
CSNA,  June 9, 2007

Pedro Contreras and Fionn Murtagh
{pedro, fionn}@ cs.rhul.ac.uk

Department of Computer Science
Royal Holloway, University of London

Evaluation of Hierarchies based on 
the Longest Common Prefix, 

or Baire, Metric



Overview

- Introduction. The Baire metric concept

- Applying Baire metric to chemical data

- Clustering chemical data based on a Baire 
distance

- Comparison result

- Current work

- Conclusions

- References



Introduction

Baire space consists of countable infinite sequence with a 
metric defined in terms of the longest common prefix [A. 
Levi. Basic set theory, Dover, 1979 (reprinted 2002)]
(The longer the common prefix, the closer a par of 
sequence)

Consider two floating point numbers with the first p digits 
identical.  Then what we call their Baire distance is 2-p.  This 
distance is an ultrametric. [see http://www.cs.rhul.ac.uk/~fionn/papers]

http://www.cs.rhul.ac.uk/~fionn/papers%5D
http://www.cs.rhul.ac.uk/~fionn/papers%5D


Introduction

It follows that a hierarchy can be used to represent the 
relationships associated with this distance.  

We address the issue of whether such a hierarchy is 
advantageous, computationally, for clustering large, high 
dimensional data sets

We seek to find inherent hierarchical structure in data, 
rather than fitting  a hierarchy structure to data (as is 
traditionally used in multivariate data analysis).



Baire, or longest common prefix, 
ultrametric

Case of vectors x and y, with 1 attribute.  Precision: 
digits 1, 2, ..., |K|

-  Each coordinate is normalized, so is a floating point 
value.

-  Then: we will define dB(x,y) based on sharing 
common prefix in all coordinates.

6 Ultrametrization through Baire Space Embed-
ding

6.1 Notation, Longest Common Prefix Ultrametric

A Baire space [20] consists of countably infinite sequences with a metric defined
in terms of the longest common prefix: the longer the common prefix, the closer
a pair of sequences. What is of interest to us here is this longest common prefix
metric, which additionally is easily seen to be an ultrametric. The longest
common prefixes at issue here are those of precision of any value (i.e., xij , for
chemical compound i, and chemical structure code j). Consider two such values,
xij and yij , which, when the context easily allows it, we will call x and y. Each
are of some precision, and we take the integer |K| to be the maximum precision.
We pad a value with 0s if necessary, so that all values are of the same precision.
Finally, we will assume for convenience that each value ∈ [0, 1) and this can be
arranged by normalization.

6.2 The Case of One Attribute

Thus we consider ordered sets xk and yk for k ∈ K. In line with our notation,
we can write xK and yK for these numbers, with the set K now ordered. (So,
k = 1 is the first decimal place of precision; k = 2 is the second decimal
place; . . . ; k = |K| is the |K|th decimal place.) The cardinality of the set
K is the precision with which a number, xK , is measured. Without loss of
generality, through normalization, we will take all xK , yK ≤ 1. We will also
consider decimal numbers, only, in this article (hence xk ∈ {0, 1, 2, . . . , 9} for all
numbers x, and for all digits k), again with no loss of generality to non-decimal
number representations.

Consider as examples xK = 0.478; and yK = 0.472. In these cases, |K| = 3.
For k = 1, we find xk = yk = 4. For k = 2, xk = yk. But for k = 3, xk #= yk.

We now introduce the following distance:

dB(xK , yK) =

{
1 if x1 #= y1

inf 2−n xn = yn 1 ≤ n ≤ |K|
(1)

The Baire distance is used in denotational semantics where one considers
xK and yK as words (of equal length, in the finite case), and then this distance
is defined from a common n-length prefix, or left substring, in the two words.
For a set of words, a prefix tree can be built to expedite word matching, and
the Baire distance derived from this tree.

We have 1 ≥ dB(xK , yK) ≥ 2−|K|. Identical xK and yK have Baire distance
equal to 2−|K|. The Baire distance is a 1-bounded ultrametric.

The Baire ultrametric defines a hierarchy, which can be expressed as a mul-
tiway tree, on a set of numbers, xIK . So the number xiK , indexed by i, i ∈ I, is
of precision |K|. It is actually simple to determine this hierarchy. The partition
at level k = 1 has clusters defined as all those numbers indexed by i that share

24



Baire, or longest common prefix

An example of Baire distance for two numbers 
(x and y) using a precision of 4

Baire distance between x and y:

dB (x4, y4) = 2−3 = |K| = 3

That is:
k=1 -> Xk = Yk   ->  4
k=2 -> Xk = Yk   ->  2
k=3 -> Xk ≠ Yk   ->  5≠7

x  =  0 . 4 2 5 6

y  =  0 . 4 2 7 8



Motivation: Matching of 
Chemical Structures

One of the most common problems in 
mining large chemical libraries is classifying 
the compounds into different classes. 

Different classes could represent different 
levels of activity or could represent different 
types of compounds.



- Clustering of compounds based on chemical descriptors 
or chemical representations, in the pharmaceutical 
industry.

- Used for screening large corporate databases.

- Chemical warehouses are expanding due to mergers, 
acquisitions, and the synthetic explosion brought about 
by combinatorial chemistry.

- We have started looking for local or global ultrametric 
characteristics on 1.2 million structures, with around 
1500 descriptors.  Later: larger sets.   

Motivation: Matching of 
Chemical Structures



Binary Fingerprints

Fixed length bit strings such as:
Daylight
MDL
BCI
etc.

1 0  0 0 1 0 0 0 1 ...1
Encode



Data characteristics: 1.2M chemicals crossed by 1052 presence/absence attributes.  

Data Characterization

Histogram of column sums



Data Characterization
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Data characteristics: 1.2M chemicals crossed by 1052 presence/absence attributes.  

Chemicals per attribute follow a power law. 
Find: probability of having more than p 
chemicals per attribute to be approximately 
c / p1.23 for large p and for constant, c. 



Histogram of presence/absences

3 samples each of 7500 chemicals
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Data Characterization

Attributes per chemical are approximately 
Gaussian. Three  different sub sets of chemicals 
contribute to this histogram.



Data Characterization

Then we have a data set that is:

- Highly sparse, occupancy is 8.6347%

- Attributes per chemical are ≈ Gaussian

- Chemical per attributes follows power law  with 
exponent ≈ 1.23



Simple clustering hierarchy

- For precision k, k = 1, 2, ..., |K|
- For attribute set, J
- Determine random projections of all chemical vectors 
- Sort projected values; determine identical values, to define 
cluster, implying chemicals that are projected into same value  
- Find: for sets of 7500 chemicals, approx. 140 clusters at 
precision (number of digits) 1; approx. 2550 clusters at 
precision 2;  approx. 6400 clusters at precision 3
- Appraisal of precision 1 case vis-à-vis k-means shows 
considerable similarity of results



Random projection schematically
0 1 1 0
0 0 1 0
0 0 1 0
1 1 0 1

0 0.5 0.33 0
0 0 0.33 0
0 0 0.33 0
1 0.5 0 1

matrix Normalized by column sums

0.13 0.45 0.76 0.49

Random vector; k = 2

A =

N =

R =

N x R = Random projected 
vector 

0.47

0.25

0.25

0.84

0.25

0.25

0.47

0.84

} 1st cluster

} 2nd cluster
} 3rd cluster

Sorting ....



Random projection and hashing

0

1

2

3

0 1 2 3

In fact random projection
here works as a class of hashing 
function.  Hashing is much faster 
than alternative methods because 
avoid the pair-wise comparisons 
required for partition and 
classification

Random vector

If two points (p , q) are close, they will have a very small |p-q| 
(Euclidean metric) value; and they will hash to the same value 
with high probability; if they are distant, they should collide with 
small probability



Some results: Cluster example

Results for the three different data sets, each consisting 
of 7500 chemicals, are shown in immediate succession. 
The number of  significant decimal digits is 4 (more 
precise, and hence more different clusters found), 3, 2, 
and 1 (lowest precision in terms of  significant digits). 

Sig. dig. k No clusters
4
4
4

6591  
6507
5735

3
3
3

6481
6402
5360

2
2
2

2519
2576
2135

1
1
1

138
148
167



Comparative evaluation

Comparative evaluation: Results of k-means using as input the 
cluster centers provided by the 1 sig. dig. Baire approach relating to 
7500 chemical structures, with 1052 descriptors. 

Sig. dig. : number of significant digits used. 
No. clusters: number of clusters in the data set of 7500 chemical structures, associated with the 
number of significant digits used in the Baire scheme. 
Largest cluster : cardinality. 
No. discrep. : number of discrepancies found in k-means clustering outcome. 
No. discrep. cl. : number of clusters containing these discrepant assignments. 

Sig. Dig. No. Clusters Largest cluster No. discrep. No. discrep. cl.

1
1
1

138
148
167

7037
7034
6923

3
1
9

3
1
7



Current and future Work

- Textual information search in large backup or archived 
(document, email, etc.) repositories. Collaboration with 
ThinkingSAFE UK.

- To support emergent compliance legislation 

- To be efficient and scalable to ~ 50 million documents

- Explore efficient hierarchy labeling for large repositories. 
e.g. BDB



Conclusion

- We find unusual symmetries in high dimensions (or 
low sample data) spaces

- Scalability is fundamental to handle requirements 
of massive data set analysis/processing

- Data coding is an essential part of data analysis
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