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ABSTRACT
In this paper, we analyze the preservation of original seman-
tic similarity among objects when dimensional reduction is
applied on the original data source and a further cluster-
ing process is performed on dimensionally reduced data. An
experiment is designed to test Baire, or longest common pre-
fix ultrametric, and K-Means when prior random projection
is applied. A data matrix extracted from a cultural her-
itage database has been prepared for the experiment. Given
that the random projection produces a vector with compo-
nents ranging on the interval [0, 1], clusters are obtained at
different precision levels. Next, the mean semantic similar-
ity of clusters is calculated using a modified version of the
Jaccard index. Our findings show that semantics is diffi-
cult to preserve by these methods. However, a Student’s
hypothesis test on mean similarity indicates that Baire clus-
ters objects are semantically better than K-Means when we
increase the digit precision, but paying an increasing cost
for orphan clustered objects. Despite this cost, it is argued
that the ultrametric technique provides an efficient process
to detect semantic homogeneity on the original data space.

1. INTRODUCTION
In the digital cultural heritage domain, objects (indis-

tinctly, items or artifacts) belong to different contexts (e.g.
historical, social, geographical, etc.). Thus, the ultimate
purpose of the digital platforms is to help users to discover
these contexts, and learn about cultural heritage, through
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the accessibility and exploration of artifacts, independently
from the place, technology or format. In this direction, on-
tologies have proven to be an extraordinary tool aiding to
index and retrieve items recorded in large databases. Never-
theless, it is not unusual that diversity of cultural objects in-
duce potentially big ontologies and/or vocabularies in some
domains. One single object may be ontologically described,
searched and retrieved by a very small subset of concepts, as
compared to the vocabulary’s size. In such cases, searching
for similar items would suppose processing of huge sparse
(object × concept) data structures. Classical techniques to
cluster objects by similarity on these data spaces are not
suited because of their low computer efficiency [24, 25]. On
the contrary, dimensional reduction methods present special
opportunities in the facing of these structures. In particular,
random projection has been shown to hugely improve the
computation performance when very large sparse databases
are processed [7, 12] while simultaneously preserving char-
acteristics of the original data space. However, specific com-
plementary methods must be used for clustering purposes,
which in turn helps to carry out data-set matching, and to
support fast proximity searching.

Massive and high dimensional data spaces often have hid-
den hierarchical regularity. Following early studies [21], we
seek ultrametricity in a cultural data-set, but also the se-
mantic preservation inside clusters when allowed. An ultra-
metric is a distance that is defined strictly on a tree. An
ultrametric induces a hierarchical structure on data. In pre-
vious work, we have compared the Baire-ultrametric and the
K-Means algorithms as downstream clustering methods to
random projection, finding that the former is faster when
grouping objects in the context of chemical structures [21]
and astronomical redshifts [5]. Nevertheless, very little is
known about the quality of clustering in the context of dig-
ital cultural heritage, where semantic preservation inside
clusters is relevant. By semantic preservation we mean the
original conceptual similarity between two objects in a clus-
ter. Regarding comparison of clustering methods, this is
usually focused on evaluation of validity of clusters and al-

100



gorithmic efficiency. Several validity criteria have been de-
veloped in the literature which may be classified as external,
internal or relative criteria [8]. In the external approach,
groups assembled by a clustering algorithm are compared
to a previously accepted partition on the testing data set.
In an internal approach, clustering validity is evaluated us-
ing data and features contained in the data-set. The relative
approach searches for the best clustering result from an algo-
rithm and compare it with a series of predefined clustering
schemes. In all cases, validity indexes are constructed to
evaluate proximity among objects in a cluster or proximity
among resulting clusters.

In our case, prior to clustering, a dimensional reduction is
applied. Thus, an interesting question for us is the preser-
vation of original semantic similarity among objects when
the dimensional reduction is carried out on the data-set,
and a further clustering process is performed on reduced
data. In this work, an experiment is designed to test Baire
and K-Means when prior random projection is applied. A
data matrix extracted from an ancient folk-music archive
containing information about 5000 titles and 9000 inherent
characteristics has been prepared for the experiment. As
random projection reduces the data matrix into a vector
with components in the interval [0, 1), different precision lev-
els for clustering purposes are tested. Next, for each cluster
produced by the Baire or K-Means, semantic similarity of
individuals is calculated using the Jaccard index. However,
since usually this index measures similarity between two sets
(vectors), without considerations for semantic inclusion, we
use a modified version. The mean similarity of clusters is
calculated in order to compare the clustering methods. Our
findings show that semantics is difficult to preserve by these
methods, but a Student t hypothesis tested on mean simi-
larity indicates that Baire is more robust than K-Means.

In which follows, we explain the research conducted for
this analysis and results obtained. In section 2 the Baire
and K-Means cluster methods are described, focusing on
the precision issue for the former case. In section 3 the ex-
periment process is presented and transformations applied
on data-sets are justified. The section 4 presents the exper-
iment applied on the cultural data-set and results obtained
from the clustering algorithms.

2. CLUSTERING ALGORITHMS
Our purpose consists of mapping data into an ultramet-

ric space, searching for an ultrametric embedding, or ultra-
metrization [23]. Actually, inherent ultrametricity leads to
an identical result with most commonly used agglomerative
criteria [16]. Furthermore, data coding can help greatly find-
ing how inherently ultrametric data is. In following sections
we introduce the analyzed clustering algorithms and the di-
mensional reduction method to be applied to the original
data-set.

2.1 Ultrametric Baire space and distance
A metric space (X, d) consists of a set X on which is de-

fined a distance function d which assigns to each pair of
points of X a distance between them, and satisfies the fol-
lowing four axioms for any triplet of points x, y, z:

1. ∀x, y ∈ X, d(x, y) ≥ 0 (positiveness);

2. ∀x, y ∈ X, d(x, y) = 0 iff x = y (reflexivity);

3. ∀x, y ∈ X, d(x, y) = d(y, x) (symmetry);

4. ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle in-
equality).

When talking about an ultrametric space we need to con-
sider the “strong triangular inequality” or ultrametric in-
equality defined as d(x, z) ≤ max {d(x, y) + d(y, z)}, this in
addition to the positivity, reflexivity and symmetry proper-
ties for any triple of point x, y, z ∈ X.

An ultrametric space implies respect for a range of strin-
gent properties. For example, the triangle formed by any
triplet is necessarily isosceles, with the two large sides equal;
or is equilateral. An ultrametric is a distance that is defined
strictly on a tree.

A Baire space consists of countably infinite sequences with
a metric defined in terms of the longest common prefix: the
longer the common prefix, the closer a pair of sequences.
What is of interest to us here is this longest common pre-
fix metric, which we called the Baire distance [21, 4]. The
longest common prefixes at issue here are those of precision
of any value. Consider two such values, xij and yij , which,
when the context easily allows it, we will call x and y. Each
are of some precision, and we take the integer |K| (where |.|
denotes set cardinality) to be the maximum precision. Fi-
nally, we will assume for convenience that each value is in
the interval [0, 1) and this can be arranged by normalization.

Thus we consider ordered sets xk and yk for k ∈ K. In
line with our notation, we can write xk and yk for these
numbers, with the set K now ordered. (So, k = 1 is the first
decimal place of precision; k = 2 is the second decimal place;
. . . ; k = |K| is the |K| th decimal place.) The cardinality
of the set K is the precision with which a number, xk , is
measured.

Consider as examples xk = 0.478; and yk = 0.472. In
these cases, |K| = 3. For k = 1, we find xk = yk = 4. For
k = 2, xk = yk . But for k = 3, xk 6= yk.

We now introduce the following distance (case of vectors
x and y, with 1 attribute):

dB(xK , yK) =



1 if x1 6= y1

inf 2−n xn = yn 1 ≤ n ≤ |K|
(1)

We call this dB value Baire distance, which can be shown to
be an ultrametric [17, 19, 18, 20, 21].

2.2 K-Means
K-Means is a major clustering algorithm technique that’s

present in various forms, first introduced by MacQueen in
1967 [14] and further developed by Hartigan and Wong [9,
10]. This algorithm groups data by minimizing the sum
of the squares of distances between the data points and
the cluster centroid. Suppose we have the data-set X =
{x1, x2, x3, .., xN} consisting of N observations of a d-dimensional
variable X, where x1 represents the first observation. The
goal of this algorithm is to partition the set X into a number
of K > 1 of non-overlapping clusters, where at the moment
we assume the value of K is given. The algorithm has two
main iterative steps; first is to update clusters according to
the minimum distance rule, second is to update centroids
as the centers of gravity of the clusters. This notion can
be formalized by introducing a set of d-dimensional vectors
µk, where k = 1, ..., K, in which µk is a candidate associ-
ated with the kth cluster. We can now define an objective
function given by:
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D =
N

X

n=1

K
X

k=1

rnk||Xn − µk||
2
, (2)

which represents the sum of the squares of the distances of
each data point to its assigned vector µk [3].

2.3 Dimensionality reduction by random pro-
jection

As mentioned above it is a well known fact that tradi-
tional clustering methods do not scale well in very high di-
mensional spaces. A standard and widely used approach
when dealing with high dimensionality is to first apply a
dimensionality reduction method. For example, Principal
Component Analysis (PCA) is a very popular choice to deal
with this problem. It uses a linear transformation to form a
simplified data set retaining the characteristics of the origi-
nal data. PCA does this by means of choosing the attributes
that best preserve the variance of the data. This is a good
solution when the data allows these calculations, but PCA
as well as other dimensionality reduction techniques remain
expensive computationally speaking.

In order to apply the Baire ultrametric or K-Means algo-
rithm our first step is to reduce the dimensionality of the
original data, we choose to use random projection [11, 2, 6]
not only because of performance but also because of some
nice properties of this methodology. Random projection is
the finding of a low dimensional embedding of a point set,
such that the distortion of any pair of points is bounded by
a function of the lower dimensionality.

In fact random projection here works as a class of hashing
function. Hashing is much faster than alternative meth-
ods because it avoids the pair-wise comparisons required for
partitioning and classification. If two points (p, q) are close,
they will have a very small ‖p−q‖ (Euclidean metric) value;
and they will hash to the same value with high probability; if
they are distant, they should collide with small probability.

3. EXPERIMENT DESIGN
The experiment process used in this work is depicted in

Figure 1.
First, the input raw data is selected. Usually this consists

of a data matrix where rows represent items in some specific
domain, and columns represent characteristics or features
associated with these items. In general, we may assume
that the data-set is in first normal form in the database
sense, that is each cell in the matrix contains just one value.
A number of items, and their characteristics, are selected
for the next phase. In the data comprehension step, data
completeness, ambiguity and semantic quality of data are
evaluated. A pre-process activity is undertaken for analy-
sis purposes. In our case, the main process consists of the
identification of semantic data associated with items. Items
are annotated following the semantic characteristics, which
implies coding the presence or absence of a characteristic
for every item in the data structure. The final result in this
step is a {0, 1} matrix where m items are represented by n

attributes. The third step consists of the random projection
of the data-set. In this case, a (n × 1) normalized random
vector is used for projection.

A projected data set is used for clustering purposes in the
fourth step. Two clustering algorithms are applied, obtain-
ing a given number of clusters on each case. In the fifth step,

intrinsic semantics of clusters, issued from each algorithm,
is calculated using a modified Jaccard index. Finally, a hy-
pothesis test is applied to know how significant the difference
between the mean similarity of two clustering algorithms is.

4. ON CLUSTERING EXPERIMENTS

4.1 Sample data
In this work, data issued from a digital cultural heritage

platform, called Contexta [1], was used to carry out the
classification. Contexta aims to integrate and contextual-
ize disperse, autonomous and heterogeneous cultural infor-
mation. To achieve this, it uses a middleware to integrate
distributed data sources with different policies of use, pro-
viding uniform access despite multiple data types and for-
mats. Additionally it allows semantic handling of these data
and contextualization based on user and items profiles. One
of the main purposes of Contexta when helping users to
find cultural items is situation awareness. Indeed, in the
cultural heritage domain, people using this kind of system
are not necessarily interested in single artifacts or lists of
ranked items. User needs are more oriented to general ob-
jectives, searching for elements aiding to compare, interpret,
aggregate, analyze, synthesize and discover knowledge [15].
Users receiving recommendations also request explanations
to sense-making processes and learning in a contextualized
manner. In this setting, our study aims to determine preser-
vation of semantics among items in clusters generated by a
specific algorithm, when dimensional reduction is applied.

Let S be the sample data and si ∈ S, (i = 1, . . . , n), an
item in this set. Originally twenty one fields are available
as item descriptors, but seven characteristics are kept: uri-
identifier, author, content description, title, associated col-
lection, and source. Other attributes are discarded because
of redundancy, incompleteness or being uninformative. For
semantic purposes a term dictionary is created based on
the content description attribute, allowing an extended fea-
ture richness of items. Keywords are produced using the
Apache Lucene [13] library, filtering out words (longer than
two characters) contained in a stop-list file. Processing the
data source we obtain a term-based dictionary with 8674
keywords. The final set of attributes (8680) are considered
semantic features. Finally, a matrix is created where the
(i, j) element represents the absence or presence (0 or 1) of
the j-th feature in the i-th object. The result is a binary
information matrix I prepared to carry out the experiments.

4.2 Clustering Process
In order to assemble clusters from data, random projec-

tion is performed first on I . Normalization by column sum
is performed in this data-set and the outcome is prepared
for the clustering process. We know that clustering results
with the Baire ultrametric are sensitive to the precision level
of the projected data-set (see section 2.1), so seven levels of
digit precision are selected for our experiments: two, three,
four, five, six, eight and twelve digits of precision. For each
precision level, ten random projection vectors are generated,
which implies seventy projection outcomes in total. Inter-
estingly, given a precision level, we have found that the re-
sulting projection is practically the same in all cases.

Starting with the Baire methodology, we defined a tree-
like structure to store the data’s object identifier. Each node
has ten children and each value in the projected vector is
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Figure 1: Experiment process design

separated by digits of precision and associated with the tree.
The maximum tree depth is given by the digit precision used.
For instance, when using four digits of precision we have a
maximum of 104 possible branches, and a tree height of four.
Once all the data in the projected vector is processed we
check each leaf in the tree to identify the clusters. Note that
only leafs with more than one element are considered. Thus,
for pairwise comparison inside clusters, the 1-item leafs are
excluded from the analysis.

Regarding K-Means, each experiment uses the number of
clusters generated by the Baire method as initialization pa-
rameter. For example, when comparing the Baire clusters
produced by four digits of precision, we use the number of
clusters with more than two elements as k for K-Means (i.e.
we exclude the empty and 1-items groups).

Once the clustering process is applied, we evaluate the
pairwise semantic similarity within clusters. At this point,
similarity between two items may be assessed by the Jac-
card index, measuring the number of common items’ fea-
tures, divided by the total number of features present in the
respective vectors in I . Given two vector rows x, y ∈ I (rep-
resenting the respective items in S), let F (.) be the set of
features satisfied by an object in the information matrix I ,
i.e. where the matrix value is 1. Then, the Jaccard coeffi-
cient of objects x and y is expressed as:

J(x, y) =
|F (x) ∩ F (y)|

|F (x) ∪ F (y)|
(3)

Notice however that this coefficient strongly penalizes an
item x such that F (x) ⊂ F (y) and ‖F (x)‖ ≪ ‖F (y)‖. We
propose that two items are semantically identical when the
inclusion occurs because they become instances of the same
class and/or subclass in an ontological system [22]. In this
case, the object y may be considered a specialization of x.
In consequence, a modified Jaccard coefficient is introduced
here, which measures the semantic similarity between two
objects, and takes into account the inclusion:

sim(x, y) =
|F (x) ∩ F (y)|

min {|F (x)| , |F (y)|}
(4)

4.3 Results
The process has been performed ten times for each pre-

cision level and clustering algorithm. On each running, the
following measures have been calculated over the number of
clusters available for analysis:

1. R : average mean similarity among items within clus-
ters;

2. R∗: average maximum similarity among items within
clusters;

3. R∗: average minimum similarity among items within
clusters.

Given a running (with a specific random projection vector at
a determined precision level), the pairwise similarity among
all items inside a cluster is averaged to obtain the mean
similarity. Then R is the average of values calculated on
clusters generated in such running. Equally, R∗ and R∗ are
calculated as the average of maximum and minimum cluster
similarity, respectively, among all clusters in a running.

Table 1 shows the different average values for every preci-
sion level. Also the number of clusters with more than one
single element are presented for Baire and K-Means, where
semantic similarity makes sense. In order to know whether
differences on results obtained for Baire and K-Means are
significant, a Student’s test has been performed, at the 99%
confidence level, for each precision level and R, R∗, and R∗.
Differences are highly significant, which is explained by data
in Table 2, where we notice that the standard deviation does
not reach 1% of the respective average similarity.

The following results may be observed from Table 1 and
Figure 2 when the precision level increases:

– for the Baire algorithm, R and R∗ increase, but a si-
nusoidal form is observed for their respective curves;

– for the K-Means algorithm, R and R∗ remain almost
unchanged;

– Baire is persistently better than K-Means in R or R∗;

– the R value is not high for K-Means, indicating that
semantic similarity is not consistently preserved, but
it improves with higher precision in the Baire case.

Despite the fact that semantic similarity is difficult to pre-
serve, we observe that the longer a common prefix within a
resulting cluster is, the better the semantic of the original
data space is preserved. Thus, objects that are semanti-
cally closer in the original data matrix I , hash closer in the
1-dimensional random projected vector, therefore more com-
mon prefixes exist among these groups. One could also hy-
pothesize that a heterogeneous original data matrix, in the
sense that there is a low semantic similarity among objects,
could induce to more orphan objects (1-item clusters) in the
Baire clustering method. On the contrary, it could be ex-
pected that homogeneity implies less orphan elements, but
a reasonable good semantic similarity level on the result-
ing clusters. In fact, the Baire method provides an efficient
process to detect semantic homogeneity in an information
matrix. Our experiment indicates that the ratio of the num-
ber of orphan objects to the total number of objects, at a
high-level precision, could measure how semantically near
are rows in I . These statements will be studied in our fu-
ture research.
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Table 1: Average Semantic Similarity

2 Digit 3 Digit 4 Digit 5 Digits 6 Digits 8 Digits 12 Digits
K-Means Baire K-Means Baire K-Means Baire K-Means Baire K-Means Baire K-Means Baire K-Means Baire

R 0.0924 0.0924 0.1105 0.1071 0.1475 0.2302 0.1215 0.3954 0.1197 0.4349 0.1208 0.4398 0.1191 0.4398
R∗ 0.6584 0.6584 0.4340 0.3596 0.4074 0.3567 0.4350 0.4806 0.4459 0.5131 0.4487 0.5179 0.4454 0.5178
R∗ 0.0027 0.0027 0.0194 0.0311 0.0456 0.1580 0.0248 0.3363 0.0207 0.3792 0.0204 0.3841 0.0216 0.3841
No clusters 99 100 561 740 868 896 602 638 566 594 576 586 558 586
1-item clusters 1 1 60 173 118 1950 30 2923 25 3062 24 3079 23 3079

Table 2: Metrics Standard Deviation
2 Digit 3 Digit 4 Digit 5 Digits 6 Digits 8 Digits 12 Digits

K-Means Baire K-Means Baire K-Means Baire K-Means Baire K-Means Baire K-Means Baire K-Means Baire

R 0.0037 0.0061 0.0041 0.3463 0.0033 0.0052 0.0029 0.0043 0.0032 0.0016 0.0038 0.0001 0.0037 0.0001
R∗ 0.0190 0.0782 0.0098 0.3464 0.0049 0.0037 0.0077 0.0056 0.0088 0.0017 0.0587 0.0000 0.0102 0.0001
R∗ 0.0025 0 0.0043 0.3463 0.0035 0.0072 0.0025 0.0042 0.0039 0.0018 0.0032 0.0001 0.0031 0.0001
No clusters 1 0 12 11 8 9 5 11 4 2 4 1 7 1
1-item clusters 1 0 12 8 8 29 5 16 4 5 4 0 7 1
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Figure 2: Jaccard values and No. of clusters

5. CONCLUSIONS
We have analyzed semantic similarity among objects when

dimensional reduction is applied on a data-set and a further
clustering process is performed on dimensionally reduced
data.

An experiment was designed to test Baire, or longest com-
mon prefix ultrametric, and K-Means when prior random
projection is applied. A data matrix extracted from an an-

cient folk-music archive was prepared for the experiment.
Different precision levels for clustering purposes were tested
and semantic similarity among group elements was calcu-
lated using a modified version of the Jaccard index. A Stu-
dent’s hypothesis test was performed on the mean similarity,
which indicates that Baire is more robust than K-Means.
However, our findings show that semantics are difficult to
preserve by these methods, because the calculated similar-
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ity coefficient achieves moderate values. On one hand we
can say that the Baire method in this case works as a fil-
tering method for vectors that are semantically similar. On
the other hand, once the number of centroids are chosen, K-
Means works pulling the data points towards the centroids
without considering if these point are closer in the original
data space.

It was observed that both methods produce an important
number of 1-item groups. This is a problem if clusters were
to be used for data matching or for extraction purposes (i.e.
when we consider groups produced by a large digit precision
in relation to the data-set). Nevertheless, our results show
that taking advantage of inherent data ultrametricity is a
possible strategy for detecting semantic homogeneity in the
original data-set. Therefore, our future research will con-
sider alternative data sources, always in the area of semantic
analysis, to prove this.
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