
Classical Predicative Logic-Enriched Type TheoriesI

Robin Adams∗, Zhaohui Luo∗

Royal Holloway, University of London

Abstract

A logic-enriched type theory (LTT) is a type theory extended with a primi-
tive mechanism for forming and proving propositions. We construct two LTTs,
named LTT0 and LTT∗0, which we claim correspond closely to the classical pred-
icative systems of second order arithmetic ACA0 and ACA. We justify this claim
by translating each second-order system into the corresponding LTT, and prov-
ing that these translations are conservative. This is part of an ongoing research
project to investigate how LTTs may be used to formalise different approaches
to the foundations of mathematics.

The two LTTs we construct are subsystems of the logic-enriched type theory
LTTW, which is intended to formalise the classical predicative foundation pre-
sented by Herman Weyl in his monograph Das Kontinuum. The system ACA0

has also been claimed to correspond to Weyl’s foundation. By casting ACA0 and
ACA as LTTs, we are able to compare them with LTTW. It is a consequence
of the work in this paper that LTTW is strictly stronger than ACA0.

The conservativity proof makes use of a novel technique for proving one LTT
conservative over another, involving defining an interpretation of the stronger
system out of the expressions of the weaker. This technique should be applicable
in a wide variety of different cases outside the present work.

Keywords: type theory, logic-enriched type theory, predicativism, Hermann
Weyl, second order arithmetic
2000 MSC: 03B15, 03B30, 03B70, 03F25, 03F35, 68T15

1. Introduction

A lot of research in the field of mathematical logic has been devoted to con-
structing formal theories intended to capture various schools of thought in the

IThis research was supported by the UK EPSRC research grant EP/D066638/1 and re-
search grant F/07-537/AA of the Leverhulme Trust in the UK.

∗Corresponding author. Address: Department of Computer Science, Royal Holloway, Uni-
versity of London, Egham Hill, Egham, Surrey, TW20 0EX, United Kingdom. Tel: +44 1784
443421. Fax: +44 1784 439786

Email addresses: robin@cs.rhul.ac.uk (Robin Adams), zhaohui@cs.rhul.ac.uk
(Zhaohui Luo)

Preprint submitted to Elsevier August 18, 2010

foundations of mathematics. In particular, the project of Reverse Mathematics
[1] has provided an extremely detailed analysis of many theories in the language
of second-order arithmetic L2. It has been argued that the theories studied
correspond closely to different foundational schools; in particular, that the clas-
sical, predicative foundation presented by Hermann Weyl in his monograph Das
Kontinuum [2] is captured by the theory ACA0 [3].

The systems of logic known as dependent type theories have also received a
lot of attention, and in particular have proven to offer many practical benefits
when used as the basis of the computer systems known as proof checkers or proof
assistants. Type theories divide the world of mathematical objects into types.
They offer much more expressive power than second-order arithmetic: we are
able to speak, not just of natural numbers and sets of natural numbers, but also
about (e.g.) sets of sets, lists, trees, and functions from any of these types to
any of them. However, so far, type theories have been used almost exclusively
to represent constructive mathematics.

More recently, the concept of a logic-enriched type theory has been devel-
oped. A logic-enriched type theory is a type theory augmented with a separate,
primitive mechanism for forming and proving propositions. It thus has two
components or ‘worlds’: a type-theoretic component, consisting of objects col-
lected into types, and a logical component, for reasoning about these objects.
LTTs have been used to investigate the relationships between type theories and
set theories [4, 5], and by the present authors [6, 7] to formalise the predicative
foundation for mathematics presented by Hermann Weyl in Das Kontinuum [2].

There is reason to believe that LTTs may offer some of the advantages of both
traditional logical systems, and type theories. They share with type theories the
rich type structure and inbuilt notion of computation that have proven to be
of great benefit for formalisation in practice. At the same time, they offer the
flexibility in choice of axioms that we are used to in traditional logical systems:
it is possible, for example, to add excluded middle to the logical component
without changing the type-theoretic component.

This paper is part of an ongoing research project to construct a hierarchy of
LTTs, similar to the hierarchy of second-order systems in Reverse Mathematics.
We hope thereby to investigate how LTTs may be used to represent different
schools of thought in the foundations of mathematics, and to understand the
effect that changes in the design of an LTT have on its set of definable objects
and provable theorems.

In this paper, we construct two LTTs that capture two second-order systems
that are closely related to the foundation of Das Kontinuum: ACA0 and ACA.
We construct two LTTs, which we name LTT0 and LTT∗0. These are more
expressive than a second-order system: the type-theoretic component of each
features types of natural numbers, pairs, functions of all orders, and sets of all
orders.

Our aim in this paper is to show that adding this expressive power is ‘safe’;
that is, that we have not thereby increased the proof-theoretic strength of the
system. We do this as follows. Let us say that a proposition of LTT0 is second-
order iff it uses no types other than N (the type of natural numbers) and Set (N)

2

(the type of sets of natural numbers). We define a translation from ACA0

onto the second-order propositions of LTT0, and prove that the translation is
conservative; that is, a formula of L2 is provable in ACA0 if and only if its
translation is provable in LTT0.

The current authors have previously [6, 7] presented a new system intended
to capture Weyl’s foundation, which we named LTTW. We argued there that
LTTW captures Weyl’s foundation very closely, and described how all the def-
initions and results in Das Kontinuum have been formalised in LTTW using a
proof assistant. The two LTTs that we construct in this paper are both subsys-
tems of LTTW. As a consequence of the work in this paper, we now know that
LTTW is strictly stronger than ACA0, and at least as strong as ACA.

We argue that, compared with ACA0 and ACA, LTTW corresponds more
closely to the system presented in Das Kontinuum. This is not a claim that can
be proven formally, as there is no formal definition of Weyl’s foundation, but we
can advance evidence for it. In our previous paper, we pointed out the extreme
similarity between the presentation in Das Kontinuum and the definition of
LTTW, and described one construction in Das Kontinuum — the construction
of K(n) = {X | X has at least n elements} — that cannot be done ‘as directly’
in any of the second order systems. Here, we strengthen the justification for
this claim: we show that K is expressed by a term in LTTW that cannot be
formed in either LTT0 or LTT∗0.

The majority of this paper is taken up with proving the conservativity re-
sults. Our method for proving the conservativity of LTT0 over ACA0 is as
follows. We first define a subsystem T2 of LTT0 which has just two types, N
and Set (N). and show that LTT0 is conservative over T2.

We then construct infinitely many subsystems of LTT0 between T2 and
LTT0. We prove that, for each of these subsystems S and T , whenever S is
a subsystem of T , then T is conservative over S. We do this by defining an
interpretation of the judgements of T in terms of the expressions of S. Infor-
mally, we can think of this as giving a way of reading the judgements of T as
statements about S. We show that this interpretation satisfies two properties:

• Every derivable judgement of T is true.

• Every judgement of S that is true is derivable in S.

It follows that, if a judgement of S is derivable in T , then it is derivable in S.
The proof thus makes use of an original technique which should be of interest

in its own right, and which we expect to be applicable in a wide variety of
contexts for proving one LTT or type theory conservative over another. In
particular, we shall show how it can be adapted to provide a direct proof that
ACA0 is conservative over Peano Arithmetic.

1.1. Outline

In Section 2 of this paper, we describe the subsystems of second order arith-
metic that we shall consider, and compare them informally with Weyl’s system.
In Section 3, we give the formal definition of LTTW and its two subsystems,

3

and define the translation from second order arithmetic into the LTTs. In Sec-
tion 4, we prove that this translation is conservative in the case of ACA0 and
T2. In Section 5, we prove that LTT0 is conservative over T2. Finally, in Sec-
tion 6, we indicate how the proof can be modified to prove the conservativity
of LTT∗0 over ACA, and discuss the possibility of constructing a subsystem of
LTTW conservative over ACA+

0 , and the conservativity of ACA0 over Peano
Arithmetic.

Notation. We shall stick to the following convention throughout this paper.
Capital letters from the beginning of the Latin alphabet (A, B, C, . . .) shall
denote types. Capital letters from the middle (K, L, M , N , . . .) shall denote
terms. Capital letters from just after the middle (P , Q) shall denote names
of small propositions. Lower-case letters (x, y, z, . . .) shall denote variables,
except t, which we reserve for terms of the language of second-order arithmetic.
Lower-case letters from the middle of the Greek alphabet (φ, ψ, χ, . . .) shall
denote propositions.

We shall be dealing with partial functions throughout this paper. We write
X ' Y to denote that the expression X is defined if and only if Y is defined,
in which case they are equal. Given a function v, we write v[x := a] for the
function v′ with domain dom v ∪ {x}, such that v′(x) = a, and v′(y) = v(y) for
y 6= x. We write FV (X) for the set of free variables in the expression X.

2. Background

2.1. Weyl’s Das Kontinuum

In 1918, Herman Weyl wrote the monograph Das Kontinuum [2], which
presented a semi-formal system intended to provide a predicative foundation
for mathematics. Weyl’s system consists of a set of ‘principles’ by which sets,
functions and propositions may be introduced. In particular, if we have formed
the proposition φ, we may introduce the set {x | φ}, provided that φ does not
involve any quantification over sets. Impredicative definitions are thus impos-
sible in Weyl’s system. His concern was to show how much of mathematics
— in particular, how much of analysis — could still be retained under such a
restriction.

At the time of writing Das Kontinuum in 1918, Weyl agreed with White-
head and Russell’s opinion [8] that the source of the famous paradoxes in set
theory was the presence of impredicative definitions — definitions that involved
a certain kind of vicious circle. In particular, when we introduce a set R with
the definition

R = {x | φ} (1)

then the definition is impredicative if either x or any of the bound variables in
φ ranges over a collection that includes the set R itself.

In Weyl’s foundation, mathematical objects are divided into categories. A
category can be basic or ideal. Given any category A, there is the ideal category

4

Set (A)1 of sets whose members are objects of category A. In a definition of
the form (1), we may only quantify over basic categories. In particular, we may
not quantify over any category of the form Set (A). It is in this manner that
impredicative definitions are excluded.

If we bar impredicative definitions, we are unable to define many objects,
such as the least upper bound of a bounded set of reals. We must thus either
find an alternative way to introduce these objects, or do without them. Russell
and Whitehead chose the former course, with their Axiom of Reducibility. The
monograph Das Kontinuum was Weyl’s attempt to follow the latter course: to
show how much of classical mathematics could be preserved while excluding
impredicative definitions.

2.2. Subsystems of Second Order Arithmetic

We are concerned in this paper with two subsystems of second order arith-
metic, ACA0 and ACA. The letters ACA stand for ‘arithmetical comprehension
axiom’. The system ACA0 is investigated in great detail in Simpson [1]. These
two systems are theories in the language of second order arithmetic, a language
for describing natural numbers and sets of natural numbers. We now introduce
this language formally.

Definition 2.1 (Language of Second Order Arithmetic). The language
of second order arithmetic L2 is defined as follows.

There are two countably infinite, disjoint sets of variables: the number vari-
ables x, y, z, . . . , intended to range over natural numbers; and the set variables
X, Y , Z, . . . , intended to range over sets of natural numbers.

The terms and propositions of second order arithmetic are given by the
following grammar:

Term t ::= x | 0 | St | t+ t | t · t
Proposition φ ::= t = t | t ∈ X | ⊥ | φ ⊃ φ | ∀xφ | ∀Xφ

We define ¬, ∧, ∨, ↔ and ∃ in terms of ⊥, ⊃ and ∀ as usual.
A proposition is arithmetic iff no set quantifier ∀X occurs within it.

2.2.1. ACA0

The system ACA0 has been very well studied. In particular, it has played
a major role in the project of Reverse Mathematics [1]. It has often been
argued that ACA0 is closely related to Weyl’s foundation; for example, Feferman
[3] calls it ‘a modern formulation of Weyl’s system’, and Brown and Simpson
[9] write ‘ACA0 isolates the same portion of mathematical practice which was
identified as ‘predicative analysis’ by Herman Weyl in his famous monograph
Das Kontinuum’.

It is known that ACA0 is conservative over Peano Arithmetic (PA); a model-
theoretic proof is given in Simpson [1], and a proof-theoretic proof can be given

1The notation here is ours, not Weyl’s.

5

along the lines of Shoenfield [10]. A novel proof of this result shall be given in
Section 6.2.

The axioms of ACA0 are as follows:

• The Peano axioms — the axioms of Peano Arithmetic, minus the induction
axioms:

Sx 6= 0

Sx = Sy ⊃ x = y

x+ 0 = x

x+ Sy = S(x+ y)

x · 0 = 0

x · Sy = x · y + x

• The arithmetical comprehension axiom schema: for every arithmetic
proposition φ in which X does not occur free, ∃X∀x(x ∈ X ↔ φ).

• The set induction axiom: 0 ∈ X ⊃ ∀x(x ∈ X ⊃ Sx ∈ X) ⊃ ∀x.x ∈ X.

2.2.2. ACA

The system ACA is formed by extending ACA0 with the full induction axiom
schema: for every proposition φ,

[0/x]φ ⊃ ∀x(φ ⊃ [Sx/x]φ) ⊃ ∀xφ .

An argument could be made for ACA being a better representation of the foun-
dation in Das Kontinuum than ACA0, because — as we shall argue in Section
2.3 — Weyl makes use of an induction principle that is stronger than that of
ACA0.

The system ACA has not been studied in the literature as much as ACA0.
A few facts about ACA are known: its proof-theoretic ordinal is εε0 , and it can
prove the consistency of ACA0. See [11] for the proof of these results and an
analysis of the set of models of ACA.

2.3. Das Kontinuum and Subsystems of Second Order Arithmetic Compared

There has been quite some argument over how well Weyl’s foundation is
captured by a subsystem of second order arithmetic. Feferman [12] has argued
strongly in favour of ACA0, or a system very like it, being a modern formulation
of Weyl’s system.

This argument cannot be settled formally, as Weyl did not give a formal
definition of his system. However, in the authors’ view, Weyl’s system exceeds
both ACA0 and ACA, for the following reasons:

1. Weyl intended his system to be more than second order. He allowed the
category Set (B) to be formed for any category B, basic or ideal. Thus,
for example, we can form the categories Set (Set (N)), Set (Set (Set (N))),
and so forth.

6

2. Weyl intended the principle of induction to apply to all propositions, arith-
metic or not.

We justify this by showing a place where Weyl explicitly defines a function
of category Set (Set (A)) → Set (Set (A)), and three places where he proves a
non-arithmetic proposition by induction.

The former occurs [13, p.39] with the definition of the cardinality of a set.
Weyl defines a function d : Set (Set (A))→ Set (Set (A)) by

d(T) = {X | ∃x ∈ X.X \ {x} ∈ T } .

This function is then iterated, to form the function
dn(T) = {X | n elements may be removed from X to form an element of T }.
Weyl goes on to argue that dn(U) denotes the set of all sets with at least n
elements (where U is the set of all subsets of A). He defines the proposition
a(n,X), ‘X has at least n elements’, by

a(n,X) ≡ X ∈ dn(U)

Various results about this definition are later proved [13, p.55], such as:

If X has at least n+ 1 elements, then X has at least n elements.

This is not an arithmetic proposition (it involves quantification over X), but it
is proven by induction on n.

Similarly, the non-arithmetic proposition ‘If X is a subset of E and X con-
sists of at least n elements, then E also consists of at least n elements’ [13, p.56]
is proven by induction, as is the lemma concerning substitution of elements [13,
p.56]: ‘If a new object [. . .] is substituted for one of the elements of a set X
which consists of at least n elements [. . .], then the modified set X∗ also consists
of at least n elements.’

Thus, Weyl’s method of defining a(n,X) involves third-order sets; the appli-
cation of the Principle of Iteration to third-order sets; and proof by induction
of a proposition that quantifies over sets. These are all expressed by primitive
constructs in LTTW, but not in LTT0 or LTT∗0 (we discuss this point further in
Section 3.2).

When we have proven the conservativity of LTT0 and LTT∗0 over ACA0 and
ACA respectively, we will have justified our claim that Weyl’s system is stronger
than ACA0; and, if our conjecture that LTTW is stronger than LTT∗0 is correct,
that Weyl’s system is stronger than ACA.

3. Logic-Enriched Type Theories

In this section, we introduce the logic-enriched type theory LTTW and the
two subsystems with which we are concerned.

Logic-enriched type theories (LTTs) were introduced by Aczel and Gambino
[4, 5] to study the relationship between type theories and set theories. An LTT is
a formal system consisting of two parts: the type-theory component, which deals
with terms and types; and the logical component, which deals with propositions.

7

3.1. LTTW

The system LTTW is a logic-enriched type theory designed to represent the
mathematical foundation given in Das Kontinuum. It was introduced in Adams
and Luo [7, 6].

3.1.1. Type-Theoretic Component

Its type-theoretic component has the following types.

• There is a type N of natural numbers. 0 is a natural number; and, for any
natural number N , the successor of N , sN , is a natural number.

• For any types A and B, we may form the type A×B. Its terms are pairs
(M,N)A×B consisting of a term M of A and a term N of B. For any
term M : A × B, we can construct the term πA×B1 (M) denoting its first
component, and the term πA×B2 (M) denoting its second component.

• For any types A and B, we may form the type A → B of functions from
A to B. Its terms have the form λx : A.M : B, denoting the function
which, given N : A, returns the term [N/x]M : B. Given M : A→ B and
N : A, we may construct the term M(N)A→B to denote the value of the
function M when applied to N .

• For any type A, we may form the type Set (A) of sets of terms of A. Its
terms have the form {x : A | P}, where P is a name of a small proposition,
denoting the set of all M : A for which the proposition named by [M/x]P
is true.

We divide the types into small and large types, reflecting Weyl’s division of
categories into basic and ideal categories. When we introduce a set {x : A | P},
the proposition P may quantify over the small types, but not over the large
types. The small types are defined inductively by:

• N is a small type.

• If A and B are small types, then A×B is a small type.

We effect this division by introducing a type universe U , whose terms are
names of the small types. There is a term N̂ : U which is the name of N; and,
if M : U names A and N : U names B, then there is a term M×̂N : U that
names A×B. We write T (M) for the type named by M .

We can also eliminate N over any family of types; that is, if A[x] is a type
depending on x : N, we can define by recursion a function f such that f(x) : A[x]
for all x : N. The term

EN([x]A,L, [x, y]M,N)

is intended to denote the value f(N), where f is the function defined by recursion
thus:

f(n) : [n/x]A for all n : N
f(0) = L

f(n+ 1) = [n/x, f(n)/y]M

8

Remark. We choose to label the terms

(M,N)A×B , π
A×B
1 (M), πA×B2 (M), λx : A.M : B and M(N)A×B

with the types A and B. This is for technical reasons only; it makes the inter-
pretations we introduce in Section 5 easier to define. We shall often omit these
labels when writing terms. We shall also often write MN for M(N).

3.1.2. Logical Component

The logical component of LTTW contains propositions built up as follows:

• If M and N are objects of the small type T (L), then M =L N is a
proposition.

• ⊥ is a proposition.

• If φ and ψ are propositions, then φ ⊃ ψ is a proposition.

• If A is a type and φ a proposition, then ∀x : A.φ is a proposition.

We define the other logical connectives as follows:

¬φ ≡ φ ⊃ ⊥
φ ∧ ψ ≡ ¬(φ ⊃ ¬ψ)

φ ∨ ψ ≡ ¬φ ⊃ ψ
φ↔ ψ ≡ (φ ⊃ ψ) ∧ (ψ ⊃ φ)

∃x : A.φ ≡ ¬∀x : A.¬φ

We call a proposition φ small iff, for every quantifier ∀x : A that occurs in φ,
the type A is a small type. We wish it to be the case that, when we introduce a
set of type Set (A), the proposition we use to do so must be a small proposition.

We achieve this by introducing a propositional universe ‘prop’, which will
be the collection of names of the small propositions. We shall introduce a new
judgement form Γ ` P prop, denoting that P is the name of a small proposition,
and rules that guarantee:

• If M and N are objects of the small type T (L), then M=̂LN is the name
of M =L N .

• ⊥̂ is the name of ⊥.

• If P names φ and Q names ψ, then P ⊃̂Q is the name of φ ⊃ ψ.

• If M : U names the small type A and P names φ, then ∀̂x : M.P names
∀x : A.φ.

We denote by V (P) the small proposition named by P . We shall, in the sequel,
often write just ‘small proposition’ when we should strictly write ‘name of small
proposition’.

We use ‘expression’ to mean a type, term, small proposition or proposition.
We identify expressions up to α-conversion. We denote by [M/x]X the result
of substituting the term M for the variable x in the expression X, avoiding
variable capture.

9

3.1.3. Judgements and Rules of Deduction

A context in LTTW has the form x1 : A1, . . . , xn : An, where the xis are
distinct variables and each Ai is a type. There are ten judgement forms in
LTTW:

• Γ ` valid, denoting that Γ is a valid context.

• Γ ` A type, denoting that A is a well-formed type under the context Γ.

• Γ ` A = B, denoting that A and B are equal types.

• Γ `M : A, denoting that M is a term of type A.

• Γ `M = N : A, denoting that M and N are equal terms of type A.

• Γ ` P prop, denoting that P is a well-formed name of a small proposition.

• Γ ` P = Q, denoting that P and Q are equal names of small propositions.

• Γ ` φ Prop, denoting that φ is a well-formed proposition.

• Γ ` φ = ψ, denoting that φ and ψ are equal propositions.

• Γ ` φ1, . . . , φn ⇒ ψ, denoting that the propositions φ1, . . . , φn entail the
proposition ψ.

The rules of deduction of LTTW are given in full in Appendix Appendix
A.1. They consist of the introduction, elimination and computation rules for
the types of LTTW, the rules for classical predicate logic, and the following rule
for performing induction over N:

(IndN)

Γ, x : N ` φ Prop Γ ` N : N
Γ ` Φ⇒ [0/x]φ Γ, x : N ` Φ, φ⇒ [sx/x]φ

Γ ` Φ⇒ [N/x]φ

3.2. LTT0 and LTT∗0

We now construct two subsystems of LTTW, which we shall call LTT0 and
LTT∗0, that correspond to ACA0 and ACA respectively. These subsystems are
formed by changing:

• the class of types over which N may be eliminated (that is, the class of
types A that may occur in EN([x]A,L, [x, y]M,N);

• the class of propositions that may be proved by induction (that is, the
class of propositions φ that may occur in an instance of (IndN)).

In LTTW, we may eliminate N over any type, and any proposition may be
proved by induction. We form our three subsystems by weakening these two
classes, as shown in Table 1

This is achieved as follows.

10

Types over which Propositions provable by induction
N may be eliminated

LTTW all all
LTT0 small types small propositions
LTT∗0 small types propositions involving quantification

over small types and Set (N)

Table 1: Subsystems of LTTW

1. We construct LTT0 by modifying LTTW as follows.

• Whenever a term EN([x]A,L, [x, y]M,N) is formed, then A must have
the form T (K).

• Whenever an instance of the rule (IndN) is used, the proposition φ
must have the form V (P).

• Whenever an instance of the rule (subst), (eta×) or (eta→) is used,
the proposition φ must not contain a quantifier ∀x : A over any type
A that contains the symbol U .

• We also add as an axiom that SM 6= 0 for M : N.

2. Let us say that a proposition φ is analytic iff, for every quantifier ∀x : A in
φ, A either has the form T (M) or A ≡ Set (N). We construct LTT∗0 from
LTT0 by allowing (IndN) to be used whenever φ is an analytic proposition.

The formal definitions of both these systems are given in Appendices Appendix
A.2 and Appendix A.3.

Remarks.

1. Peano’s fourth axiom, that SM 6=N̂ 0 for any M : N, is provable in LTTW;
see [6] for a proof. It is not provable in LTT0 or LTT∗0. This can be shown
by a similar method to Smith [14] by constructing a model of LTT∗0 in
which every small type is interpreted by a set that has exactly one element.

2. We can now justify further our claim in Section 2.3 that Weyl’s definition
of a(n,X) uses the primitive concepts of LTTW that are not present in
either LTT0 or LTT∗0.
The definitions of d and a are straightforward to formalise in LTTW. Given
M : U , we have

dM ≡ λT : Set (Set (T (M))) .

{X : Set (T (M)) | ∃̂x : M.(x∈̂X ∧X \ {x}∈̂T)}
aM ≡ λn : N.λX : Set (T (M)) .

X ∈ EN([x]Set (Set (T (M))) ,U , [x, Y]dM (Y), n)

This is not a term in either of the subsystems of LTTW, as it involves
applying EN to the type Set (Set (T (M))).

11

3. The universe U contains only the types that can be built up from N and
×. Its inclusion in LTT0 or LTT∗0 therefore does not increase the proof-
theoretic strength of the system (this will be proven in Section 5.3). This
is a rare situation; in general, the inclusion of a universe raises the strength
of a type theory considerably (see for example [15]). We conjecture that,
if we closed U under → or Set () in LTT0 or LTT∗0, the resulting system
would not be conservative over ACA0 or ACA respectively.

4. In Aczel and Gambino’s original formulation of LTTs [4, 5], the logical
component of an LTT could depend on the type theoretic component, but
not vice versa. We have broken that restriction with the inclusion of typed
sets: a canonical object of Set (A) has the form {x : A | P} and thus
depends on a small proposition P .

3.3. Embedding Second Order Systems in Logic-Enriched Type Theories

There is a translation that can naturally be defined from the language of
second order arithmetic L2 into LTT0. We map the terms of L2 to terms of
type N, first order quantifiers to quantifiers over N, and second order quantifiers
to quantifiers over Set (N).

Definition 3.1. We define

• for every term t of L2, a term 〈|t|〉 of LTTW;

• for every arithmetic formula φ of L2, a small proposition |φ| of LTTW;

• for every formula φ of L2, a proposition 〈|φ|〉 of LTTW.

〈|xi|〉 ≡ xi
〈|0|〉 ≡ 0
〈|t′|〉 ≡ s 〈|t|〉

〈|s+ t|〉 ≡ 〈|s|〉 plus 〈|t|〉
〈|s · t|〉 ≡ 〈|s|〉 times 〈|t|〉

|s = t| ≡ 〈|s|〉 =̂N̂ 〈|t|〉
|t ∈ Xi| ≡ 〈|t|〉 ∈̂N̂Xi

¬φ	≡ ¬̂	φ		
φ ⊃ ψ	≡	φ	⊃̂	ψ
∀xφ	≡ ∀̂x : N̂.	φ		

〈|s = t|〉 ≡ 〈|s|〉 =N̂ 〈|t|〉
〈|t ∈ Xi|〉 ≡ 〈|t|〉 ∈N̂ Xi

〈|¬φ|〉 ≡ ¬ 〈|φ|〉
〈|φ ⊃ ψ|〉 ≡ 〈|φ|〉 ⊃ 〈|ψ|〉
〈|∀xφ|〉 ≡ ∀x : N. 〈|φ|〉
〈|∀Xφ|〉 ≡ ∀X : Set (N) . 〈|φ|〉

where

M plus N ≡ EN([x]T (N̂),M, [x, y] s y,N)

M times N ≡ EN([x]T (N̂), 0, [x, y]y plus M,N)

It is straightforward to show that this translation is sound, in the following
sense:

12

Theorem 3.2 Let Γ be the context x1 : N, . . . , xm : N, X1 : Set (N) , . . . , Xn :
Set (N). Let FV (t) ⊆ {x1, . . . , xm}, and FV (φ) ⊆ {x1, . . . , xm, X1, . . . , Xn}.

1. Γ ` 〈|t|〉 : N and Γ ` 〈|φ|〉 Prop.
2. If φ is arithmetic, then Γ ` |φ| prop and Γ ` V (|φ|) = 〈|φ|〉.
3. If ACA0 ` φ, then Γ `⇒ 〈|φ|〉 in LTT0.
4. If ACA ` φ, then Γ `⇒ 〈|φ|〉 in LTT∗0.

Proof. Parts 1 and 2 are proven straightforwardly by induction on t and φ.
For part 3, it is sufficient to prove the case where φ is an axiom of ACA0.

The case of the Peano axioms is straightforward.
For the arithmetical comprehension axiom schema, let φ be an arithmetic

formula in which X does not occur free. We have

Γ ` ⇒ ∀x : N(V (|φ|)↔ 〈|φ|〉) (using part 1)

∴ Γ ` ⇒ ∀x : N(x ∈ {x : N | |φ|} ↔ 〈|φ|〉)
∴ Γ ` ⇒ ∃X : Set (N) .∀x : N(x ∈ X ↔ 〈|φ|〉)

as required.
The set induction axiom is shown to be provable using (IndN).
For part 4, it is sufficient to show that every instance of the full induction

axiom schema is provable in LTT∗0. This is easy to do using (IndN), as 〈|φ|〉 is
always an analytic proposition.

Corollary 3.2.1 LTTW is strictly stronger than ACA0. In fact, LTTW can
prove the consistency of ACA0.

Proof. As ACA0 is conservative over Peano Arithmetic [1], its proof-theoretic
ordinal is ε0. The proof-theoretic ordinal of ACA is εε0 [11, 16]. Therefore, ACA
can prove the consistency of ACA0; hence, so can LTT∗0; hence, so can LTTW.

Our aim in this paper is to prove the converse to Theorem 3.2 parts 3 and
4: that, whenever Γ `⇒ 〈|φ|〉 in LTT0 or LTT∗0, then φ is provable in the
corresponding subsystem of second order arithmetic.

4. Conservativity of T2 over ACA0

We shall now define the system T2, which is a subsystem of LTT0. We can
think of T2 as the second order fragment of LTT0; that is, the part of LTT0

that has just the two types N and Set (N).
The translation 〈| |〉 given in the previous section is in fact a sound transla-

tion of ACA0 into T2. In this section, we shall prove that this translation is
conservative; that is, if 〈|φ|〉 is provable in T2, then φ is a theorem of ACA0.

The syntax of T2 is given by the following grammar

Type A ::= N | Set (N)
Term M ::= x | 0 | sM | R(M, [x, x]M,M) | {x : N | P}
Small Proposition P ::= M=̂NM | ⊥̂ | P ⊃̂P | ∀̂x : N̂.P |M ∈̂NM
Proposition φ ::= M =N M | ⊥ | φ ⊃ φ | ∀x : A.φ | V (P)

13

Γ, x : N ` P Prop

Γ ` ∀̂x : N̂.P Prop

Γ, x : N ` P = Q

Γ ` (∀̂x : N̂.P) = (∀̂x.N̂.Q)

Γ, x : N ` P Prop

Γ ` V (∀̂x : N̂.P) = ∀x : N.V (P)

Figure 1: Rules of Deduction for Small Universal Quantification in T2

Γ ` valid

Γ ` N type

Γ ` valid

Γ ` 0 : N

Γ `M : N

Γ ` sM : N
Γ `M = M ′ : N

Γ ` sM = sM ′ : N

Γ ` L : N
Γ, x : N, y : N `M : N

Γ ` N : N
Γ ` R(L, [x, y]M,N) : N

Γ ` L = L′ : N
Γ, x : N, y : N `M = M ′ : N

Γ ` N = N ′ : N
Γ ` R(L, [x, y]M,N) = R(L′, [x, y]M ′, N ′) : N

Γ ` L : N
Γ, x : N, y : N `M : N

Γ ` R(L, [x, y]M, 0) = L : N

Γ ` L : N
Γ, x : N, y : N `M : N

Γ ` N : N
Γ ` R(L, [x, y]M, sN)

= [N/x,R(L, [x, y]M,N)/y]M : N

(IndN)

Γ, x : N ` P Prop Γ ` N : N
Γ ` Φ⇒ V ([0/x]P) Γ ` Φ, V (P)⇒ V ([sx/x]P)

Γ ` Φ⇒ V ([N/x]P)

Figure 2: Rules of Deduction for Natural Numbers in T2

The rules of deduction of T2 are:

1. the structural rules for LTTs as given in Appendix Appendix A.1.1;

2. the rules for predicate logic as given in Appendix Appendix A.1.7;

3. the rules for the propositional universe as given in Appendix Appendix
A.1.8, with the rules for universal quantification replaced with the rules
in Figure 1;

4. the rules for equality given in Appendix Appendix A.1.9, restricted to the
type N;

5. the rules for sets given in Appendix Appendix A.1.5, restricted to the type
N;

6. the rules for natural numbers given in Figure 2.

Note. T2 does not contain the universe U . The symbol N̂ therefore is not a
term in T2, and cannot occur on its own, but only as part of a small proposition

14

∀̂x : N̂.P .
In LTT0, we could define functions by recursion into any small type; in T2,

we can only define by recursion functions from N to N. This is achieved by the
constructor R. The term R(L, [x, y]M,N) is intended to denote the value f(N),
where f : N→ N is defined by recursion thus:

f(0) = L

f(n+ 1) = [n/x, f(n)/y]M

The system T2 may be considered a subsystem of LTT0 if we identify
R(L, [x, y]M,N) with EN([x]N̂, L, [x, y]M,N); M =N N with M =N̂ N ; and
M=̂NN with M=̂N̂N .

The translation given in Section 3.3 is a sound translation from ACA0 into
T2.

Theorem 4.1 Let Γ and φ be as in Theorem 3.2. If ACA0 ` φ, then Γ `⇒ 〈|φ|〉
in T2.

Proof. Similar to the proof of Theorem 3.2(3).

We now wish to show that the converse holds.
We shall do this by defining the following translation Φ from T2 to ACA0.

Let
Γ ≡ x1 : N, . . . , xn : N, X1 : Set (N) , . . . , Xm : Set (N) .

We shall define:

1. whenever Γ `M : N, an arithmetic formula t p= Mq such that

ACA0 ` ∃!x.x p= Mq .

The intention is that M is interpreted as the unique number x for which
x p= Mq is true.

2. whenever Γ `M : Set (N), an arithmetic formula t p∈Mq such that

ACA0 ` ∃X∀x(x ∈ X ↔ x p∈Mq) ,

The intention is that M is interpreted as the unique set X whose members
are the numbers x such that x p∈Mq is true.

3. for every small proposition P such that Γ ` P prop, an arithmetic formula
pPq.

4. for every proposition φ such that Γ ` φ Prop, a formula pφq.

The definition is given in Figure 3.

15

Numbers.

t p= xiq ≡ t = xi

t p= 0q ≡ t = 0

t p= sMq ≡ ∃x(x p= Mq ∧ t = Sx)

t p= R(L, [u, v]M,N)q ≡ ∃n.∃s ∈ Seq(n p= Nq ∧ (n, t) ∈ s
∧∀l((0, l) ∈ s ⊃ l p= Lq)

∧∀u∀z((Su, z) ∈ s ⊃ ∃v((u, v) ∈ s ∧ z p= Mq)))

Sets.

t p∈ Xiq ≡ t ∈ Xi

t p∈ {x : N | P}q ≡ [t/x] pPq

Small Propositions.

pM=̂NNq ≡ ∃x(x p= Mq ∧ x p= Nq)

p⊥̂q ≡ ⊥
pP ⊃̂Qq ≡ pPq ⊃ pQq

p∀̂x : N.Pq ≡ ∀x pPq
pM ∈̂NNq ≡ ∃x(x p= Mq ∧ x p∈ Nq)

Propositions.

pM =N Nq ≡ ∃x(x p= Mq ∧ x p= Nq)

p⊥q ≡ ⊥
pφ ⊃ ψq ≡ pφq ⊃ pψq

p∀x : N.φq ≡ ∀x pφq
p∀X : Set (N) .φq ≡ ∀X pφq

pV (P)q ≡ pPq

Figure 3: Interpretation of T2 in ACA0

16

Remark. To interpret a term of the form R(L, [u, v]M,N), we make use of
a standard technique for defining functions by recursion in ACA0. We are
assuming we have defined in ACA0 a pairing function (m,n) on the natural
numbers, and a coding of finite sequences of numbers as numbers, with Seq
the set of all codes of sequences, and the formula n ∈ s expressing that n is a
member of the sequence coded by s. (For more details, see [1, II.3].)

Speaking informally, the formula t p= R(L, [u, v]M,N)q expresses that (N, t)
is a member of a sequence s, and that the members of this sequence s must be

(0,R(L, [u, v]M, 0)), (1,R(L, [u, v]M, 1)), · · · , (k,R(L, [u, v]M,k))

up to some k, in some order. It follows that t = R(L, [u, v]M,N).
The following theorem shows that the translation in Figure 3 is sound.

Theorem 4.2 (Soundness) 1. If Γ `M : N then ACA0 ` ∃!x.x p= Mq.
2. If Γ `M = M ′ : N then ACA0 ` ∃x(x p= Mq ∧ x p= M ′q).
3. If Γ `M : Set (N) then ACA0 ` ∃!X∀x(x ∈ X ↔ x p∈Mq).
4. If Γ `M = N : Set (N) then ACA0 ` ∀x(x p∈Mq↔ x p∈ Nq).
5. If Γ ` P = Q then ACA0 ` pPq↔ pQq.
6. If Γ ` φ = ψ then ACA0 ` pφq↔ pψq.
7. If Γ ` φ1, . . . , φn ⇒ ψ then ACA0 ` pφ1q ⊃ · · · ⊃ pφnq ⊃ pψq.

Proof. We need the following two results first.

1. For any term M such that x, y /∈ FV (M),

ACA0 ` x p= Mq ⊃ y p= Mq ⊃ x = y .

This is proven by induction on M .
2. Given a term N such that x /∈ FV (N), the following are all theorems of

ACA0:

x p= Nq ⊃ (y p= [N/x]Mq↔ y p= Mq) (2)

x p= Nq ⊃ (y p∈ [N/x]Mq↔ y p∈Mq) (3)

∀x(x ∈ X ↔ x p∈ Nq) ⊃ (y p∈ [N/X]Mq↔ y p∈Mq) (4)

x p= Nq ⊃ (p[N/x]Pq↔ pPq) (5)

∀x(x ∈ X ↔ x p∈ Nq) ⊃ (p[N/X]Pq↔ pPq) (6)

x p= Nq ⊃ (p[N/x]φq↔ pφq) (7)

∀x(x ∈ X ↔ x p∈ Nq) ⊃ (p[N/x]φq↔ pφq) (8)

These are proven by induction on M , P or φ. Formulas (3)–(6) must be
proven simultaneously.

The seven parts of the theorem are now proven simultaneously by induction on
derivations. We deal with one case here: the rule

Γ ` L : N Γ, u : N, v : N `M : N
Γ ` N : N

Γ ` R(L, [u, v]M, sN) = [N/u,R(L, [u, v]M,N)/v]M : N

17

We reason in ACA0. By the induction hypothesis, there exist l and n such that
l p= Lq, n p= Nq. Further,

∀u∀v∃m.m p= Mq .

The following formula can be proven by induction on z:

∀z∃w∃s ∈ Seq((z, w) ∈ s
∧ ∀l((0, l) ∈ s ⊃ l p= Lq)

∧ ∀u∀z((Su, z) ∈ s ⊃ ∃v((u, v) ∈ s ∧ z p= Mq)))

Now, let n be the unique number such that n p= Nq. There exist m, p such
that (n,m) and (Sn, p) are members of such a sequence s. It follows that

p p= R(L, [u, v]M, sn)q, m p= R(L, [u, v]M,n)q, [n/u,m/v](p p= Mq) .

Hence, by (2), we have

p p= R(L, [u, v]M, sN)q, p p= [N/u,R(L, [u, v]M,N)/v]Mq

as required.

Conservativity shall follow from the following theorem, which states that the
mapping p q is a left-inverse to the mapping 〈| |〉 from ACA0 to T2, up to logical
equivalence.

Theorem 4.3

1. For every term t of ACA0, we have ACA0 ` t p= 〈|t|〉q.

2. For every arithmetic proposition φ of ACA0, we have ACA0 ` φ↔ p|φ|q.

3. For every proposition φ of ACA0, we have ACA0 ` φ↔ p〈|φ|〉q.

Proof. The proof of each of these statements is a straightforward induction.
We deal with one case here: the case t ≡ t1 + t2. We reason in ACA0. The
induction hypothesis gives

t1 p= 〈|t1|〉q, t2 p= 〈|t2|〉q

and we must show t1 + t2 p= 〈|t1|〉 plus 〈|t2|〉q, i.e.

∃n.∃r ∈ Seq(n p= 〈|t2|〉q ∧ (n, t1 + t2) ∈ r
∧ ∀l((0, l) ∈ r ⊃ l p= 〈|t1|〉q)

∧ ∀x∀z((Sx, z) ∈ r ⊃ ∃y((x, y) ∈ r ∧ z = Sy)))

We prove the following by induction on b:

∀a, b.∃r ∈ Seq((b, a+ b) ∈ r
∧ ∀l((0, l) ∈ r ⊃ l = a)

∧ ∀x, z((Sx, z) ∈ r ⊃ ∃y((x, y) ∈ r ∧ z = Sy)))

The desired proposition follows by instantiating a with t1 and b with t2.

18

Corollary 4.3.1 (Conservativity of T2 over ACA0) For any formula φ of
ACA0, if Γ `⇒ 〈|φ|〉 in T2, then ACA0 ` φ.

Proof. By the Soundness Theorem, we have that ACA0 ` p〈|φ|〉q. By Theorem
4.3, we have ACA0 ` φ↔ p〈|φ|〉q. Therefore, ACA0 ` φ.

5. Conservativity of LTT0 over ACA0

In this section, we shall prove that LTT0 is conservative over T2. This shall
complete the proof that LTT0 is conservative over ACA0.

We shall do this by defining a number of subsystems of LTT0 as shown in
the diagram:

T2 ↪→ Tω ↪→ TωU ↪→ LTT0 .

For each of these inclusions A ↪→ B, we shall prove that A is a conservative
subsystem of B; that is, for every judgement J in the language of A, if J is
derivable in B then J is derivable in A. This shall sometimes involve con-
structing yet more subsystems in between A and B, and proving that all these
inclusions are conservative.

Intuitively, each subsystem deals with a subset of the types of LTT0.

• T2 has only two types, N and Set (N).

• The types of Tω are all the types that can be built up from N using ×, →
and Set ().

• The types of TωU are the types of Tω, together with the universe U . (The
constructors ×, → and Set () may not be applied to U in TωU .)

The formal definitions of these systems shall be given in the sections to come.

5.1. Digression — Informal Explanation of Proof Technique

Before proceeding with the technical details of the proof, we shall explain
the informal ideas behind the technique we use to prove LTT0 conservative over
T2. The system LTT0 is formed from T2 by adding products, function types,
types of sets, and the universe U . Intuitively, none of these should increase the
power of the system.

We can see this most clearly in the case of products. Speaking generally,
let S be any type system, and let T be formed by adding product types to S.
Then T should have no more expressive power than S, because we can envisage
a translation from T to S:

• wherever a variable z : A×B occurs, replace it with two variables
x : A, y : B;

• wherever a term of type A × B occurs, replace it with two terms, one of
type A and one of type B.

19

As long as the only way of introducing terms of type A× B is the constructor
(,), we should always be able to find the two S-terms of types A and B that
correspond to any T -term of type A×B. (This would however not be possible
if (say) we could eliminate N over A×B in T .)

In brief:

• the terms of type A×B can be interpreted as pairs 〈M,N〉 where M : A
and N : B.

Similarly,

• the terms of type A→ B can be interpreted as pairs 〈x,M〉
where x : A `M : B;

• the terms of type Set (A) can be interpreted as pairs 〈x, P 〉
where x : A ` P prop.

Our proof relies on making these intuitive ideas formal.
These ideas show us how we might be able to remove types A → B that

involve only one use of the arrow, but they do not show us how to handle types
of the form (A → B) → C. Let us take another example: let S be a typing
system without function types, and let T be formed from S by adding function
types. Let us define the depth of a type A, d(A) by:

• the depth of each type in S is 0;

• d(A→ B) = max(d(A), d(B)) + 1.

Then we have seen how to interpret types of depth 1 in terms of types of depth
0. More generally, we can interpret types of depth n + 1 in terms of types of
depth n.

This shows us how to complete the proof. We introduce an infinite sequence
of subsystems of T :

S = A0 ↪→ A1 ↪→ A2 ↪→ · · ·T

where, in An, only types of depth ≤ n may occur. We build an interpretation
of An+1 out of the terms of An: every type of An is interpreted as itself; the
types A → B of depth n + 1 are interpreted as the set of pairs 〈x,M〉 where
x : A `M : B in An.

Using these interpretations, we can prove each An+1 conservative over An,
and hence T conservative over S. With these intuitive ideas to guide us, we
return to the proof development.

5.2. Tω is Conservative over T2

We shall now define the system Tω to be T2 extended with pairs, functions
and sets over all types, and prove that Tω is conservative over T2.

20

Definition 5.1 (Tω). The LTT Tω is defined as follows.
The grammar of Tω is the grammar of T2 extended with

Type A ::= · · · | A×A | A→ A | Set (A)

Term M ::= · · · | (M,M)A×A | πA×A1 (M) | πA×A2 (M) |
λx : A.M : A |M(M)A→A | {x : A | P}

Small Proposition P ::= · · · |M ∈̂AM

The rules of deduction of Tω are the rules of deduction of T2, together with the
rules for pairs (Appendix Appendix A.1.3), function types (Appendix Appendix
A.1.4) and typed sets (Appendix Appendix A.1.5).

Note that the type-theory component Tω is non-dependent: a term can never
occur in a type. As a consequence, we have

Lemma 5.2 If Γ ` A = B in Tω then A ≡ B.

Proof. Induction on derivations.

To prove that Tω is conservative over T2, we shall define an infinite sequence
of subsystems of Tω, and prove that each is conservative over the previous
subsystem, and that the smallest is conservative over T2.

T2 ↪→ A1 ↪→ A2 ↪→ · · ·Tω

We define the depth of a type of Tω as follows.

Definition 5.3. Define the depth d(A) < ω of a type A of Tω by

d(N) = 0

d(A×B) = max(d(A), d(B)) + 1

d(A→ B) = max(d(A), d(B)) + 1

d(Set (N)) = 0

d(Set (A)) = d(A) + 1 (A 6≡ N)

Note that the types of T2 are exactly the types of depth 0.
For n ≥ 1, we shall define An to be the fragment of Tω that deals only with

types of depth ≤ n.

Definition 5.4 (An). Let n ≥ 0. By a type (term, small proposition, propo-
sition, context, judgement) of An, we mean a type (term, small proposition,
proposition, context, judgement) of Tω that does not contain, as a subexpres-
sion, any type of depth > n.

We say a judgement J of An is derivable in An iff there exists a derivation
of J in Tω consisting solely of judgements of An; that is, a derivation of J in
which no type of depth > n occurs. We write Γ `n J iff the judgement Γ ` J
is derivable in An.

21

Note that the types of An are exactly the types of depth ≤ n. Note also that
A0 is just the system T2.

We shall prove that An+1 is conservative over An. The proof shall involve
defining an interpretation of An+1 in terms of the expressions of An. For the
rest of this section, fix n ≥ 0, and fix a context ∆ of An such that ∆ `n valid.

Definition 5.5 (Interpretation of Types). For the purposes of this defini-
tion, an ‘object’ is either a term of An, or a pair of terms of An.

For every type A of An+1, we define the set of objects [[A]]∆, and an equiv-
alence relation ∼A∆ on this set, as follows.

If d(A) ≤ n, then

[[A]]∆ = {M | ∆ `n M : A}
M ∼A∆ N ⇔ ∆ `n M = N : A

Otherwise,

[[A×B]]∆ = {〈M,N〉 | ∆ `n M : A,∆ `n N : B}
〈M,N〉 ∼A×B∆ 〈M ′, N ′〉 ⇔ ∆ `n M = M ′ : A ∧∆ `n N = N ′ : B

[[A→ B]]∆ = {〈x,M〉 | ∆, x : A `n M : B}
〈x,M〉 ∼A→B∆ 〈x,M ′〉 ⇔ ∆, x : A `n M = M ′ : B

[[Set (A)]]∆ = {〈x, P 〉 | ∆, x : A `n P prop}

〈x, P 〉 ∼Set(A)
∆ 〈x, P ′〉 ⇔ ∆, x : A `n P = P ′

We identify the elements of [[A→ B]]∆ and [[Set (A)]]∆ up to α-conversion; that
is, we identify 〈x,M〉 with 〈y, [y/x]M〉 if y is not free in M .

We define the operations Π1, Π2 and @ on these objects as follows.

Π1(〈M,N〉) ≡ M

Π2(〈M,N〉) ≡ N

〈x,M〉@N ≡ [N/x]M

〈x, P 〉@N ≡ [N/x]P

Π1(X) and Π2(X) are undefined if X is not a pair. X@Y is undefined if X does
not have the form 〈x, Z〉, or if Y is not a term.

The intention is that we will interpret the terms of type A as members of the
set [[A]]∆, with equal terms being interpreted as ∼A∆-equivalent members

Definition 5.6 (Valuation). Let Γ ≡ x1 : A1, . . . , xn : An be a context of
An+1. A ∆-valuation of Γ is a function v on {x1, . . . , xn} such that

v(xi) ∈ [[Ai]]∆ (i = 1, . . . , n) .

22

Definition 5.7 (Interpretation of Terms). Given a term M of An+1 and
a function v whose domain includes FV (M), we define the object (|M |)vA as
follows.

(|x|)v = v(x)

(|0|)v ≡ 0

(|sM |)v ' s(|M |)v

(|R(L, [x, y]M,N)|)v ' R((|L|)v, [x, y](|M |)v[x:=x,y:=y], (|N |)v)

(|(M,N)A×B |)v '

{
((|M |)v, (|N |)v)A×B if d(A×B) ≤ n
〈(|M |)v, (|N |)v〉 if d(A×B) = n+ 1

(|(πA×B1 (M))|)v '

{
πA×B1 ((|M |)v) if d(A×B) ≤ n
Π1((|M |)v) if d(A×B) = n+ 1

(|(πA×B2 (M))|)v '

{
πA×B2 ((|M |)v) if d(A×B) ≤ n
Π2((|M |)v) if d(A×B) = n+ 1

(|λx : A.M : B|)v '

{
λx : A.(|M |)v[x:=x] : B if d(A→ B) ≤ n
〈x, (|M |)v[x:=x]〉 if d(A→ B) = n+ 1

(|M(N)A→B |)v '

{
(|M |)v((|N |)v)A→B if d(A→ B) ≤ n
(|M |)v@(|N |)v if d(A→ B) = n+ 1

(|{x : A | P}|)v '

{
{x : A | (|P |)v[x:=x]} if d(Set (A)) ≤ n
〈x, (|P |)v[x:=x]〉 if d(Set (A)) = n+ 1

Note that this is a partial definition; (|M |)vA will sometimes be undefined.

Definition 5.8 (Interpretation of Small Propositions). If P is a small
An+1-proposition, we define the small proposition (|P |)v of An.

(|M=̂NN |)v ' (|M |)v=̂N(|N |)v

(|⊥̂|)v ≡ ⊥̂
(|P ⊃̂Q|)v ' (|P |)v⊃̂(|Q|)v

(|∀̂x : N.P |)v ' ∀̂x : N.(|P |)v[x:=x]

(|M ∈̂AN |)v '

{
(|M |)v∈̂A(|N |)v if d(A) ≤ n
(|N |)v@(|M |)v if d(A) = n+ 1

Definition 5.9 (Depth of a Proposition). We define the depth of a propo-
sition φ, d(φ), to be

d(φ) =

{
0 if φ is quantifier-free

max{d(A) | φ contains a quantifier ∀x : A} otherwise

23

Definition 5.10 (Interpretation of Propositions). If φ is
an An+1-proposition of depth ≤ n, we define the An-proposition (|φ|)v as follows

(|M =N N |)v ' (|M |)v =N (|N |)v

(|⊥|)v ≡ ⊥
(|φ ⊃ ψ|)v ' (|φ|)v ⊃ (|ψ|)v

(|∀x : A.φ|)v ' ∀x : A.(|φ|)v[x:=x]

(|V (P)|)v ' V ((|P |)v)

We have defined a sound interpretation of all the judgement forms of An+1

except one: the judgement form Γ ` Φ ⇒ φ. To interpret these judgements,
we shall define a notion of satisfaction. Intuitively, we define what it is for a
proposition φ of An+1 to be ‘true’ under a context ∆, valuation v and sequence
of propositions Φ of An.

Definition 5.11 (Satisfaction). Let Φ ≡ φ1, . . . , φm be a sequence of proposi-
tions of An such that ∆ `n φ1 Prop, . . . , ∆ `n φm Prop. Let v be a ∆-valuation
of Γ. Suppose Γ ` φ Prop. We define what it means for (∆,Φ, v) to satisfy φ,
(∆,Φ, v) |= φ, as follows.

If d(φ) ≤ n, then ((∆,Φ, v) |= φ)⇔ (∆ `n Φ⇒ (|φ|)v).
Otherwise,

• (∆,Φ, v) |= φ ⊃ ψ iff, for all ∆′ ⊇ ∆ and Φ′ ⊇ Φ, if (∆′,Φ′, v) |= φ then
(∆′,Φ′, v) |= ψ.

• (∆,Φ, v) |= ∀x : A.φ iff, for all ∆′ ⊇ ∆ and a ∈ [[A]]∆′ , we have
(∆′,Φ, v[x := a]) |= φ.

Definition 5.12 (Satisfaction and Truth). Let Γ ` J be a judgement of
An+1, and let v be a ∆-valuation of Γ. We define what it means for ∆ and v
to satisfy J , written (∆, v) |= J , as follows:

• (∆, v) |= M : A iff (|M |)v ∈ [[A]]∆.

• (∆, v) |= M = N : A iff (|M |)v ∼A∆ (|N |)v.

• (∆, v) |= P prop iff ∆ `n (|P |)v prop.

• (∆, v) |= P = Q iff ∆ `n (|P |)v = (|Q|)v.

• If d(φ) ≤ n, then (∆, v) |= φ Prop iff ∆ `n (|φ|)v Prop.

• (∆, v) |= φ = ψ iff for all Φ, (∆,Φ, v) |= φ⇔ (∆,Φ, v) |= ψ.

• (∆, v) |= ψ1, . . . , ψn ⇒ χ iff, for all Φ, if (∆,Φ, v) |= ψi for 1 ≤ i ≤ n then
(∆,Φ, v) |= χ.

• For all other judgement bodies J , we have (∆, v) |= J for all ∆, v.

24

We say a judgement Γ ` J of An+1 is true iff, for every context ∆ of An such
that ∆ `n valid and every ∆-valuation v of Γ, (∆, v) |= J .

The following theorem shows that this interpretation is sound.

Theorem 5.13 (Soundness) Every derivable judgement of An+1 is true.

The proof is given in Appendix Appendix B.1.

Theorem 5.14 (Completeness)

1. Let Γ ` J be a judgement of An, and suppose J does not have the form
Φ ⇒ ψ. If the judgement is true, and Γ `n valid, then the judgement is
derivable in An.

2. Let Γ ` φ1, . . . , φm ⇒ ψ be a judgement of An. If the judgement is true,
and we have Γ `n valid and Γ `n φi Prop for i = 1, . . . ,m, then the
judgement is derivable in An.

Proof.

1. Let 1Γ be the identity function on dom Γ. Then 1Γ is a Γ-valuation of Γ
and, for every expression X of An such that FV (X) ⊆ dom Γ,

(|X|)1Γ ≡ X .

So, suppose Γ `M : A is a judgement of An, and is true. Then

(Γ, 1Γ) |= M : A

and so Γ `n (|M |)1Γ : A. But (|M |)1Γ ≡M , and so Γ `n M : A as required.
The proof for the other judgement forms is similar.

2. Suppose Γ ` Φ⇒ ψ is true, where Φ ≡ φ1, . . . , φm. We have that

Γ ` Φ⇒ φi (i = 1, . . . ,m)

and so (Γ,Φ, 1Γ) satisfies each φi. Therefore, (Γ,Φ, 1Γ) satisfies ψ, that is

Γ ` Φ⇒ ψ

as required.

Corollary 5.14.1 If J is a judgement of An derivable in An+1, then J is
derivable in An.

Proof. This follows almost immediately from the Soundness Theorem and the
Completeness Theorem. There are just two facts that need to be verified:

1. If Γ is a context of An, and Γ `n+1 J , then Γ `n valid.

2. If Γ is a context of An; φ1, . . . , φm are propositions of An; and Γ `n+1

φ1, . . . , φm ⇒ ψ; then Γ `n valid and Γ `n φi Prop.

25

These are proven fairly easily by induction on derivations, using the Soundness
and Completeness Theorems.

Corollary 5.14.2 (Conservativity of Tω over T2) If J is a judgement of
T2, and J is derivable in Tω, then J is derivable in T2.

Proof. Suppose J is derivable in Tω. Let n be the largest depth of type or
proposition that occurs in the derivation. Then J is derivable in An. Applying
Corollary 5.14.1, we have that J is derivable in An−1, An−2, . . . , A0. But
derivability in A0 is the same as derivability in T2.

5.3. TωU is Conservative over Tω
The system TωU is the fragment of LTT0 that includes all the types of Tω,

and the universe U , but does not include types such as U × U , N → U , or
Set (U). It is defined in a similar manner to the systems An of the previous
section, but using a new notion of depth.

Definition 5.15 (TωU). A type A of LTT0 is a type of TωU , iff either A ≡ U
or the symbol U does not occur in A.

By a term (small proposition, proposition, context, judgement) of TωU , we
mean a term (small proposition, proposition, context, judgement) of LTT0 in
which every type that occurs as a subexpression is a type of TωU

We say a judgement J of TωU is derivable in TωU iff there exists a derivation
of J in LTT0 consisting solely of judgements of TωU ; that is, a derivation of J
in which every type that occurs is a type of TωU .

We write Γ `+ J iff the judgement Γ ` J is derivable in TωU , and Γ `− J
iff the judgement Γ ` J is derivable in Tω.

Note. The types of TωU are not closed under ×, → or Set (). For example, the
types U × U and U → U are not types of TωU .

In order to prove TωU conservative over Tω, we must find an interpretation
of U and of the types T (M). We do this by interpreting the objects of T (M) as
binary trees with leaves labelled by natural numbers. For example, the object
((1, 2), 3) of type T ((N̂×̂N̂)×̂N̂) will be interpreted as the binary tree

•

• 3

1 2

We interpret U as the set of all shapes of binary tree. We begin by inventing a
syntax for the set of all shapes of binary trees:

26

Definition 5.16 (Shape). The set of shapes is defined inductively by:

• • is a shape.

• If S and T are shapes, so is S ∧ T .

We write S for the set of all shapes.

The example tree above has shape (• ∧ •) ∧ •.
We must thus associate each shape with a small type. This association is

done formally by the following function:

Definition 5.17. For every shape S ∈ S , define the type T (S) of Tω as
follows:

T (•) ≡ N
T (S ∧ T) ≡ T (S)×T (T) .

There are two other gaps between TωU and Tω to be bridged. In Tω, we
can only eliminate N over N; in TωU , we can eliminate over any small type.
Likewise, in Tω, a small proposition may only involve quantification over N; in
TωU , a small proposition may involve quantification over any small type.

We bridge these gaps by using the fact that every binary tree can be coded as
a natural number. Given a bijection P : N2 → N, we can assign a code number
to every binary tree. The binary tree above, for example, would be assigned the
code number P (P (1, 2), 3). We shall define, for every shape S, mutually inverse
functions

codeS : T (S)→ N
decodeS : N→ T (S)

Using these functions, we can interpret recursion over small types by recursion
over N, and quantification over small types by quantification over N.

We turn now to the formal details. The first step is to construct in Tω the
bijection P above, and the coding and decoding functions.

Lemma 5.18 (Pairing Function) There exist Tω-terms

P : N× N→ N
Q1 : N→ N
Q2 : N→ N

such that the following are theorems of Tω:

∀x : N.∀y : N.Q1(P(x, y)) =N x
∀x : N.∀y : N.Q2(P(x, y)) =N y
∀x : N.x =N P(Q1(x),Q2(x))

 (9)

27

Proof. Consider the three primitive recursive functions

p(m,n) = 2m(2n+ 1)

q(n) = the greatest m such that 2m divides n

r(n) = 1/2(n/2q(n) − 1)

It is straightforward to define terms P, Q1 and Q2 in Tω that express p, q and
r and prove the three formulas (9).

Fix three such terms P, Q1 and Q2 for the sequel.
We shall also need a notion of equality on every small type in Tω, not just

N. This is defined as follows.

Definition 5.19. Given Tω-terms M and N and a Tω-type A, define
the Tω-proposition M =A N as follows.

M =N N ≡ M =N N

M =A×B N ≡ π1(M) =A π1(N) ∧ π2(M) =B π2(N)

M =A→B N ≡ ∀x : A.M(x) =B N(x)

M =Set(A) N ≡ ∀x : A.(x ∈A M ↔ x ∈A N)

Definition 5.20 (Coding Functions). For each shape S ∈ S , define
the Tω-terms

codeS : T (S)→ N
decodeS : N→ T (S)

as follows.

code• ≡ λx : N.x
decode• ≡ λx : N.x

codeS∧T ≡ λp : T (S)×T (T).P(codeS(π1(p)), codeT (π2(p)))

decodeS∧T ≡ λn : N.(decodeS(Q1(n)),decodeT (Q2(n)))

Lemma 5.21 For every shape S, the following are theorems of Tω:

∀p : T (S).decodeS(codeS(p)) =T (S) p

∀n : N.codeS(decodeS(n)) =N n

Proof. The proof is by induction on S, using the properties of P, Q1 and Q2

from Lemma 5.18.

We can now proceed to define our interpretation of TωU in terms of Tω.
The definition is more complex than the interpretation in the previous section,
because the type-theoretic component of TωU is dependent, so we must define
our interpretations of terms and types simultaneously.

28

Definition 5.22. Let ∆ be a context of Tω, and v a function. We define the
following simultaneously.

• Given a TωU -term M and a function v, define the object (|M |)v as follows.

(|x|)v ' v(x)

(|0|)v ≡ 0

(|sM |)v ' s(|M |)v

(|(M,N)A×B |)v ' ((|M |)v, (|N |)v)(|A|)v×(|B|)v

(|πA×B1 (M)|)v ' π
(|A|)v×(|B|)v
1 ((|M |)v)

(|πA×B2 (M)|)v ' π
(|A|)v×(|B|)v
2 ((|M |)v)

(|λx : A.M : B|)v ' λx : (|A|)v.(|M |)v[x:=x] : (|B|)v

(|M(N)A→B |)v ' (|M |)v((|N |)v)(|A|)v→(|B|)v

(|N̂|)v = •
(|M×̂N |)v ' (|M |)v ∧ (|N |)v

(|{x : A | P}|)v ' {x : (|A|)v | (|P |)v[x:=x]}
(|EN([x]T (K), L, [x, y]M,N)|)v ' decodeS((|N |)v)(R(codeS(0)((|L|)v),

[x, y]codeS(s x)((|M |)v
′
), (|N |)v))

where S(N) ≡ (|K|)v[x:=N] and v′ = v[x := x, y := decodeS(x)(y)].

• Given a type A 6≡ U of TωU , define a type (|A|)v of Tω.

(|N|)v ≡ N
(|A×B|)v ' (|A|)v × (|B|)v

(|A→ B|)v ' (|A|)v → (|B|)v

(|T (M)|)v ' T ((|M |)v)
(|Set (A)|)v ' Set ((|A|)v)

• Given a TωU -type A, define a set [[A]]
v
∆ and an equivalence relation ∼A∆v

on [[A]]
v
∆ as follows.

If A 6≡ U , then

[[A]]
v

= {M | ∆ `+ M : (|A|)v}
M ∼A∆v N ⇔ ∆ `+⇒M =(|A|)v N

Otherwise,

[[U]]
v

= S

S ∼U∆v T ⇔ S = T

• Let Γ ≡ x1 : A1, . . . , xm : Am be a context of TωU . We say that v is a
∆-valuation of Γ iff v(xi) ∈ [[Ai]]

v
∆ for i = 1, . . . , n.

29

• Given a small proposition P of TωU , define a small proposition (|P |)v of
Tω as follows.

(|M1=̂NM2|)v ' code(|N |)v ((|M1|)v)=̂Ncode(|N |)v ((|M2|)v)

(|⊥̂|)v ≡ ⊥̂
(|P ⊃̂Q|)v ≡ (|P |)v⊃̂(|Q|)v

(|∀̂x : M.P |)v ' ∀̂x : N.(|P |)v[x:=decode(|M|)v (x)]

(|M ∈̂AN |)v ' (|M |)v∈̂(|A|)v (|N |)v

• Given a proposition φ of TωU that does not include a quantifier over U ,
define a proposition (|φ|)v of Tω as follows.

(|M1 =N M2|)v ' (|M1|)v =T ((|N |)v) (|M2|)v

(|⊥|)v ≡ ⊥
(|φ ⊃ ψ|)v ' (|φ|)v ⊃ (|ψ|)v

(|∀x : A.φ|)v ' ∀x : (|A|)v.(|φ|)v[x:=x]

(|V (P)|)v ' V ((|P |)v)

Recall that we write ∆ `− J iff ∆ ` J is derivable in Tω.

Definition 5.23 (Satisfaction). Let Φ ≡ φ1, . . . , φm be a sequence of propo-
sitions of Tω such that ∆ `− φi Prop. Let v be a ∆-valuation of Γ. Suppose
Γ ` φ Prop. We define what it means for (∆,Φ, v) to satisfy φ, (∆,Φ, v) |= φ,
as follows.

If φ does not involve quantification over U , then

((∆,Φ, v) |= φ)⇔ (∆ `− Φ⇒ (|φ|)v) .

Otherwise,

• (∆,Φ, v) |= φ ⊃ ψ iff, for all ∆′ ⊇ ∆ and Φ′ ⊇ Φ, if (∆′,Φ′, v) |= φ then
(∆′,Φ′, v) |= ψ.

• (∆,Φ, v) |= ∀x : A.φ iff, for all ∆′ ⊇ ∆ and a ∈ [[A]]
v
∆, we have

(∆′,Φ, v[x := a]) |= φ.

Definition 5.24 (Satisfaction and Truth). Let Γ ` J be a judgement of
TωU . Let ∆ `− valid, and let v be a ∆-valuation of Γ. We define what it
means for ∆ and v to satisfy J , (∆, v) |= J , as follows.

• If A 6≡ U , then (∆, v) |= A type iff (|A|)v is defined.

• If A 6≡ U 6≡ B, then (∆, v) |= A = B iff (|A|)v ≡ (|B|)v.

• (∆, v) |= M : A iff (|M |)v ∈ [[A]]
v
∆.

• (∆, v) |= M = N : A iff (|M |)v ∼A∆v (|N |)v.

30

• (∆, v) |= P prop iff ∆ `− (|P |)v prop.

• (∆, v) |= P = Q iff ∆ `−⇒ V ((|P |)v)↔ V ((|Q|)v).

• If φ does not include a quantifier over U , then (∆, v) |= φ Prop iff
∆ `− (|φ|) Prop.

• (∆, v) |= φ = ψ iff, for all Φ, we have (∆,Φ, v) |= φ iff (∆,Φ, v) |= ψ.

• (∆, v) |= φ1, . . . , φm ⇒ ψ iff, for all Φ, if (∆,Φ, v) |= φi for i = 1, . . . ,m
then (∆,Φ, v) |= ψ.

• For all other judgement forms, we have (∆, v) |= J for all ∆, v.

We say a judgement Γ ` J of TωU is true iff, for all ∆ such that ∆ `− valid
and all ∆-valuations v of Γ, (∆, v) |= J .

Remark. This interpretation uses the propositional equality defined in Defini-
tion 5.19, whereas our interpretation in the previous section used judgemental
equality. This is because the properties of our coding and decoding functions
can be shown to hold up to propositional equality (as in Lemma 5.21), but not
up to judgemental equality.

We now prove that the interpretation is sound.

Theorem 5.25 (Soundness) Every derivable judgement in TωU is true.

The proof is given in Appendix Appendix B.2.

Theorem 5.26 (Completeness) If Γ ` J is a judgement of Tω that is true,
and Γ `− valid, then Γ ` J is derivable in Tω.

Proof. Exactly as in Theorem 5.14.

Corollary 5.26.1 If J is a judgement of Tω derivable in TωU , then J is
derivable in Tω.

Proof. Similar to Corollary 5.14.1.

5.4. LTT0 is Conservative over TωU

The next step in our proof is to apply the same method to show that LTT0

is conservative over TωU . The proof is very similar to Section 5.2, but the
details are more complicated, because we are now dealing with LTTs whose
type theoretic components use dependent types.

Once again, we introduce an infinite sequence of subsystems between TωU
and LTT0:

TωU = B0 ↪→ B1 ↪→ B2 ↪→ · · ·LTT0

We do this using a new definition of the depth of a type:

31

Definition 5.27 (Depth). Define the depth D(A) of a type A of LTT0 by

D(N) = 0

D(A×B) =

{
0 if D(A) = D(B) = 0

max(D(A), D(B)) + 1 otherwise

D(A→ B) =

{
0 if D(A) = D(B) = 0

max(D(A), D(B)) + 1 otherwise

D(Set (A)) =

{
0 if D(A) = 0

D(A) + 1 otherwise

D(U) = 1

D(T (M)) = 0

We define the depth of a proposition φ, D(φ), to be the largest depth of a type
A such that the quantifier ∀x : A occurs in φ, or D(φ) = 0 if φ is quantifier-free.

Note that the types of TωU are exactly the types A such that D(A) ≤ 1.
The subsystems Bn are defined as follows.

Definition 5.28 (Bn). Let n ≥ 0. By a type (term, small proposition, propo-
sition, context, judgement) of Bn , we mean a type (term, small proposition,
proposition, context, judgement) of LTT0 that does not contain, as a subex-
pression, any type A such that D(A) > n.

We say a judgement J of Bn is derivable in Bn iff there exists a derivation
of J in LTT0 consisting solely of judgements of Bn; that is, a derivation of J in
which no type A occurs such that D(A) > n. In this section, we write Γ `n J
iff the judgement Γ ` J is derivable in Bn.

We define an interpretation of Bn+1 in terms of Bn:

Definition 5.29. Fix n ≥ 1. Let ∆ be a context of Bn, and v a function. We
define the following simultaneously.

32

• Given a term M of Bn+1, define the object (|B|)v.

(|x|)v ' v(x)

(|0|)v ≡ 0

(|sM |)v ' s(|M |)v

(|EN([x]T (K), L, [x, y]M,N)|)v

' EN([x]T ((|K|)v[x:=x]), (|L|)v,
[x, y](|M |)v[x:=x,y:=y], (|N |)v)

(|(M,N)A×B |)v '

{
((|M |)v, (|N |)v)(|A|)v×(|B|)v if D(A×B) ≤ n
〈(|M |)v, (|N |)v〉 if D(A×B) = n+ 1

(|πA×B1 (M)|)v '

{
π

(|A|)v×(|B|)v
1 ((|M |)v) if D(A×B) ≤ n

Π1((|M |)v) if D(A×B) = n+ 1

(|πA×B2 (M)|)v '

{
π

(|A|)v×(|B|)v
2 ((|M |)v) if D(A×B) ≤ n

Π2((|M |)v) if D(A×B) = n+ 1

(|λx : A.M : B|)v '

λx : (|A|)v.(|M |)v[x:=x] : (|B|)v

if D(A→ B) ≤ n
〈x, (|M |)v[x:=x]〉 if D(A→ B) = n+ 1

(|M(N)A→B |)v '

{
(|M |)v((|N |)v)(|A|)v→(|B|)v if D(A→ B) ≤ n
(|M |)v@(|N |)v if D(A→ B) = n+ 1

(|N̂ |)v ≡ N̂
(|M×̂N |)v ' (|M |)v×̂(|N |)v

(|{x : A | P}|)v '

{
{x : (|A|)v | (|P |)v[x:=x]} if D(Set (A)) ≤ n
〈x, (|P |)v[x:=x]〉 if D(Set (A)) = n+ 1

• Given a type A of Bn+1 such that D(A) ≤ n, define the type (|A|)v of Bn.

(|N|)v ≡ N
(|A×B|)v ' (|A|)v × (|B|)v

(|A→ B|)v ' (|A|)v → (|B|)v

(|U |)v ≡ U

(|T (M)|)v ' T ((|M |)v)
(|Set (A)|)v ' Set ((|A|)v)

• Given a small proposition P of Bn+1, define the small proposition (|P |)v

33

as follows.

(|M1=̂NM2|)v ' (|M1|)v=̂(|N |)v (|M2|)v

(|⊥̂|)v ≡ ⊥̂
(|P ⊃̂Q|)v ' (|P |)v⊃̂(|Q|)v

(|∀̂x : M.P |)v ' ∀̂x : (|M |)v.(|P |)v[x:=x]

(|M ∈̂AN |)v ' (|M |)v∈̂(|A|)v (|N |)v

• Given a type A of Bn+1, define a set [[A]]
v
∆ and an equivalence relation

∼A∆v on this set.

If D(A) ≤ n, then

[[A]]
v
∆ = {M | ∆ `n M : (|A|)v}

M ∼A∆v N ⇔ ∆ `n M = N : (|A|)v

Otherwise,

[[A×B]]
v
∆ = {〈M,N〉 | ∆ `n M : (|A|)v,∆ `n N : (|B|)v}

〈M,N〉 ∼A×B∆v 〈M ′, N ′〉 ⇔ ∆ `n M = M ′ : (|A|)v

∧∆ `n N = N ′ : (|B|)v

[[A→ B]]
v
∆ = {〈x,M〉 | ∆, x : (|A|)v `M : (|B|)v}

〈x,M〉 ∼A→B∆v 〈x,M ′〉 ⇔ ∆, x : (|A|)v `M = M ′ : (|B|)v

[[Set (A)]]
v
∆ = {〈x, P 〉 | ∆, x : (|A|)v ` P prop}

〈x, P 〉 ∼Set(A)
∆v 〈x, P ′〉 ⇔ ∆, x : (|A|)v ` P = P ′

• Given a context Γ ≡ x1 : A1, . . . , xm : Am of Bn+1, we say that v is a
∆-valuation of Γ iff v(xi) ∈ [[Ai]]

v
∆ for each i.

• Given a proposition φ of Bn+1 such that D(φ) ≤ n, define the proposition
(|φ|)v as follows.

(|M1 =N M2|)v ' (|M1|)v =(|N |)v (|M2|)v

(|⊥|)v ≡ ⊥
(|φ ⊃ ψ|)v ' (|φ|)v ⊃ (|ψ|)v

(|∀x : A.φ|)v ' ∀x : (|A|)v.(|φ|)v[x:=x]

(|V (P)|)v ' V ((|P |)v)

We define what the notion of satisfaction (∆,Φ, v) |= ψ similarly to Defini-
tion 5.11:

34

Definition 5.30 (Satisfaction). Let Φ ≡ φ1, . . . , φm be a sequence of proposi-
tions of An such that ∆ `n φ1 Prop, . . . , ∆ `n φm Prop. Let v be a ∆-valuation
of Γ. Suppose Γ `n+1 φ Prop. We define what it means for (∆,Φ, v) to satisfy
φ, (∆,Φ, v) |= φ, as follows.

If D(φ) ≤ n, then ((∆,Φ, v) |= φ)⇔ (∆ `n Φ⇒ (|φ|)v).
Otherwise,

• (∆,Φ, v) |= φ ⊃ ψ iff, for all ∆′ ⊇ ∆ and Φ′ ⊇ Φ, if (∆′,Φ′, v) |= φ then
(∆′,Φ′, v) |= ψ.

• (∆,Φ, v) |= ∀x : A.φ iff, for all ∆′ ⊇ ∆ and a ∈ [[A]]
v
∆′ , we have

(∆′,Φ, v[x := a]) |= φ.

Definition 5.31 (Satisfaction and Truth). Let Γ ` J be a judgement of
Bn+1. Let ∆ `n valid and v be a ∆-valuation of Γ. We define what it means
for ∆ and v to satisfy J , (∆, v) |= J , as follows.

• If D(A) ≤ n, then (∆, v) |= A type iff [[A]]
v
∆ is defined and ∆ `n (|A|)v type.

If D(A) = n+ 1, then (∆, v) |= A type iff [[A]]
v
∆ is defined.

• If D(A), D(B) ≤ n, then (∆, v) |= A = B iff [[A]]
v
∆ = [[B]]

v
∆ and

(∼A∆v) = (∼B∆v) and ∆ `n (|A|)v = (|B|)v.
If D(A) = D(B) = n + 1, then (∆, v) |= A = B iff [[A]]

v
∆ = [[B]]

v
∆ and

(∼A∆v) = (∼B∆v).

• (∆, v) |= M : A iff (|M |)v ∈ [[A]]
v
∆.

• (∆, v) |= M = N : A iff (|M |)v ∼A∆v (|N |)v

• (∆, v) |= P prop iff ∆ `n (|P |)v prop.

• (∆, v) |= P = Q iff ∆ `n (|P |)v = (|Q|)v

• If D(φ) ≤ n, then (∆, v) |= φ Prop iff ∆ `n (|φ|)v Prop.

• (∆, v) |= φ = ψ iff, for all Φ, we have (∆,Φ, v) |= φ iff (∆,Φ, v) |= ψ.

• (∆, v) |= ψ1, . . . , ψm ⇒ χ iff, for all Φ, if (∆,Φ, v) satisfies ψi for all i,
then (∆,Φ, v) satisfies χ.

• For any other J , we have (∆, v) |= J for all ∆, v.

We say Γ ` J is true iff, whenever ∆ `n valid and v is a ∆-valuation of Γ, then
(∆, v) |= J .

Theorem 5.32 (Soundness) Every derivable judgement in Bn+1 is true.

Proof. Similar to Theorems 5.13 and 5.25.

Theorem 5.33

35

1. Let Γ ` J be a judgement of Bn, and suppose J does not have the form
Φ ⇒ ψ. If the judgement is true, and Γ `n valid, then the judgement is
derivable in Bn.

2. Let Γ ` φ1, . . . , φm ⇒ ψ be a judgement of Bn. If the judgement is true,
and we have Γ `n valid and Γ `n φi Prop for i = 1, . . . ,m, then the
judgement is derivable in Bn.

Proof. Similar to Theorem 5.14.

Corollary 5.33.1 If J is a judgement of Bn derivable in Bn+1, then J is
derivable in Bn.

Corollary 5.33.2 If J is a judgement of TωU derivable in LTT0, then J is
derivable in TωU .

With this final step, we have now completed the proof of the conservativity
of LTT0 over ACA0:

Corollary 5.33.3 Let φ be a formula of second order arithmetic with free vari-
ables x1, . . . , xm, X1, . . . , Xn. If

x1 : N, . . . , xm : N, X1 : Set (N) , . . . , Xn : Set (N) `⇒ 〈|φ|〉

in LTT0 then ACA0 ` φ.

Proof. Let J be the judgement
x1 : N, . . . , xm : N, X1 : Set (N) , . . . , Xn : Set (N) `⇒ 〈|φ|〉.

Suppose J is derivable in LTT0. Then

J is derivable in TωU (Corollary 5.33.2)
∴ J is derivable in Tω (Corollary 5.26.1)
∴ J is derivable in T2 (Corollary 5.14.2)

∴ ACA0 ` φ (Corollary 4.3.1)

6. Other Conservativity Results

6.1. Conservativity of LTT∗0 over ACA

Our proof method can be adapted quite straightforwardly to prove the con-
servativity of LTT∗0 over ACA. We shall present these proofs briefly, giving only
the details that need to be changed.

We define subsystems of LTT∗0:

T∗2 ↪→ T∗ω ↪→ TωU
∗ ↪→ LTT∗0

T∗2 is formed from T2 by allowing the rule (IndN) to be applied with any analytic
proposition φ. In the same manner, T∗ω is formed from Tω, TωU

∗ is formed from
TωU , and LTT∗0 is formed from LTT0.

The proof of the conservativity of LTT∗0 over T∗2 follows exactly the same
pattern as in Section 5.

36

Theorem 6.1 Theorem 4.2 holds for T∗2 and ACA.

Proof. Similar to the proof of Theorem 4.2.

Similarly, Corollary 5.14.2 holds for T∗ω and T∗2, Corollary 5.26.1 holds for
TωU

∗ and T∗ω, and Corollary 5.33.2 holds for LTT∗0 and TωU
∗. This completes

the proof that LTT∗0 is conservative over ACA.

6.2. Conservativity of ACA0 over PA

As a side-benefit of this work, we can easily produce as a corollary another
proof that ACA0 is conservative over Peano Arithmetic (PA). We can define a
system T1 with just one type, N, in its type-theoretic component. We can apply
our method to show that T2 is conservative over T1, and that T1 is conservative
over PA; we omit the details.

Combining all these proofs, we can produce the following elementary proof
that ACA0 is conservative over PA, which proceeds by interpreting the formulas
of ACA0 as statements about PA. To the best of the authors’ knowledge, this
proof has not appeared in print before.

Theorem 6.2 ACA0 is conservative over PA.

Proof. Define a PA-formula to be a formula in which no set variables (bound
or free) occur.

Let V be a set of variables of L2. A valuation of V is a function v on V such
that:

• for every number variable x ∈ V, v(x) is a term of PA;

• for every set variable X ∈ V, v(X) is an expression of the form {y | φ}
where φ is a PA-formula.

For t a term, let v(t) be the result of substituting v(x) for each variable x in t.
For φ a formula of L2, let v(φ) be the PA-formula that results from making

the following replacements throughout φ.

• Replace each atomic formula s = t with v(s) = v(t).

• For each atomic formula t ∈ X, let v(X) = {y | ψ}. Replace t ∈ X with
[v(t)/y]ψ.

Define what it is for a valuation v and PA-formula ψ to satisfy an L2-formula
φ, (v, ψ) |= φ, as follows.

• If φ is arithmetic, (v, ψ) |= φ iff ψ ⊃ v(φ) is a theorem of PA. Otherwise:

• (v, ψ) |= φ ⊃ χ iff, for any PA-formula ψ′, if (v, ψ ∧ ψ′) |= φ
then (v, ψ ∧ ψ′) |= χ.

• (v, ψ) |= ∀xφ iff, for every term t, (v[x := t], ψ) |= φ.

37

• (v, ψ) |= ∀Xφ iff, for every PA-formula χ, (v[X := {y | χ}], ψ) |= φ.

Let us say that a formula φ of L2 is true iff (v, x = x) |= φ for every valuation
v.

We prove the following two claims:

1. Every theorem of ACA0 is true.

2. Every PA-formula that is true is a theorem of PA.

The first claim is proven by induction on derivations in ACA0. As an example,
consider the axiom

∀X(φ ⊃ ψ) ⊃ (φ ⊃ ∀Xψ)

where X /∈ FV (φ). Fix v and χ, and suppose

(v, χ) |= ∀X(φ ⊃ ψ) .

We must show that (v, χ) |= φ ⊃ ∀Xψ.
Let χ′ be any PA-formula, and suppose (v, χ ∧ χ′) |= φ. Let τ be any PA-

formula; we must show that (v[X := {y | τ}], χ ∧ χ′) |= φ. Since X /∈ FV (φ),
we have that

(v[X := {y | τ}], χ ∧ χ′) |= φ

We also have (v[X := {y | τ}], χ∧χ′) |= φ ⊃ ψ, and so (v[X := {y | τ}], χ∧χ′) |=
ψ as required.

The second claim is proven using the valuation that is the identity on FV (φ).
It follows that, if a formula of PA is a theorem of ACA0, then it is a theorem

of PA.

Remarks.

1. The same method could be used to show that Gödel-Bernays set theory
is conservative over ZF set theory.

2. Another proof-theoretic method of proving this results is given in Shoen-
field [10]. That proof relies on some quite strong results about classical
theories; our proof is more elementary. However, Shoenfield’s proof is con-
structive (giving an algorithm that would produce a proof of ⊥ in PA from
a proof of ⊥ in ACA0) and can be formalised in PRA; ours has neither of
these properties.

6.3. ACA+
0

An argument has been made that the system ACA+
0 corresponds to Weyl’s

foundation [9, p.135], claiming that its axiom schema of ω-iterated arithmeti-
cal comprehension ‘occurs in the formal systems defined by Weyl and Zahn’,
presumably a reference to Weyl’s Principle of Iteration [13, p.38].

The axioms of ACA+
0 are the axioms of ACA0 together with the follow-

ing axiom schema of ω-iterated arithmetical comprehension. Assume we have
defined a pairing function (x, y) in ACA0. We put

(X)j = {n : (n, j) ∈ X}, (X)j = {(m, i) : (m, i) ∈ X ∧ i < j} .

38

Then, for every arithmetical formula φ[n, Y] in which X does not occur free,
the following is an axiom:

∃X∀j∀n(n ∈ (X)j ↔ φ[n, (X)j]) .

The translation we gave in Section 3.3 is a sound translation from ACA+
0 into

LTTW. It is difficult to construct a subsystem of LTTW that is conservative over
ACA+

0 , however. A natural suggestion would be to extend LTT0 by allowing EN
to take either a small type, or the type Set (N); let us call the system produced
LTT+

0 . Then LTT+
0 is indeed conservative over T+

2 , the extension of T2 with a
new constructor

Γ ` L : Set (N) Γ, x : N, Y : Set (N) `M : Set (N)
Γ ` N : N

Γ ` R+(L, [x, Y]M,N) : Set (N)

and appropriate equality rules.
However, it seems unlikely that T+

2 is conservative over ACA+
0 . In particular,

there seems to be no way to interpret terms that involve two or more applications
of R+. In LTT+

0 , we may iterate any definable function Set (N) → Set (N). In
ACA+

0 , we may only iterate those functions that are defined by an arithmetic
proposition; and not every such function definable in ACA+

0 is defined by an
arithmetic proposition.

7. Conclusion

We have constructed two subsystems of LTTW, and proved that these are
conservative over ACA0 and ACA respectively. We have thus shown how, using
LTTs, we can take a system like ACA0 or ACA and add to it the ability to
speak of pairs, functions of all orders, sets of all orders, and a universe of types,
without increasing the proof-theoretic strength of the system.

We have also begun the proof-theoretic analysis of LTTW. We now know
that LTTW is strictly stronger than LTT0, and hence ACA0. The subsystem
LTT∗0 is quite a small fragment of LTTW, and so we conjecture that LTTW

is strictly stronger than LTT∗0, and hence strictly stronger than ACA. Once
this conjecture is proven, we will have quite strong evidence for our claim that
Weyl’s foundation exceeds both ACA0 and ACA.

The method of proof we have given is quite a general one, and should be
applicable in many other situations. It does not rely on any reduction properties
of the type system, and so could be applied to type systems that are not strongly
normalising, or do not satisfy Church-Rosser (or are not known to be strongly
normalising or to satisfy Church-Rosser). It provides a uniform method for
proving types redundant; we were able to remove products, function types,
types of sets, and the universe from LTT0.

Furthermore, the method allowed us to separate these tasks. We were able to
remove U separately from the other types, and to use a different interpretation

39

to do so. In Sections 5.2 and 5.4, for example, we interpreted judgemental
equality by judgemental equality; in Section 5.3, we interpreted judgemental
equality by propositional equality. Our method is thus quite powerful; we did
not have to find a single interpretation that would perform all these tasks.

A proof of our conjecture that LTTW is stronger than LTT∗0 has very recently
been discovered, by the first author and Anton Setzer. The proof theoretic
strength of LTTW is in fact φε0(0). A paper presenting the proof of this result
is in preparation.

For future work, we should investigate more generally how adding features
to an LTT changes its proof-theoretic strength. This will be a more difficult
task, as we will need to investigate what effect induction and recursion have
when they are no longer confined to the small types and propositions. We are
particularly interested in the differences between LTTs and systems of predicate
logic; for example, in how the strength of an LTT changes when we modify the
type-theoretic component but not the logical component.

Finally, we note that there are striking superficial similarities between our
work and Streicher [17], who also gave interpretations to type theories. Like our
interpretations, his were first defined as partial functions on the syntax, then
proven to be total on the typable terms by induction on derivations. He also
made use of a ‘depth’ function on types. Our work is not a direct application
of his, but it remains to be seen whether there are formal connections that can
be exploited.

[1] S. G. Simpson, Subsystems of Second-Order Arithmetic, Springer-Verlag,
1999.

[2] H. Weyl, Das Kontinuum, 1918, translated as [13].

[3] S. Feferman, The significance of Hermann Weyl’s Das Kontinuum, in:
V. Hendricks, S. A. Pedersen, K. F. Jørgensen (Eds.), Proof Theory — His-
torical and Philosophical Significance, Vol. 292 of Synthese Library, Kluwer
Academic Publishers, Dordrecht, 2000, Ch. 7, pp. 179–194.

[4] P. Aczel, N. Gambino, Collection principles in dependent type theory, in:
P. Callaghan, Z. Luo, J. McKinna, R. Pollack (Eds.), Types for Proofs and
Programs: International Workshop, TYPES 2000, Durham, UK, December
8–12, 2000. Selected Papers, Vol. 2277 of LNCS, Springer-Verlag, 2002, pp.
1–23.

[5] N. Gambino, P. Aczel, The generalised type-theoretic interpretation of con-
structive set theory, J. Symbolic Logic 71 (1) (2006) 67–103.

[6] R. Adams, Z. Luo, Weyl’s predicative classical mathematics as a logic-
enriched type theory, ACM Transactions on Computational Logic.Accepted
for publication. 2009.

[7] R. Adams, Z. Luo, Weyl’s predicative classical mathematics as a logic-
enriched type theory, in: T. Altenkirch, C. McBride (Eds.), Types for

40

Proofs and Programs: International Workshop, TYPES 2006, Revised Se-
lected Papers, Vol. 4502 of LNCS, Springer, 2007, pp. 1–17.

[8] A. N. Whitehead, B. Russell, Principia Mathematica, Cambridge Univer-
sity Press, 1925–27, 3 vols.

[9] D. K. Brown, S. G. Simpson, Which set existence axioms are needed to
prove the separable Hahn-Banach theorem?, Annals of Pure and Applied
Logic 31 (1986) 123–144.

[10] J. Shoenfield, A relative consistency proof, Journal of Symbolic Logic 19
(1954) 21–28.

[11] J. Avigad, R. Sommer, The model-theoretic ordinal analysis of predicative
theories, Journal of Symbolic Logic 64 (1999) 327–349.

[12] S. Feferman, Weyl vindicated, in: In the Light of Logic, Logic and Com-
putation in Philosophy, Oxford University Press, New York, 1998, Ch. 13,
pp. 249–283.

[13] H. Weyl, The Continuum: A Critical Examination of the Foundation of
Analysis, Dover, Kirksville, Missouri, 1994, translated by Stephen Pollard
and Thomas Bole.

[14] J. Smith, The independence of peano’s fourth axiom from martin-löf’s type
theory without universes, Journal of Symbolic Logic 53 (3) (1988) 840–845.

[15] S. Feferman, Iterated inductive fixed-point theories: Application to Han-
cock’s conjecture, in: G. Metakides (Ed.), Patras Logic Symposium, North-
Holland, 1982, pp. 171–196.

[16] K. Schütte, Proof Theory, Springer, 1977.

[17] T. Streicher, Semantics of Type Theory: Correctness, Completeness and In-
dependence Results, Progress in Theoretical Computer Science, Birkhäuser,
Boston, 1991.

Appendix A. Formal Definition of Systems

We present here the definition of LTTW and the two principal subsystems
used in this paper.

41

Appendix A.1. LTTW

The syntax of LTTW is given by the following grammar:

Type A ::= N | A×A | A→ A | U | T (M) | Set (A)
Term M ::= x | 0 | sM | EN([x]A,M, [x, x]M,M) |

(M,M)A×A | πA×A1 (M) | πA×A2 (M) |
λx : A.M : A |M(M)A→A | N̂ |M×̂M |
{x : A | P}

small Proposition P ::= M=̂MM | ⊥̂ | P ⊃̂P | ∀̂x : M.P |M ∈̂AM
Formula φ ::= M =M M | ⊥ | φ ⊃ φ | ∀x : A.φ | V (P)

We write ¬φ for φ ⊃ ⊥, and M ∈A N for V (M ∈̂AN).
The rules of deduction of LTTW are as follows:

Appendix A.1.1. Structural Rules

` valid

Γ ` A type

Γ, x : A ` valid

Γ ` valid
(x : A ∈ Γ)

Γ ` x : A

Γ `M : A

Γ `M = M : A

Γ `M = N : A

Γ ` N = M : A

Γ `M = N : A Γ ` N = P : A

Γ `M = P : A

Γ ` A type

Γ ` A = A

Γ ` A = B

Γ ` B = A

Γ ` A = B Γ ` B = C

Γ ` A = C

Γ `M : A Γ ` A = B

Γ `M : B

Γ `M = N : A Γ ` A = B

Γ `M = N : B

Γ ` P prop

Γ ` P = P

Γ ` P = Q

Γ ` Q = P

Γ ` P = Q Γ ` Q = R

Γ ` P = R

Γ ` φ Prop

Γ ` φ = φ

Γ ` φ = ψ

Γ ` ψ = φ

Γ ` φ = ψ Γ ` ψ = χ

Γ ` φ = χ

Γ ` φ1 Prop · · · Γ ` φn Prop

Γ ` φ1, . . . , φn ⇒ φi

Γ ` Φ⇒ φ Γ ` φ = ψ

Γ ` Φ⇒ ψ

Appendix A.1.2. Natural Numbers

Γ ` valid

Γ ` N type

Γ ` valid

Γ ` 0 : N

Γ `M : N

Γ ` sM : N
Γ `M = M ′ : N

Γ ` sM = sM ′ : N

(EN)

Γ, x : N ` C type Γ ` L : [0/x]C
Γ, x : N, y : C `M : [sx/x]C Γ ` N : N

Γ ` EN([x]C,L, [x, y]M,N) : [N/x]C

42

(EN =)

Γ, x : N ` C = C ′ Γ ` L = L′ : [0/x]C
Γ, x : N, y : C `M = M ′ : [sx/x]C Γ ` N = N ′ : N

Γ ` EN([x]C,L, [x, y]M,N) = EN([x]C ′, L′, [x, y]M ′, N ′) : [N/x]C

(EN0)

Γ, x : N ` C type Γ ` L : [0/x]C
Γ, x : N, y : C `M : [sx/x]C

Γ ` EN([x]C,L, [x, y]M, 0) = L : [0/x]C

(EN s)

Γ, x : N ` C type Γ ` L : [0/x]C
Γ, x : N, y : C `M : [sx/x]C Γ ` N : N

Γ ` EN([x]C,L, [x, y]M, sN)
= [N/x,EN([x]C,L, [x, y]M,N)/y]M : [sN/x]C

(IndN)

Γ, x : N ` φ Prop Γ ` N : N
Γ ` Φ⇒ [0/x]φ Γ, x : N ` Φ, φ⇒ [sx/x]φ

Γ ` Φ⇒ [N/x]φ

Appendix A.1.3. Pairs

Γ ` A type Γ ` B type

Γ ` A×B type

Γ ` A = A′ Γ ` B = B′

Γ ` (A×B) = (A′ ×B′)

Γ `M : A Γ ` N : B

Γ ` (M,N)A×B : A×B

Γ ` A = A′ Γ ` B = B′

Γ `M = M ′ : A Γ ` N = N ′ : B

Γ ` (M,N)A×B = (M ′, N ′)A′×B′ : A×B

Γ `M : A×B

Γ ` πA×B1 (M) : A

Γ ` A = A′ Γ ` B = B′

Γ `M = M ′ : A×B
Γ ` πA×B1 (M) = πA

′×B′

1 (M ′) : A

Γ `M : A×B

Γ ` πA×B2 (M) : B

Γ ` A = A′ Γ ` B = B′

Γ `M = M ′ : A×B
Γ ` πA×B2 (M) = πA

′×B′

2 (M ′) : B

Γ `M : A Γ ` N : B

Γ ` πA×B1 ((M,N)A×B) = M : A

Γ `M : A Γ ` N : B

Γ ` πA×B2 ((M,N)A×B) = N : B

(eta×)

Γ, z : A×B ` φ Prop Γ `M : A×B
Γ ` Φ⇒ [(πA×B1 (M), πA×B2 (M))/z]φ

Γ ` Φ⇒ [M/z]φ

43

Appendix A.1.4. Functions

Γ ` A type Γ ` B type

Γ ` A→ B type

Γ ` A = A′ Γ ` B = B′

Γ ` (A→ B) = (A′ → B′)

Γ, x : A `M : B

Γ ` (λx : A.M : B) : A→ B

Γ ` A = A′ Γ ` B = B′

Γ, x : A `M = M ′ : B

Γ ` (λx : A.M : B)
= (λx : A′.M ′ : B′) : A→ B

Γ `M : A→ B Γ ` N : A

Γ `M(N)A→B : B

Γ ` A = A′ Γ ` B = B′

Γ `M = M ′ : A→ B Γ ` N = N ′ : A

Γ `M(N)A→B = M ′(N ′)A′→B′ : B

Γ, x : A `M : B Γ ` N : A

Γ ` (λx : A.M : B)(N)A→B = [N/x]M : [N/x]B

(eta→)

Γ, z : A→ B ` φ Prop Γ `M : A→ B
Γ ` Φ⇒ [λx : A.M(x) : B/z]φ

Γ ` Φ⇒ [M/z]φ

Appendix A.1.5. Typed Sets

Γ ` A type

Γ ` Set (A) type

Γ ` A = A′

Γ ` Set (A) = Set (A′)

Γ, x : A ` P prop

Γ ` {x : A | P} : Set (A)

Γ ` A = A′ Γ, x : A ` P = P ′

Γ ` {x : A | P} = {x : A′ | P ′} : Set (A)

Γ `M : A Γ ` N : Set (A)

Γ `M ∈̂AN prop

Γ ` A = A′

Γ `M = M ′ : A Γ ` N = N ′ : Set (A)

Γ ` (M ∈̂AN) = (M ′∈̂A′N ′)

Γ `M : A Γ, x : A ` P prop

Γ ` (M ∈̂A{x : A | P}) = [M/x]P

44

Appendix A.1.6. The Type Universe

Γ ` valid

Γ ` U type

Γ `M : U

Γ ` T (M) type

Γ `M = M ′ : U

Γ ` T (M) = T (M ′)

Γ ` valid

Γ ` N̂ : U

Γ ` valid

Γ ` T (N̂) = N

Γ `M : U Γ ` N : U

Γ `M×̂N : U

Γ `M = M ′ : U Γ ` N = N ′ : U

Γ ` (M×̂M ′) = (N×̂N ′) : U

Γ `M : U Γ ` N : U

Γ ` T (M×̂N) = T (M)× T (N)

Appendix A.1.7. Classical Predicate Logic

Γ ` valid

Γ ` ⊥ Prop

Γ ` φ Prop Γ ` Φ⇒ ⊥

Γ ` Φ⇒ φ

Γ ` φ Prop Γ ` ψ Prop

Γ ` φ ⊃ ψ Prop

Γ ` φ = φ′ Γ ` ψ = ψ′

Γ ` (φ ⊃ ψ) = (φ′ ⊃ ψ′)
Γ ` Φ, φ⇒ ψ

Γ ` Φ⇒ φ ⊃ ψ

Γ ` Φ⇒ φ ⊃ ψ Γ ` Φ⇒ φ

Γ ` Φ⇒ ψ

(DN)
Γ ` Φ⇒ ¬(¬φ)

Γ ` Φ⇒ φ

Γ, x : A ` φ Prop

Γ ` ∀x : A.φ Prop

Γ ` A = A′ Γ, x : A ` φ = φ′

Γ ` (∀x : A.φ) = (∀x : A′.φ′)

Γ ` φ1 Prop · · · Γ ` φn Prop
Γ, x : A ` φ1, . . . , φn ⇒ ψ

Γ ` φ1, . . . , φn ⇒ ∀x : A.ψ

Γ ` Φ⇒ ∀x : A.φ Γ `M : A

Γ ` Φ⇒ [M/x]φ

Appendix A.1.8. The Propositional Universe

Γ ` P prop

Γ ` V (P) Prop

Γ ` P = Q

Γ ` V (P) = V (Q)

Γ ` valid

Γ ` ⊥̂ prop

Γ ` valid

Γ ` V (⊥̂) = ⊥

Γ ` P prop Γ ` Q prop

Γ ` P ⊃̂Q prop

Γ ` P = P ′ Γ ` Q = Q′

Γ ` (P ⊃̂Q) = (P ′⊃̂Q′)

45

Γ ` P prop Γ ` Q prop

Γ ` V (P ⊃̂Q) = (V (P) ⊃ V (Q))

Γ, x : T (M) ` P prop

Γ ` ∀̂x : M.P prop

Γ `M = M ′ : U Γ, x : T (M) ` P = P ′

Γ ` (∀̂x : M.P) = (∀̂x : M ′.P ′)

Γ, x : T (M) ` P prop

Γ ` V (∀̂x : M.P) = (∀x : T (M).V (P))

Appendix A.1.9. Equality

Γ `M1 : T (N) Γ `M2 : T (N)

Γ ` (M1 =N M2) Prop

Γ ` N = N ′ : U
Γ `M1 = M ′1 : T (N)
Γ `M2 = M ′2 : T (A)

Γ ` (M1 =N M2) = (M ′1 =N M ′2)

Γ ` φ1 Prop · · · Γ ` φn Prop
Γ `M : T (N)

Γ ` φ1, . . . , φn ⇒M =N M

(subst)

Γ, x : T (N) ` φ Prop
Γ ` Φ⇒M1 =N M2 Γ ` Φ⇒ [M1/x]φ

Γ ` Φ⇒ [M2/x]φ

Γ `M1 : T (N) Γ `M2 : T (N)

Γ ` (M1=̂NM2) prop

Γ `M1 = M ′1 : T (N)
Γ `M2 = M ′2 : T (N)

Γ ` (M1=̂NM2) = (M ′1=̂NM
′
2)

Γ `M1 : T (N) Γ `M2 : T (N)

Γ ` V (M1=̂NM2) = (M1 =N M2)

Appendix A.1.10. Differences from Previous Presentation

The above presentation differs from the one in [6] in a few respects. In that
paper, we constructed LTTW within the logical framework LF′. Here, we have
presented LTTW as a separate, stand-alone formal system. The constant Peirce
in [6] has been replaced with the rule (DN), the constant I⇒ has been replaced
with the rule (eta→), and the constant I× has been replaced with (eta×).

It is not difficult to show that the two presentations are equivalent. These
changes have been made in order to simplify the definition of the interpretations
in Section 5.

In [6], we introduced a proposition ‘prop’, and used the proofs of ‘prop’
as the names of the small propositions. We also discussed the possibility of

46

making ‘prop’ a type. In this paper, we have taken a neutral option: we have
used a separate judgement form Γ ` P prop. The system we present here can be
embedded in both the system that has ‘prop’ a proposition, and the system that
has ‘prop’ a type. It can be shown that these two embeddings are conservative.

Appendix A.2. LTT0

The subsystem LTT0 is formed from LTTW by making the following changes.

1. Whenever the rules (EN), (EN =), (EN0) or (EN s) are used, the type A
must have the form T (K).

2. Whenever the rule (IndN) is used, the proposition φ must have the form
V (P).

3. Whenever the rule (subst), (eta×) or (eta→) is used, then for every quan-
tifier ∀x : A in the proposition φ, the type A must not contain the symbol
U .

4. The following rule of deduction is added:

(P3)
Γ ` φ1 Prop · · · Γ ` φn Prop Γ `M : N

Γ ` φ1, . . . , φn ⇒ ¬(0 =N̂ sM)

Appendix A.3. LTT∗0
We say a proposition φ is analytic iff, for every quantifier ∀x : A in φ, either

A ≡ T (M) for some M , or A ≡ Set (N).
The subsystem LTT0 is formed from LTTW by making the following changes.

1. Whenever the rules (EN), (EN =), (EN0) or (EN s) are used, the type A
must have the form T (K).

2. Whenever the rule (IndN) is used, the proposition φ must be analytic.

3. Whenever the rule (subst), (eta×) or (eta→) is used, the proposition φ
must have the form V (P).

4. The rule of deduction (P3) is added.

Appendix B. Proof of the Soundness Theorems

We present here the proofs of two of the Soundness Theorems in this paper.

Appendix B.1. Proof of Theorem 5.13

We begin by proving the following properties of our interpretation:

Lemma Appendix B.1 If ∆ ⊆ ∆′, then [[A]]∆ ⊆ [[A]]∆′ and (∼A∆) ⊆ (∼A∆′).

Proof. The proof is by induction on A.

Lemma Appendix B.2

1. Let M be a term and X an expression of An+1. Let v′ = v[x := (|M |)v].
If (|M |)v is defined, and (|X|)v′ is defined, then (|[M/x]X|)v is defined, and
(|[M/x]X|)v = (|X|)v′ .

47

2. Given a term M of An and expression X of An+1, we have [M/x](|X|)v '
(|X|)u where, for all y ∈ dom v, u(y) ≡ [M/x]v(y).

3. If (|M |)v and (|X|)v[x:=x] are defined, then (|[M/x]X|)v is defined, and
(|[M/x]X|)v ≡ [(|M |)v/x](|X|)v[x:=x]

4. If v(x) = v′(x) for all x ∈ FV (M), then (|X|)v = (|X|)v′ .
5. Suppose (∆,Φ, v) |= φ. If ∆ ⊆ ∆′, Φ ⊆ Φ′, and v(x) = v′(x) for all
x ∈ FV (φ), then (∆′,Φ′, v′) |= φ.

6. (∆,Φ, v) |= [M/x]φ iff (∆,Φ, [M/x]v) |= φ.

Proof. Part 1 is proven by induction on X, and part 2 by induction on N .
Part 3 follows simply from the first two. The remaining parts are proven by
induction on X or φ.

Theorem 5.13 is now proven by induction on derivations. We deal with five
cases here.

1. Consider the case of the rule of deduction

Γ, x : A `M : B Γ ` N : A

Γ ` (λx : A.(M : B))(N)A→B = [N/x]M : B

By the induction hypothesis, we have

∆, x : A `n (|M |)v[x:=x] : B, ∆ `n (|N |)v : A

and we must show ∆ `n (|(λx : A.M)(N)|)v = (|[N/x]M |)v : B.
Suppose d(A→ B) ≤ n. Then we have

∆ `n (λx : A.(|M |)v[x:=x])((|N |)v) = [(|N |)v/x](|M |)v[x:=x] : B .

By the two claims above, we have [(|N |)v/x](|M |)v[x:=x] ≡ (|[N/x]M |)v and
the required judgement follows.
Suppose now d(A→ B) = n+1. We must show ∆ ` (|(λx : A.M)(N)|)v =
(|[M/x]N |)v : B But

(|(λx : A.M)(N)|)v ≡ (|λx : A.M |)v@(|N |)v

≡ 〈x, (|M |)v[x:=x]〉@(|N |)v

≡ [(|N |)v/x](|M |)v[x:=x]

≡ (|[M/x]N |)v

and so the required judgement is

∆ ` [(|N |)v/x](|M |)v[x:=x] = [(|N |)v/x](|M |)v[x:=x] : B

which is derivable in An.

48

2. Consider the rule of deduction

Γ ` Ψ⇒ ∀x : A.ψ Γ `M : A

Γ ` Ψ⇒ [M/x]ψ

Suppose (Φ,∆, v) satisfies each member of Ψ. Then (Φ,∆, v) |= ∀x : A.ψ.
We also have (|M |)v ∈ [[A]]

v
∆.

If d(∀x : A.ψ) ≤ n, then we have ∆ ` Φ⇒ ∀x : A.(|ψ|)v and ∆ ` (|M |)v : A,
hence ∆ ` Φ ⇒ [(|M |)v/x](|ψ|)v[x:=x], and this is the judgement required
by Lemma Appendix B.2.3.
If d(∀x : A.ψ) = n + 1, then we have (Φ,∆, v[x := (|M |)v]) |= ψ. Hence
(Φ,∆, v) |= [M/x]ψ by Lemma Appendix B.2.6 as required.

3. Consider the rule of deduction

Γ ` ψ Prop Γ ` Ψ⇒ ⊥

Γ ` Ψ⇒ ψ

For this case, we need the result:

If ∆ ` Φ ⇒ ⊥ then (∆,Φ, v) |= ψ for every proposition ψ of
An+1.

This is proven by induction on ψ.

4. Consider the rule of deduction

(DN)
Γ ` Ψ⇒ ¬¬ψ

Γ ` Ψ⇒ ψ

For this case, we need the result:

If (∆,Φ, v) |= ¬¬φ then (∆,Φ, v) |= φ.

If d(φ) ≤ n, we have

∆ ` Φ⇒ ¬¬(|ψ|)v

∴ ∆ ` Φ⇒ (|ψ|)v (DN)

If d(φ) = n+ 1 and φ ≡ ψ ⊃ χ, we have that

(∆,Φ, v) |= ¬¬(ψ ⊃ χ) . (B.1)

Suppose ∆1 ⊇ ∆, Φ1 ⊇ Φ, and

(∆1,Φ1, v) |= ψ . (B.2)

We must show (∆1,Φ1, v) |= χ. By the induction hypothesis, it is sufficient
to prove (∆1,Φ1, v) |= ¬¬χ. So suppose ∆2 ⊇ ∆1, Φ2 ⊇ Φ1, and

(∆2,Φ2, v) |= ¬χ . (B.3)

We must show (∆2,Φ2, v) |= ⊥. By (B.1), it is sufficient to prove that
(∆2,Φ2, v) |= ¬(ψ ⊃ χ). So suppose ∆3 ⊇ ∆2, Φ3 ⊇ Φ2, and

(∆3,Φ3, v) |= ψ ⊃ χ . (B.4)

49

We have (∆3,Φ3, v) |= ψ by Lemma Appendix B.2.5, so (∆3,Φ3, v) |= χ,
and hence (∆3,Φ3, v) |= ⊥ by (B.3), as required.
The case d(φ) = n+ 1 and φ ≡ ∀x : A.ψ is similar.

5. Consider the case of the rule of deduction (IndN):

Γ, x : N ` V (P) Prop Γ ` N : N
Γ ` Φ⇒ V ([0/x]P) Γ, x : N ` Φ, V (P)⇒ V ([sx/x]P)

Γ ` Φ⇒ V ([N/x]P)

This follows by applying (IndN) in An. Note that it is important here that
V (P) must be a small proposition.

Appendix B.2. Proof of Theorem 5.25

We begin by proving

Lemma Appendix B.3 If ∆ ⊆ ∆′, then [[A]]
v
∆ ⊆ [[A]]

v
∆′ and (∼A∆v) ⊆ (∼A∆′v).

Proof. Similar to Lemma Appendix B.1.

We prove that Lemma Appendix B.2 holds for our new translation. The
proof is similar.

Theorem 5.25 is now proven by induction on derivations. We deal with one
case here: the rule of deduction

(EN s)

Γ, x : N ` T (K) type Γ ` L : T ([0/x]K)
Γ, x : N, y : T (K) `M : T ([sx/x]K) Γ ` N : N
Γ ` EN([x]T (K), L, [x, y]M, sN)

= [N/x,EN([x]T (K), L, [x, y]M,N)/y]M : T ([sN/x]K)

Let v be a ∆-valuation of Γ. Inverting, the derivation includes Γ, x : N ` K : U ,
and so the induction hypothesis gives us (|K|)v[x:=J] ∈ S whenever ∆ ` J : N.
Let us define

S(J) = (|K|)v[x:=J]

DJ ≡ decodeS(J)

CJ ≡ codeS(J)

F (J) ≡ EN([x]T (K), L, [x, y]M,J)

We have the following chain of equalities provable in Tω:

(|F (sN)|)v

≡ Ds(|N |)(R(C0((|L|)), [x, y]Cs x((|M |)v[x:=x,y:=Dx(y)]), s(|N |)v))
= Ds(|N |)(Cs(|N |)((|M |)v[x:=(|N |),y:=(|F (N)|)]))

= (|M |)v[x:=(|N |),y:=(|F (N)|)]

≡ (|[N/x, F (N)/y]M |)v

as required.

50

