for any coercions c and c′

from A to B. See [11] for formal details.

Γ ⊢ R : RType[L] Γ ⊢ R′ : RType[L] Γ ⊢ R ≤c R′ : RType
Γ ⊢ A : (R)Type Γ ⊢ A′ : (R′)Type Γ, x:R ⊢ A(x) ≤c′{x} A′(c(x)) : Type

Γ ⊢ ⟨R, l : A⟩ ≤dR
⟨R′, l : A′⟩ : RType

(l ̸∈ L)

Figure 5: Component-wise cubtyping for record types.

of the component-wise coercion and the first projec-
tion).

Therefore, one cannot use Σ-types (at least in a straight-
forward way) to represent module types in the applications
such as that explained in Example 4.1.

Structural coercions for record types. Although in-
coherence happens in the above situations for Σ-types and
product types, the record types and the corresponding co-
ercions behave in a better way — the labels play a use-
ful role of distinguishing record types from each other. For
instance, a record type that corresponds to Nat × Nat is
Nat2 ≡ ⟨m : Nat, n : Nat⟩, where the labels m and n are
distinct. We may have ‘projections’ from Nat2 to ⟨m : Nat⟩
and ⟨n : Nat⟩, which are two different types – therefore, the
record projections are coherent together.
More formally, for non-empty record types,

• the first projection is simply the restriction operation

[] : (⟨R, l : A⟩)R,

mapping ⟨r, l = a⟩ to r, and

• the second projection is the functional operation

Snd : (r:⟨R, l : A⟩)⟨l : A([r])⟩,

mapping r to the record ⟨l = r.l⟩.

Note that the kind of Snd is different from that of field
selection .l: the codomain type of Snd is the record type ⟨l :
A([r])⟩, rather than simply A([r]). This makes an important
difference: Snd is coherent with the first projection and the
component-wise coercions, while field selection is not.
We shall take both of the record projections as coercions.

In this paper, only non-dependent coercions (and, in this
case, the non-dependent second projection) are studied.7

Formally, we have the following two coercion rules:8

Γ ⊢ ⟨R, l : A⟩ : RType

Γ ⊢ ⟨R, l : A⟩ ≤[] R : RType

Γ ⊢ A : Type Γ ⊢ ⟨R, l : A⟩ : RType

Γ ⊢ ⟨R, l : A⟩ ≤Snd ⟨l : A⟩ : RType

where, in the second rule above, A is a type, ⟨R, l : A⟩
stands for ⟨R, l : [:R]A⟩, and the kind of Snd is the non-
dependent kind (⟨R, l : A⟩)⟨l : A⟩. Note that the label l in
the codomain type of Snd is the same label in its domain
type.

7When a coercion has a dependent kind, it is a dependent
coercion [13].
8Γ ⊢ R ≤c R′ : RType is the judgement expressing that the
record type R is a subtype of the record type B via coercion
c.

Remark Label distinction is important. If one allowed la-
bel repetitions in record types, as in [16], the projection
coercions [] and Snd would be incoherent together. For ex-
ample, if Natl ≡ ⟨l : Nat, l : Nat⟩ were a well-typed record
type, both projections would be from Natl to the same type
⟨l : Nat⟩, but they are different.

Component-wise coercions for record types express the
idea that coercive subtyping relations propagate through
record types: informally, if R is a subtype of R′ and A is a
‘subtype’ of A′, then ⟨R, l : A⟩ is a subtype of ⟨R′, l : A′⟩.
Formally, this is formulated by means of the rule in Figure 5:
where, for any r0 : ⟨R, l : A⟩,

dR(r0) =df ⟨c([r0]), l = c′{[r0]}(r0.l)⟩,

mapping ⟨r, l = a⟩ to ⟨c(r), l = c′{r}(a)⟩.

Remark Assuming that the extension with dependent record
types has nice meta-theoretic properties such as Church-
Rosser, we can show that the coercions [], Snd and dR
are coherent together. Note that, if one used Σ-types in-
stead of record types, we cannot have both projections as
coercions (or any projection together with the component-
wise coercions) — coherence would have failed, as discussed
above.

5. CONCLUSION
In this paper, dependent record types are studied with

respect to their formulation and applications. As to future
work, we would like to see the development of the meta-
theory of dependent record types (e.g., along the line of
Typed Operational Semantics [4, 6]) and a proper imple-
mentation of dependent record types in proof assistants9 so
that they can be effectively used in future applications.

Acknowledgement This work is partially supported by
the research grant F/07-537/AA of the Leverhulme Trust
in U.K.

6. REFERENCES
[1] G. Betarte and A. Tasistro. Extension of Martin-Löf’s

type theory with record types and subtyping. In
G. Sambin and J. Smith, editors, Twenty-five Years of
Constructive Type Theory. Oxford University Press,
1998.

9Coq [2], for example, only supports a macro for dependent
record types, but not proper record types. It is a macro in
the sense that dependent record types are actually imple-
mented as inductive types (a general form of Σ-types) with
labels as defined global terms (in other words, they are not
labels in the proper sense). There are undesirable conse-
quences of this; for instance, the ‘labels’ of different ‘record
types’ must be different.

[2] The Coq Development Team. The Coq Proof Assistant
Reference Manual (Version 8.1), INRIA, 2007.

[3] T. Coquand, R. Pollack, and M. Takeyama. A logical
framework with dependently typed records.
Fundamenta Informaticae, 65(1-2), 2005.

[4] H. Goguen. A Typed Operational Semantics for Type
Theory. PhD thesis, University of Edinburgh, 1994.

[5] H. Goguen. The metatheory of UTT. In Types for
Proofs and Programs, Proc. of Inter. Conf. of
TYPES’94. LNCS 996, 1995.

[6] H. Goguen. Soundness of the logical framework for its
typed operational semantics. Typed Lambda Calculi
and Applications (TLCA’99), LNCS 1581, 1999.

[7] R. Harper and M. Lillibridge. A type-theoretic
approach to higher-order modules with sharing.
POPL’94, 1994.

[8] Y. Luo. Coherence and Transitivity in Coercive
Subtyping. PhD thesis, University of Durham, 2005.

[9] Z. Luo. Program specification and data refinement in
type theory. Mathematical Structures in Computer
Science, 3(3), 1993.

[10] Z. Luo. Computation and Reasoning: A Type Theory
for Computer Science. Oxford University Press, 1994.

[11] Z. Luo. Coercive subtyping. J of Logic and
Computation, 9(1):105–130, 1999.

[12] Z. Luo. Manifest fields and module mechanisms in
intensional type theory. In Types for Proofs and
Programs, Proc. of Inter. Conf. of TYPES’08. LNCS
5497, 2009.

[13] Z. Luo and S. Soloviev. Dependent coercions. Proc of
the 8th Inter. Conf. on Category Theory in Computer
Science (CTCS’99), Electronic Notes in Theoretical
Computer Science, Vol 29., 1999.

[14] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis,
1984.

[15] B. Nordström, K. Petersson, and J. Smith.
Programming in Martin-Löf’s Type Theory: An
Introduction. Oxford University Press, 1990.

[16] R. Pollack. Dependently typed records in type theory.
Formal Aspects of Computing, 13:386–402, 2002.

