
SOFTWARE DEVELOPMENT AND MIDDLEWARE

FOR VIRTUAL ORGANISATIONS

By

Pedro Omar Contreras Albornoz. Licenciado

MASTER OF PHILOSOPHY

SCHOOL OF ELECTRONICS, ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

THE QUEEN’S UNIVERSITY OF BELFAST

SEPTEMBER 2006

THE QUEEN’S UNIVERSITY OF BELFAST

Date: September 2006

Author: Pedro Omar Contreras Albornoz

Title: Software Development and Middleware For Virtual

Organisations

Faculty: Engineering

Department: School of Electronics, Electrical Engineering

and Computer Science

Degree: Master of Philosophy

Signature of Author

Signature of Supervisor

Signature of Supervisor

Signature of Internal Examiner

Signature of External Examiner

ii

Acknowledgements

I would like to thank my family for all the support that they gave me.

I would like thank my supervisors Prof. Fionn Murtagh, Dr. Peter Milligan and Dr.
Paul Sage. Without them this work could not have reached its end. Particularly I would
like to thank to Prof. Murtagh whose help has been essential to provide me with support,
motivation, good advice and not less important funding.

I would like to thank Mohsen Farid for his support, friendship and guidance. Dimitri
Zervas who helped me to develop the NodeMap software. And Thomas Huey my house
mate.

Also I would like to thank all the secretaries and engineering support personnel in the
School of Computer Science at Queen’s University Belfast. They always were attentive
to requests for help.

I would like to thank Stephanie Bachorz for fixing my English, for her comments and
support.

Finally, thanks to the Staff Training and Development Unit at Queen’s University Belfast
which has funded in part my fees. AstroGrid project and its funding body the Particle
Physics and Astronomy Research Council (PPARC), UK. WS-Talk project, funded by
the European Commission under the CRAFT programme (COOP-CT–2004–006026).

Belfast, United Kingdom Pedro O. Contreras Albornoz
September, 2006.

iii

Abstract

Computer science is a fast changing field, the introduction of new technologies requires
rapid adaptation and creation of new methods regarding –but not limited to– software
development. This document presents tools from the open source community that are
useful when developing software in a distributed manner. Examples are given regarding
how these tools are used to develop software in real-life projects.

The AstroGrid project has implemented a series of tools which facilitate collaborative
work in geographically distributed locations such as news, forum and discussion pages,
all of them inspired by the open source and licencing philosophy. Using the same tools
that the AstroGrid project uses on its software development process is not limited to
AstroGrid or any of its partners in the International Virtual Observatory Alliance.

The AstroGrid case will be used to exemplify and illustrate virtual collaborative envi-
ronments. A considerable part of this dissertation is related to AstroGrid, but not all.
Chapter five is related to my work in the Sixth Framework Project, WS-Talk, “Web
services communicating in the language of their community”.

This dissertation is separated into six chapters. Chapter one, “Introduction” gives a
description of this dissertation, its goals and a brief summary of each chapter. Chapters
two to four describe the context from which AstroGrid was born, the way that AstroGrid
organised its work, focusing on the tools used to co-ordinate, manage, and synchronise
the code developing process, and the resulting software of these processes. Chapter
five, “NodeMap, an Ontology Constructor”, presents a user-friendly tool created by the
author of this thesis for designing concept hierarchies within (but not limited to) the WS-
Talk context. Finally the potential for future research and a conclusion are provided.

Chapters 2, 3, and 4 present the context of my software development work in the Astro-
Grid. Chapter 5 presents one area of my work in the WS-Talk project.

iv

Table of Contents

Acknowledgements iii

Abstract iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Goals . 1
1.2 Thesis overview – content of this thesis . 1

2 AstroGrid project 4
2.1 Introduction . 4
2.2 Astronomy data spectrum . 5
2.3 AstroGrid project . 7
2.4 Grid computing technology . 8

2.4.1 Web services . 9
2.5 International Virtual Observatory Alliance 10
2.6 AstroGrid’s ten science problems . 11
2.7 AstroGrid architecture . 14

2.7.1 AstroGrid modules . 15
2.8 Summary . 17

3 AstroGrid software 18
3.1 Introduction . 18
3.2 AstroGrid Workbench and AstroGrid Client Runtime 18

3.2.1 Workbench data discovery . 19
3.2.2 Workbench data analysis . 20
3.2.3 Workbench system services . 21
3.2.4 Workbench helper . 21
3.2.5 Workbench advanced . 23

3.3 Summary . 25

v

4 Continuous integration and collaborative work in AstroGrid 26
4.1 Introduction . 26
4.2 Communication tool . 27

4.2.1 Wiki . 28
4.2.2 Forum . 28
4.2.3 News . 29
4.2.4 Content Management System . 29
4.2.5 Other tools . 29

4.3 Programming tools and languages . 30
4.3.1 Coding standards and Java . 30
4.3.2 Documentation . 31
4.3.3 Unit test – JUnit . 31
4.3.4 Bug tracking – Bugzilla . 31

4.4 File access and security . 32
4.4.1 Version Control System . 32
4.4.2 Secure shell – SSH . 35

4.5 Other tools . 35
4.5.1 Apache web server . 35
4.5.2 Apache TomCat . 36
4.5.3 Building deployment automatically 36

4.6 Summary . 37

5 NodeMap, an ontology constructor 38
5.1 Introduction . 38
5.2 NodeMap . 40

5.2.1 Ontologies and concept hierarchies 40
5.2.2 NodeMap features . 42

5.3 NodeMap applet implementation . 47
5.4 NodeMap and the concept hierarchy format 50
5.5 Search . 52

5.5.1 Searching documents . 52
5.5.2 Looking into the database . 54

5.6 Servlet and database client configuration 57
5.7 Exploring NodeMap’s Java code . 59

5.7.1 Client/Server communication on NodeMap 59
5.7.2 Compression on NodeMap . 60
5.7.3 Understanding the graphics on NodeMap 65

5.8 Summary . 72

6 Future work and conclusion 73
6.1 Current and future work . 73
6.2 Conclusion . 75

Publications related to this thesis 76

Acronyms and web references 78

vi

Bibliography 83

A NodeMap UML diagrams 89

B Astronomy ontology 111

C Animal ontology 113

vii

List of Tables

5.1 NodeMap toolbar . 44

5.2 NodeMap applet toolbar description . 49

5.3 Concept hierarchy text representation . 51

5.4 Compression ratios for text files . 61

5.5 Compression ratios for query (HTML) files 62

5.6 Data compression . 63

5.7 Data decompression . 64

viii

List of Figures

2.1 Electromagnetic spectrum in different wavelengths 6

2.2 AstroGrid architecture . 15

3.1 AstroGrid WorkBench data discovery . 19

3.2 AstroGrid WorkBench data analysis . 20

3.3 AstroGrid WorkBench system services . 21

3.4 AstroGrid WorkBench helper . 22

3.5 AstroGrid WorkBench advanced . 23

4.1 CVS repository and client . 34

5.1 NodeMap main screen . 43

5.2 NodeMap tree and level view . 45

5.3 Import CH from database . 47

5.4 NodeMap applet . 48

5.5 NodeMap seek documents . 53

5.6 Concept hierarchy database schema . 54

5.7 Commit to the database . 57

5.8 Servlet configuration . 58

5.9 Database configuration . 58

A.1 TreeDataBase Java class . 90

A.2 NodeMap Java class . 91

A.3 Node Java class . 92

A.4 BinaryTree Java class . 93

A.5 OntoTableModel Java class . 94

A.6 DrawingPane Java class . 95

ix

A.7 GZip Java class . 96

A.8 Config Java class . 97

A.9 PorterStemmer Java class . 98

A.10 Util Java class . 99

A.11 Cluster Java class . 101

A.12 MoreTerms Java class . 102

A.13 Matching Java class . 103

A.14 TextProcessing Java class . 104

A.15 Interpreter Java class . 105

A.16 Query Java class . 106

A.17 Search Java class . 107

A.18 Connect Java class . 108

A.19 TestServletConnection Java class . 109

A.20 ServletUtilities Java class . 110

B.1 Astronomy ontology displayed with NodeMap software 112

C.1 Animal ontology displayed with NodeMap software 115

x

Chapter 1

Introduction

1.1 Goals

The goals for the work presented in this document are the following:

= Present the AstroGrid project, and the context in which it has emerged and

evolved, focusing on the tools used to developed software and distribute knowl-

edge.

= Use the tools presented to develop software in a context different to that introduced

by the AstroGrid project (different from the point of view of the problems to be

solve). But similar in the way that the software development process and knowledge

dissemination is approached.

1.2 Thesis overview – content of this thesis

Computer science is a fast changing field, the introduction of new technologies requires

rapid adaptation and creation of new methods regarding –but not limited to– software

development. This document presents tools from the open source community that are

useful when developing software in a distributed manner. Examples are given regarding

how these tools are used to develop software in real-life projects.

The AstroGrid project has implemented a series of tools which facilitate collaborative

work in geographically distributed locations such as news, forum and discussion pages,

all of them inspired by the open source and licencing philosophy. Using the same tools

1

2

that the AstroGrid project uses on its software development process is not limited to

AstroGrid or any of its partners in the International Virtual Observatory Alliance.

The AstroGrid case will be used to exemplify and illustrate virtual collaborative envi-

ronments. A considerable part of this dissertation is related to AstroGrid, but not all.

Chapter five is related to my work in the Sixth Framework Project, WS-Talk, “Web

services communicating in the language of their community”.

This thesis is separated into six chapters.

Chapter one, “Introduction” is the current chapter that gives a description of this thesis,

its goals and a brief summary of each chapter.

Chapter two, “AstroGrid project” explains the context from which AstroGrid is derived,

and brief discussion about grid technology is given. Additionally explanations about As-

troGrid’s role in the International Virtual Observatory, and the ten science problems that

AstroGrid aims to solve are described. Finally “AstroGrid Architecture” is explained

together with the most important software components such as portal, community, work-

flow, registry, myspace, etc.

Chapter three, “AstroGrid software development” describes the necessary steps to deploy

the AstroGrid software, and to use the AstroGrid client.

Chapter four, “Continuous integration and collaborative work in astroGrid” describes

how AstroGrid supports it functionally, focusing on the tools used to co-ordinate, man-

age, and synchronise the code development process.

Chapter five, “NodeMap, an ontology constructor”, presents a user-friendly tool for

designing concept hierarchies within (but not limited to) the WS-Talk context, which

has been developed using similar tools to the work presented in chapter four.

Chapter six, “Future work and conclusion”, discusses the potential for future research.

3

Some suggestions on improving the NodeMap software are presented. Finally some

conclusions from this dissertation are presented.

A list with related publications and reports produced by the author of this thesis is

included in the section “Publications related to this thesis”.

A list of the most important acronyms and web references included in this thesis and

cited papers is included.

Appendix A includes the UML diagrams of the most important classes of the NodeMap

client and servlet applications –there are around 45 Java files including NodeMap client,

NodeMap Servlet and NodeMap applet. Here just a subset is presented–. Appendices B

and C includes ontologies that can be used to test the NodeMap software.

Chapter 2

AstroGrid project

2.1 Introduction

Astronomy is facing a massive data deluge due to new astronomical instruments, such

as telescopes, satellites and detectors. New computer technology allows astronomical

instruments to produce terabytes of images and catalogues. These datasets will cover

the sky in different wavebands, from gamma rays, X-rays, optical, infrared, through to

radio signals.

New survey telescopes, now being planned, will scan the entire sky every few days and

produce data volumes measured in petabytes. These technological developments are

changing the way astronomy is done. Thus, for example, the Hubble Space Telescope

Archive [34] (HST) is growing at 1-2 TB per year. Likewise the Solar & Heliospheric

Observatory [64] (SOHO) archive is growing at 1 TB per year. This is typical of ma-

jor ground-based observatories around the world. This data growth is largely a con-

sequence of the growth of detector size, which has been exponential for three decades.

Quite soon now (available in 2007) Visible and Infrared Survey Telescope for Astron-

omy [80] (VISTA) will be using a Gpixel array. Additionally the Multi-Element Radio

Linked Interferometer Network [47] (MERLIN) and the Wide Field Infrared Camera

For UKIRT [86] (WFCAM) will also produce a massive amount of data that needs to be

stored and analysed.

Massive data handling is not the only problem faced by this area. Further complications

arise when the same astronomical object is referred to by different names in different

4

5

astronomical catalogues. This means that even when the data is stored in digital form

(which is not always the case), different astronomical data centres store information in

a different manner and using different standards. Although standards like FITS [22],

SIAP [61], and VOTable [83] are widely used and accepted, clearly they are not enough

to standardise the processes needed to integrate data across different data centres.

It is for this reason that over the past years the concept of the Virtual Observatory (VO)

has emerged rapidly to address the data management, analysis, distribution and inter-

operability problems in astronomy. The VO is a system in which the vast astronomical

archives and databases around the world, together with analysis tools and computational

services, are linked together into an integrated facility.

2.2 Astronomy data spectrum

For a better understanding of the challenges presented by the massive amount of data

that astronomers need to manage, it is important to understand the sources of this

data. Different kinds of “telescopes” are needed to gather the information presented by

the universe, information that is collected through observation on the electromagnetic

spectrum as shown in Figure 2.1 [24].

6

Figure 2.1: Electromagnetic spectrum in different wavelengths

The following list includes a brief description of the kind of instrument used to collect

this astronomical data in different wavelengths.

= Radio waves: this is the longest wavelength, detectable by large radio dishes like

the Very Large Array [81] in New Mexico, the Arecibo radio telescope [4] in Puerto

Rico, and the Parkes Observatory in Australia, just to name a few. The radio sky

is dominated mainly by gas clouds.

= Submillimeter radiation: instruments that study submillimeter radiation are

either satellites or located on the earth’s driest and highest places, like the sub-

millimeter array in Mauna Kea, Hawaii. In this band complex molecules in dark

clouds are studied.

= Far infrared light: can only be seen from space observatories like the Spitzer

Space Telescope [65]. Sources of infrared light are embedded in dense regions of

7

gas and dust.

= Visible and near infrared light: this is from where “traditional” astronomy

obtains its data. The instruments used to obtain information for this wavelength

are the traditional astronomical observatories (e.g. Palomar Observatory [55]) and

the Hubble Space Telescope.

= Ultraviolet light: this light is too blue for humans to see. The atmosphere blocks

most ultraviolet radiation, therefore observations must take place mainly in space

with instruments such as the NASA GALEX [27] satellite.

= X-Rays: this is the light beyond ultraviolet in the spectrum. Space telescopes like

NASA’s Chandra [10] X-Ray Observatory and the European Space Agency’s XMM-

Newton [91] can detect black holes and the X-ray galaxy chemical composition in

this wavelength.

= Gamma rays: are studied with ground-based telescopes, satellites, and balloons.

X-Gamma bursts, which are the most violent explosions in the universe, can be

observed through instruments like the recently launched Swift gamma-ray burst

satellite [69].

2.3 AstroGrid project

AstroGrid [5] is a £10 million UK government project – funded through the Particle

Physics and Astronomy Research Council (PPARC) and by the European Commission

– aiming to produce a more economic, faster and effective astronomy through the gen-

eration of open computer standards and interfaces. The AstroGrid framework helps to

enable different data centres across the United Kingdom to publish services and data

into a data-grid infrastructure accessible on the Web. Such a framework also makes it

easier for the different data centres to interact; it offers a wide range of analysis and

visualisation tools through a common interface.

The AstroGrid project was originally proposed in 2001 by leading investigators from the

following seven institutions:

8

= School of Computer Science, Queens University Belfast

= Institute of Astronomy, University of Cambridge

= Institute for Astronomy, University of Edinburgh

= Department of Physics and Astronomy, University of Leicester

= Mullard Space Science Laboratory, University of London

= Jodrell Bank Observatory, University of Manchester

= Space Data Division, Rutherford Appleton Laboratory

The follow-on AstroGrid-2 project expanded the consortium to eleven institutions1. The

new institutions are listed below.

= Department of Computer Science, Royal Holloway, University of London

= School of Physics, University of Exeter

= School of Computing, University of Leeds

= Department of Physics, Bristol University

= Institute of Cosmology and Gravitation, University of Portsmouth

2.4 Grid computing technology

The terminology “Grid Computing” has been widely adopted in reference to the use

of distributed computer resources across a network, working in a co-ordinated way and

sharing not just information but computer processor cycles.

Grid technology is applied in a number of scientific areas, from climate simulation to

finance and astronomy just to name a few. In order to work in all these different envi-

ronments Grid networks follow a series of guidelines; for this standards and protocols are

needed, and a range of work groups such as those affiliated to the Global Grid Forum [23]

have been established.
1Queen’s University Belfast was replaced by Royal Holloway, University of London

9

As mentioned above, astronomy is not an exception to this trend: astronomers and

computer scientists are working to establish standards for a data-grid platform. This

context is where AstroGrid is playing an important role as a member of the International

Virtual Observatory Alliance (IVOA).

The need for “Grids” in astronomy is a natural evolution when the data analysis problem

is considered, especially when presented with the massive data sets of today’s astronom-

ical instruments.

Grid computing can be a difficult concept to understand, because it does not refer to a

particular technology or standard, but to a set, aiming to share information and computer

resources. For example peer to peer computing (see [12] [40]), Globus [29], Cactus [9]

and Web Services can fall into this classification.

2.4.1 Web services

Web Services (WS) describes a distributed computer model that differs from CORBA

or Java RMI (Remote Method Invocation) in that it is centred in simple Internet-based

standards defined by W3C [84] and other standards bodies heavily supported by industry.

WS are currently used by AstroGrid, and other VOs [87] [70] [44].

Simple Object Access Protocol, SOAP [63]: This is an XML-based communication

protocol and encoding format for inter-application communication. It was originally

conceived by Microsoft but currently the W3C XML protocol working group is in charge

of the specification. SOAP usually exchanges messages over HTTP: the client POSTs a

SOAP request, and receives either an HTTP success code and a SOAP success response

or an HTTP error code. A SOAP message consists of an envelope containing an optional

header and a required body. The header contains blocks of information showing how the

message is to be processed. This includes routing and delivery settings, authentication or

authorisation assertions and transaction contexts. The body contains the actual message

to be delivered and processed. Anything that can be expressed in XML syntax can go

in the body of a message.

10

Web Services Description Language, WSDL [89]: This provides the necessary

structure to describe the Web Service functionalities, by means of supplying an XML

grammar to be used in the Web Service. Usually this description can be automatically

created using libraries freely available, such as java2wsdl and wsdl2java from Apache

Axis [7].

Web Services Registry: This component helps adding, deleting, locating and retriev-

ing web services. There are various implementation to achieve this, UDDI being one of

the most widely used protocols. UDDI registry can be used by a public, or a private

network. It offers a standard-based mechanism to classify, catalog, and manage web

services, so that they can be discovered and consumed by other applications or services.

AstroGrid uses IVOA registry standard, and not UDDI as this is too “business-oriented”.

2.5 International Virtual Observatory Alliance

AstroGrid is not alone in its attempt to standardise access to astronomy information.

It is part of a worldwide effort to transform astronomical data repositories into a world

Virtual Observatory [30] (VO), an organisation of which it is also a founding member.

This initiative is led by the International Virtual Observatory Alliance [37] movement,

which consists of sixteen active international members:

= AstroGrid. United Kingdom. http://www.astrogrid.org

= Australian Virtual Observatory. http://avo.atnf.csiro.au

= Astrophysical Virtual Observatory. EU. http://www.euro-vo.org

= Virtual Observatory of China. http://www.china-vo.org/en/

= Canadian Virtual Observatory. http://services.cadc-ccda.hia-iha.nrccnrc.

gc.ca/cvo/

= German Astrophysical Virtual Observatory. http://www.g-vo.org/

= Italian Data Grid for Astronomical Research. http://vobs.astro.it/

= Japanese Virtual Observatory. http://jvo.nao.ac.jp/

11

= Korean Virtual Observatory. http://kvo.kao.re.kr/

= National Virtual Observatory. USA. http://us-vo.org/

= Russian Virtual Observatory. http://www.inasan.rssi.ru/eng/rvo/

= Virtual Observatory of India. http://vo.iucaa.ernet.in/∼voi/

= Hungarian Virtual Observatory. http://hvo.elte.hu/en/

= France Virtual Observatory. http://www.france-vo.org/

= Spanish Virtual Observatory. http://laeff.esa.es/svo/

= Armenian Virtual Observatory. http://www.aras.am/ArVO/arvo.htm

Within the scope of this dissertation it is important to highlight that AstroGrid itself

is a Virtual Organisation, i.e. that its members work in institutions all over the United

Kingdom. To achieve its goals (presented below) the work is based on collaboration, and

most of the generated information, including almost all aspects of its work processes, is

open to the public and accessible over the Internet.

2.6 AstroGrid’s ten science problems

The Scientific aims of AstroGrid are [85]:

= to improve the quality, efficiency, ease, speed, and cost-effectiveness of the on-line

astronomical research

= to make comparison and integration of data from diverse sources seamless and

transparent

= to remove data analysis barriers to interdisciplinary research, and

= to make science involving manipulation of large datasets as easy and as powerful

as possible.

In order to make practical these scientific goals also a list of “practical goals” were

defined, which are presented below:

12

= to develop, with their IVOA partners, internationally agreed standards for data,

metadata, data exchange and provenance

= to develop a software infrastructure for data services

= to establish a physical grid of resources shared by AstroGrid and key data centres

= to construct and maintain an AstroGrid Service and Resource Registry

= to implement a working Virtual Observatory system based around key UK databases

and of real scientific use to astronomers

= to provide a user interface to that VO system

= to provide, either by construction or by adaptation, a set of science user tools to

work with that VO system

= to establish a leading position for the UK in VO work.

In order to achieve the above goals an extensive list of requirements [58] was established

in the form of astronomical science problems. The intention of this list is to keep the

focus of AstroGrid regarding the scientific problems that it should solve. From this

list a subset of “ten science drivers” [71] were selected to organise AstroGrid work and

deliverables; these are as follows:

1. The Brown Dwarf Selection [42]: A brown dwarf is a celestial body that is larger

than a planet but does not have sufficient mass to convert hydrogen into helium

via nuclear fusion as stars do. They are also called “failed stars”.

Although they should exist in large numbers, brown dwarfs are difficult to find us-

ing conventional astronomical techniques, because they are dim compared with true

stars. A number of brown dwarfs have been identified, the first in the Pleiades star

cluster in 1995. The first X-ray-emitting brown dwarf was detected in Chamaeleon

dark cloud number I in 1998. A year later, several so-called methane dwarfs were

discovered; these are thought to be older brown dwarfs that have cooled sufficiently

over billions of years so that large amounts of methane could form in their atmo-

spheres. One of the key questions in the area of star formation is the form of the

stellar mass function at the lower end - i.e. what is the contribution of brown

dwarfs to the stellar mass budget?

13

2. The Deep Field Surveys: The Hubble Deep Field [20] (HDF) is a small region in

the constellation Ursa Major, based on the results of a series of observations with

unprecedented resolution and sensitivity by the Hubble Space Telescope (HST),

revealing about 3000 faint galaxies within a 3 arcmin-square region. Much effort is

involved in aligning the data sets, and searching for significant correlations between

sub-sets of properties.

3. Galaxy Clustering: The science aim for this problem is to address the evolution

of galaxy populations in clusters. Thus, clusters of galaxies can be used to trace

distribution of matter in the universe over large scales.

4. HiZ Quasars: The science challenge for this problem is the discovery of very high

redshift quasars (QUASi-stellAR radio source) in the redshift range z=5 to 10.

For example the algorithm described by Richards et al [19] can be applied for

discovering this kind of object. Quasars at larger redshifts are important because

they provide vital clues to the processes involved in the formation of the first bound

object.

5. Low Surface Brightness Galaxy (LSB) Discovery: LSB is a diffuse galaxy with a

surface brightness that, when viewed from Earth, is at least one magnitude lower

than the ambient night sky. Most LSBs are dwarf galaxies, but it is important

to locate and understand the properties of such galaxies since they can contain

significant mass.

6. Magnetic Storm Onset: Magnetic storms are frequently characterized by a sudden

onset. Although these storms are not completely understood, they are more fre-

quent during years of high sunspot number, also sometimes a magnetic storm can

be linked to a particular coronal mass ejection. It is important to understand this

phenomenon because these storms may interfere with the operation of electrical

power lines and the operation of artificial satellites.

7. Solar Coronal Waves: Coronal waves have been observed on the sun regularly since

SOHO (Solar and Heliospheric Observatory) was launched. They are generally

related to solar flares and are a global phenomenon that can travel across the

entire sun’s disk in less than an hour; also they are less observable near strong

14

magnetic fields. The science goal in this problem is to determine whether coronal

waves are Magnetohydrodynamic (MHD) fast mode waves (theory that predicts

the motion of a conducting fluid in a magnetic field) occurring from a solar flare

site, or if they are a global coronal mass ejection lifting off the surface of the solar

disk.

8. Solar Stellar Flare Comparison: A solar flare is a violent explosion in the Sun’s

atmosphere, it produces electromagnetic radiation across the electromagnetic spec-

trum at all wavelengths from long-wave radio to the shortest wavelength Gamma

rays. Stellar flares have also been observed on a variety of other stars. The science

problem to solve here is to compare the atttributes of solar and stellar flares in or-

der to determine the mechanism causing flares, and determine if any extrapolation

is possible.

9. Solar Terrestrial Probes (STP) Solar Event Coincidence: The primary goal of this

is to understand our changing sun and its effects on the Solar System. Solar flares,

Coronal Mass Ejections (CME), and progression of the solar cycle –just to name a

few– cause electromagnetic disturbances in the Earth’s magnetosphere, which –as

mentioned before– can disrupt the telecommunications and power industries.

10. Supernova Galaxy Environment: Astronomers need to determine whether a super-

nova candidate is Type Ia or Type II. Determining galaxy redshift and morphology

of the environment in which the supernova candidate was discovered will aid with

its classification. The main activities in this science case involve searching archives

for relevant image and spectroscopic data, where some database work is involved

e.g. in cross-referencing the position of a supernova remnant (SNR, is the structure

resulting from the gigantic explosion of a star in a supernova) candidate with other

objects in the vicinity, such as galaxies or clusters of galaxies with known redshifts.

2.7 AstroGrid architecture

In concordance with the construction of the VO, AstroGrid has a modular architec-

ture [43], open to all contributions from either data, services or resources.

15

Figure 2.2 shows the AstroGrid modular architecture at a high level which is explained

in this section.

Figure 2.2: AstroGrid architecture

2.7.1 AstroGrid modules

Portal

The portal is a server-based component which provides an interface for accessing services

in the VO. In AstroGrid all of the components which need to interact with the users will

do so through a Portlet. A portlet gives a modular and flexible layer. Any developer is

able to add his/her own functionality by wrapping it on a portlet.

Community

This module allows a group the ability to construct an online community with individuals

and groups. A resource centre can then assign permission to use its resources to one or

more groups within a community instead of having to name the individuals themselves.

Within a community, the administrator of the community can assign rights to individuals

and groups, including the right to add members and create groups.

16

AstroPass

This is a central server that stores users’ credentials. Once permission has been assigned

to a user, he/she decides how much information of its profile is passed to other VO

portals.

Workflow

This enables the construction of complex tasks such as building queries and data analysis,

upload/download of data and rendering the output in a different format such as tables

or images.

Registry

This contains metadata descriptive information about resources available, which is based

on IVOA standards. A resource can be a data set, web service, service, information on

other registries, etc.

Common Execution Architecture

This concept –also called by the initials CEA– is an abstraction of application compo-

nents and the necessary parameters to run it.

Astronomical tools

A number of essential astronomical tools such as object catalogue builder SExtractor [60]

and photometric redshift analyser HyperZ [36] (which are freely available) will be in-

corporated to AstroGrid through a portal wrapper. The current release of AstroGrid

WorkBench 2006.3.rc3 includes AstroScope, Helioscope, Aladin, TopCat, and other as-

tronomical tools that will be presented later in this dissertation.

MySpace

This defines a virtual space to allocate both temporal and long term data, such as data

sets generated by queries submitted to databases. MySpace is not necessarily in a local

repository, but it will interact with the user as easily as if it were on a local machine.

17

Authorisation / Authentication

This is the component in charge of identification and granting of access to users, as well

as maintaining security in AstroGrid.

Grid middleware

This allows AstroGrid to integrate different astronomical data centres and to share re-

sources in a co-ordinated way.

Data sets

Data is allocated in a distributed way in different data centres, across the United King-

dom in AstroGrid’s case, and across the globe once the Virtual Observatory alliance will

be fully working.

2.8 Summary

In this chapter the AstroGrid project is presented, describing what are the scientific

needs behind this project, its goals, and problems that it is meant to solve. Explaining

AstroGrid’s context makes it easier to understand its relationship with the Virtual Ob-

servatory and the processes needed to establish new standards and protocols within this

area.

Chapter 3

AstroGrid software

3.1 Introduction

In this chapter some of the tools currently being deployed in AstroGrid software are

presented, doing special emphasis in AstroGrid workbench application. The author of

this dissertation has worked with a number of groups within the AstroGrid project

such as the registry and portal groups, mainly in construction of software middle–ware

(e.g. databases, performance evaluation, XQuery, XML marshalling/unmarshalling with

Castor XML).

3.2 AstroGrid Workbench and AstroGrid Client Runtime

The AstroGrid Workbench is a client side application that comprises a set of user tools

which provide access to Virtual Observatory services. The tools include a Datasource ex-

plorer (AstroScope), Workflow builder, a VOStore explorer, Query and Process manager

(VO Lookout), Registry querying tool, etc, as well as the capability to call single services

(SIAP, CEA, ConeSearch etc). In addition, Workbench provides helper functions such

as the Sesame name resolver, coordinate transformation tools, Vizier and UCD (Unified

Content Descriptors) tools.

The workbench is layered upon the Astro Client Runtime (ACR), a set of high level

APIs to any registered IVOA compliant service, offering the fastest and easiest way for

Astronomers and VO tool developers to gain programmatic access to IVOA resources.

The ACR provides a high-level facade into AstroGrid services, accessible from HTTP /

18

19

XML-RPC / Java RMI (Remote Method Invocation) and GUI interfaces. It provides

a single sign-on, single-configuration, and single cache for interactions with astrogrid

servers, simplifying access to VO services.

3.2.1 Workbench data discovery

Figure 3.1 shows a screenshot of workbench data discovery tools.

Figure 3.1: AstroGrid WorkBench data discovery

= AstroScope: [6] this allows to put in position an object in the sky along with a

region. As a query is submitted a process is started looking up various catalogue

and image servers asking them for data based around the query. If results are

found then information is displayed in a graphical form on the screen allowing the

user to surf the result in the form of various nodes. By default objects are seen

in a ”radial” form, requiring a “click of the mouse” to browse up and down the

various nodes. Another option is the ’Hyperbolic’ view which shows everything in

a tree state where by a click of the mouse re-centers the selected node. The user

may then select a particular object to have the data (including images) saved to

MySpace or their computer.

= HelioScope: [32] this tool allows to query archives of images, spectra and cata-

logue data around a given position or SIMBAD [62] object, visualise the results

and download data files either to a local machine or to a storage space on the

Astrogrid storage system MySpace.

= Task launcher: this executes a single task on the AstroGrid system. A task can

20

be either querying an archive for data or running a tool that, for example, operates

on data files or runs a model.

3.2.2 Workbench data analysis

Figure 3.2 shows a screenshot of workbench data analysis tools.

Figure 3.2: AstroGrid WorkBench data analysis

= Science workflows: this allows direct access and editing of workflows for com-

monly requiered analysis of astronomical data. This includes RedShift maker,

colour cutter, solar movie maker, and CTIP [14] (Thermosphere Ionosphere Plas-

masphere model) model.

= Workflow builder: this aims to accomplish a complex piece of work, for ex-

ample an astronomical investigation. The workflow builder is designed to enable

astronomers to design and develop these complex workflows in a simple and in-

tuitive manner, whilst hiding much of the intricacies of the underlying XML doc-

ument structure. The use of familiar drag and drop features, tooltips, examples

and continuous error checking mean that a novice user can quickly produce simple

workflows, and rapidly progress to ever more complex pieces of work. The workflow

builder is also designed to interact seamlessly with other features of the workbench

(e.g. MySpace and resource browser), and the wider VO community.

= MySpace: this is used to login into MySpace for browsing and utilisation of

returned datasets, queries, and workflows in AstroGrid environment. See next

section for a MySpace description.

21

3.2.3 Workbench system services

Figure 3.3 shows a screenshot of workbench system services.

Figure 3.3: AstroGrid WorkBench system services

= Lookout: This is a tool for monitoring and controlling processes – queries, remote

tool execution, and workflows. It uses the metaphor of an email program – each

process is represented by a separate folder, which contains messages, information,

results about this process. As well as tracking execution progress and accessing

results, Lookout can also create, stop and delete processes.

= Myspace: This defines a virtual space to allocate both temporal and long term

data, such as data sets generated by queries submitted to databases. MySpace is

not necessarily in a local repository, but it interacts with the user as easily as if it

were on a local machine.

= Resources: simple text search for available services and archives in the VO reg-

istry.

3.2.4 Workbench helper

Figure 3.4 shows a screenshot of workbench helper, that allows access to the following

packages: Aladin, GAIA, SPLAT, TopCat, VisiVO, and VOSpec.

22

Figure 3.4: AstroGrid WorkBench helper

= Aladin: [1] this is an interactive software sky atlas allowing the user to visualise

digitised astronomical images, superimpose entries from astronomical catalogues or

databases, and interactively access related data and information from the Simbad

database, the VizieR service and other archives for all known sources in the field.

Aladin provides a visual summary of the multi-wavelength sky. It is particularly

useful for multi-spectral cross-identifications of astronomical sources, observation

preparation and quality control of new data sets (by comparing with standard

catalogues covering the same region of sky).

= GAIA: [25] this is an image display and analysis tool. It provides the usual facil-

ities of image display tools, plus more astronomically useful ones such as aperture

and optimal photometry, contouring, source detection, surface photometry, arbi-

trary region analysis, celestial coordinate readout, calibration and modification,

grid overlays, blink comparison, defect patching and the ability to query on-line

catalogues.

= SPLAT: [66] this is a graphical tool for displaying, comparing, modifying and

analysing astronomical spectra stored in NDF, FITS and TEXT files as well as the

new NDX format. Also it can read in many spectra at the same time and then

display these as line plots.

= TopCat: [76] this is an interactive graphical viewer and editor for tabular data. It

has been designed for use with astronomical tables such as object catalogues, but

is not restricted to astronomical applications. It understands a number of different

astronomically important formats (including FITS and VOTable).

23

It offers a variety of ways to view and analyse tables, including a browser for the cell

data themselves, viewers for information about table and column metadata, and

facilities for 1-, 2- and 3-dimensional visualisation, calculating statistics and joining

tables using flexible matching algorithms. Using a powerful and extensible Java-

based expression language new columns can be defined and row subsets selected

for separate analysis. Table data and metadata can be edited and the resulting

modified table can be written out in a wide range of output formats.

= VisIVO: [79] this is a visualisation and analysis software for astrophysical data.

VisIVO can handle both observational and theoretical data. It can be used both

as a stand-alone application, that acts on local files, and as an interface to the

Virtual Observatory framework, from which it can retrieve the data.

= VOSpec: [82] this is a tool to handle VO–SSAP (Virtual Observatory – Simple

Spectral Access Protocol) compliant spectra.

3.2.5 Workbench advanced

Figure 3.5 shows a screenshot of advanced services. Currently Astro Runtime Interfaces

is running under this option.

Figure 3.5: AstroGrid WorkBench advanced

Astro Runtime Interfaces is composed by the following modules:

24

= cds: access to services provided by Centre de Données astronomiques de Stras-

bourg (CDS), currently five services are available; vizier to access VizieR cat-

alogues from CDS; ucd, which are Web Service for manipulating Unified Con-

tent Descriptors (UCD); coordinate, Astronomical Coordinate Web Service, from

CDS; glu, Web Service to resolve GLU (Générateur de Liens Uniformes); and

sesame Resolve object names to position by querying Simbad and/or NED and/or

VizieR.

= nvo: NVO Services. Currently the cone service for Query catalogs using Cone-

search services is available.

= builtin: intrinsic services that all others depend upon. Currently a shutdown for

the ACR.

= ivoa: IVOA Standard Services. Where the following are available; SIAP, query for

images from Simple Image Access Protocol services; externalRegistry, query an

arbitrary registry service; skyNode, this is query for data from SkyNode services;

SSAP, this is querying for Spectra from Simple Spectral Access Protool (SSAP)

Services; and registry, access the system-configured registry service.

= util: useful utility services, currently one service for functions for working with

tables is available.

= system: this includes system components, such as, RMI to access information

to the JavaRMI interface to the ACR; apihelp, for documents and provides ac-

cess to functions of AR; webserver, to access information about the web-server

component of ACR; configuration, to inspect and alter the configuration of the

workbench and ACR; browser, to control the desktop web browser; ui, to control

the main user interface of the workbench; and help, to control the workbench

in-program help viewer.

= astrogrid: this includes the following AstroGrid services; jobs, execute and con-

trol workflows on remote job servers; applications, to work with remote appli-

cations; stap, to query for images from Simple Time Access Protocol (STAP)

services; myspace, to work with MySpace – a distributed storage system, Astro-

Grid’s implementation of VOSpace–; and community, the AstoGrid identity and

25

authentication system.

= ui: applications for working with the VO; astroscope, to control AstroScope; he-

lioscope, to control AstroScope; registryBrowser, to control the registry browser

UI; myspaceBrowser, to control the MySpace browser GUI; and lookout, to

control the Lookout UI.

= test: services for internal testing.

= plastic: platform for Astronomical Tools Inter Connection; hub, the interface

that a Plastic Hub should support.

= dialogs: this is the reusable UI dialogues; toolEditor, to display the remote in-

vocation document editor as a dialogue; resourceChooser, to prompt the user to

select a local file/MySpace recource/URL by displaying a resource chooser dialogue;

registryGoogle, to prompt the user to select a registry resource by displaying a

more advanced registry chooser dialogue (i.e. selectResourcesAdqlFilter to display

the resource chooser dialogue, enabling only resources which match a filter; selec-

tResources to display the resource chooser dialogue; and selectResourcesXQueryFil-

ter to display the resource chooser dialogue, enabling only resources which match

a filter).

3.3 Summary

This chapter presents some of the tools developed by the AstroGrid project, given special

emphasis to the Workbench. This is relevant because the Workbench presents a good

set of tools –some of them developed by the AstroGrid team, others not– that shows

how integration is possible in the Virtual Observatory.

Chapter 4

Continuous integration and
collaborative work in AstroGrid

4.1 Introduction

The AstroGrid development process is an open collaboration between researchers and

technologists. To allow these people to work in partnership effectively, a range of web-

based tools are required. In such a collaborative software development project there

are different obstacles to overcome before the collaborative development can become

effective. Firstly, good communication is essential in many aspects. Developers need to

be aware of information regarding the project as a whole, information regarding specific

sections, and they need to be able to directly communicate with other developers. The

latter is of high importance in the AstroGrid case. Developers working within the project

are assigned tasks in so-called development cycles, which are specified by astronomers

through the definition of science cases. Developers will work on a certain task or project

module for a few months before being moved to another area. In some cases more than

one cycle or iteration is necessary to achieve a goal. In any case task assignment is under

constant review by the project leaders, with a view towards reallocating human resources

when and where they are needed.

The benefit of an approach like this is a highly cross-trained development team. For

example in the case of a member’s absence, another developer who has previously worked

in that area can be assigned the task. The fact that, at some point, they would have

worked in the particular area will mean they can quickly re-integrate themselves into the

26

27

development team for the particular project module. However, an adequate facility for

communication must be in place for developers to be able to exchange ideas and to make

and to respond to queries, so that the development process is as efficient as possible.

One important issue in relation to this cyclic development process is development by

second parties. As well as communication facilities there are other ways to ensure that

the collaboration is as effective as possible.

Standards play an important role in facilitating code development by second and third

parties. Standard forms of software design and standard coding styles all play a part

in reducing development time. Standard software design methods will aid in code inte-

gration and coding style standards will help reduce the time required for second party

developers to familiarise themselves with software. Standard forms of code documenta-

tion can also greatly aid second party developers.

4.2 Communication tool

To facilitate good communication practice, any person with expertise or simply an inter-

est in the Virtual Observatory concept, Grid technologies or e-Science is free to post or

comment upon news articles, to participate in the forum exchanges or to post documents

making use of the AstroGrid portal. The portal provides an access point to the various

communication tools available. The Wiki pages provide support for the posting of rele-

vant documents for the project. Wiki is a leading-edge, web-based collaboration platform

targeting the corporate Intranet world. TWiki [77] fosters information flow within an

organisation. Some Wiki features are: web browser, auto links, text formatting, search,

e-mail notification, structured content, attachment, templates and skins, statistics and

plug-in resources. Further to the Wiki pages, the AstroGrid portal provides a forum

facility which provides a number of grouped discussion areas. The groups deal with

site-related topics, project-specific topics and general areas such as virtual organisations

and Grids. To allow developers to be kept up to date with various information about

articles posted, items of news, events and polls, a news section is available. The idea

of a central portal providing access to the various communication platforms is essential

to effective collaboration. There is no confusion over how to contact other members as

28

all contacts are made through the use of one central site. Further to these web-based

community-oriented communication tools, one-to-one contact is necessary in order to

ensure that developers can carry out their tasks efficiently. For example in the case of

second party development, the ability to contact a previous developer to query some as-

pect of the work greatly reduces re-development time. To facilitate the necessary direct

communications between project members, project contracted people keep close contact

through e-mail, telephone conferences, chat programs and regular meetings.

4.2.1 Wiki

AstroGrid’s Wiki pages http://wiki.astrogrid.org is a web site that allows the reg-

istered user to change the pages on a browser and to add their own pages. Pages can be

formatted using either simple Wiki formatting marks (like *this* to make this) or the

full range of HTML markup tags.

The site includes help pages, a tutorial and an experimental Wiki where you can try out

adding pages, comments and whatever else you like. It is divided into a number of webs:

one for the AstroGrid project, several general webs for VO, Grid, etc.

AstroGrid is not the only VO that uses Wiki pages. The following list includes some of

the most important VOs:

= IVOA, http://www.ivoa.net/twiki/bin/view/IVOA/

= EuroVO, http://wiki.eurovotech.org/bin/view/VOTech/

= French VO, http://www.france-vo.org/twiki/bin/view/ASOVFrance/

4.2.2 Forum

The AstroGrid forum pages http://forum.astrogrid.org provide a number of grouped

discussion areas. The groups deal with site-related topics, project-specific topics and

general areas such as VOs and Grids. You can browse the forums and, if registered, add

comments or new topics for discussion.

29

4.2.3 News

AstroGrid’s news pages http://www2.astrogrid.org/news are the central part of the

AstroGrid site. Here you will find articles posted, items of news events and polls. Any of

these can be added by any registered user. The item will be checked by one of the admin

staff and then released to the site. You can also comment on most items. Comments

can be viewed in nested, threaded or flat form.

4.2.4 Content Management System

A content management system (CMS) is a web application designed to make it easy for

non-technical users to add, edit and manage a website. Some of the most important

characteristics of CMS systems are:

= automatically generate navigation elements

= making content searchable and indexable

= keeping track of users, their permissions and security settings.

AstroGrid-2 uses Plone (http://plone.org/) as CMS, but there are several others avail-

able, with implementations in a wide area of technologies, such as Java, PHP, C++, Perl,

Phyton, ASP, just to name a few. Please refer to [45] and [17] for a comparison of dif-

ferent CMS systems.

4.2.5 Other tools

= e-mail and e-mail lists. This is essential for the day–to–day work.

= Messaging. Chat rooms and messaging programs can be important when commu-

nicating with other developers. AstroGrid uses the Jabber protocol, which allows

different clients to connect when registered.

= Telephone. Teleconferencing is carried out often in AstroGrid.

= Meetings. This includes specific working group meetings as well as conferences.

30

4.3 Programming tools and languages

4.3.1 Coding standards and Java

Integration Code is tackled using Current Version System [15] to store, modify and keep

track of code changes. This has various uses in software development practice helping

returning developers to identify and understand changes that have been made since they

last worked on a particular project area. JUnit [41] Test is used to prove code integrity

and ensure quality of service. JUnit is a regression testing framework for code made

with Java. Usually a unit test exercises some particular method in a particular context

in order to prove that a specific piece of code does what it is supposed to do. Code bugs

are tracked using Bugzilla [8], a “Defect Tracking System” or “Bug-Tracking System”.

Defect Tracking Systems support individuals or groups of developers by keeping track of

outstanding bugs in their software effectively. Once an error, misbehaviour or unexpected

answer has been detected, this will be described and assigned to a developer in the form

of a ticket which contains all the information related to the bug.

When a piece of code is developed, in order for further work to be effectively carried out,

it is essential that the product is of high quality. To provide standard coding practices

a number of tools are used in the AstroGrid project. A range of free Integrated Devel-

opment Environment (IDE) tools such as Eclipse [18] and JBuilder Foundation [38] are

used during the development process. These, in conjunction with code design standards

(e.g. UML), are needed to establish the basis on which to allow different people in dif-

ferent places to modify each others’ code easily, the philosophy being that if everybody

is using the same tools to build a product, the components of the product can be more

easily modified or enhanced.

The main programming language used in AstroGrid is Java. Different standards such as

UML, XML and Web Services are used for the process design to maintain consistency.

When implementing code in Java a coding standard is utilised, which allows different

people to understand the work of each other, maintaining coding style and consistency.

This leads to a cleaner and easier coding process. AstroGrid code guideline standards

are described in Vermeulen et al. [78], but a good set of standards can be found easily

31

on the Internet.

4.3.2 Documentation

Code management and documentation is addressed mainly through the use of standard

Java Docs and Maven [46]. Maven is a Java project management and project compre-

hension tool. It is based on the concept of a project object model (POM) where all the

Maven objects are a result of a well defined model. Builds, documentation, source met-

rics, and source cross-references are all controlled by the POM. Maven aims to make the

developer’s life easier by providing a well defined project structure, well defined devel-

opment processes to follow and a coherent body of documentation that keeps developers

aware of what is happening within the project. Maven alleviates a lot of what most

developers consider a problem. This is essential in projects where there are not many

people dedicated to the task of documenting and spreading the critical information about

the project, which is necessary in order to dedicate resources to other critical tasks as

coding and code testing.

4.3.3 Unit test – JUnit

A unit test is a small piece of code designed to test a specific functionality of the software

being developed. JUnit [41] is a testing framework for Java, with it code examples can

be implemented in order to see if the code being designed does behave how it is supposed

to do. Some of the JUnit characteristics are the following [28]:

= It provides a template for writing tests.

= It allows to organise tests in a hierarchy.

= It allows you to automatically and easily execute tests.

= It decouples the test reporting from the execution, allowing to use different TestRun-

ners with the same TestSuite.

4.3.4 Bug tracking – Bugzilla

Bug tracking systems are important since they help keep the software in good “health”,

meaning that all bug reports are prioritised, organised, and assigned to be fixed.

32

Bugzilla [8] is the bug tracking system used by AstroGrid. The characteristics highlighted

in its website (http://www.bugzilla.org) are the following:

= It improves communication.

= It increases product quality.

= It improves user satisfaction.

= It ensures accountability.

= It increases productivity.

= It adapts to multiple situations.

4.4 File access and security

One problem not included in the above section is security and the identification of which

information is publicly accessible and which is not. As AstroGrid is an open project,

almost every document is publicly accessible through the Internet. One exception is the

code, as there are restrictions in place as to who is authorised to upload and to integrate

code. Here SSH [67] protocol is used to allow secure communication between developers

and the server repository. Though remote login is the primary use of SSH, the protocol

can also be used as a general purpose cryptographic tunnel, capable of copying files,

encrypting e-mail connections, and triggering remote execution of programs. Currently

AstroGrid uses SSH Version 2 which operates over TCP. In its simplest mode of opera-

tion, it connects to a server, negotiates a shared secret key, and then begins encrypting

the session. A username and password are passed over the encrypted session and, if

authenticated, the server starts a command shell over the encrypted session.

4.4.1 Version Control System

Version control system software is a key technology when sharing code between program-

mers. There are different implementations of version control system (a list of packages

can be found at [72]), but they share similar characteristics. Some important advantages

are named by Dave Thomas and Andy Hunt [74]:

33

= It gives to the project the ability to undo the code to previous versions.

= It allows multiple developers to work on the same code base in a controlled manner.

= It keeps a record of the changes made over time.

= It support multiple software releases at the same time the development process can

continue.

The most widely used version control systems used are Subversion [68] and the Concur-

rent Version System [15] (CVS). AstroGrid uses CVS to manage its code.

Version control system has named its processes with a common vocabulary. Some of the

most important terms are the following:

= Repository: This is where the files are stored, often on a server.

= Working copy: This is the local copy of files from a repository, at a specific time

or revision. All work done to the files in a repository is done to a “local” working

copy.

= Check-out: This creates a local working copy from the repository. Either a

revision is specified, a module, or the latest code is used.

= Commit: This happens when a copy of the changes made to the working “local”

copy is written to the repository in the server side.

= Update: This merges changes that have been made in the repository (e.g. by

other people) into the local working copy.

= Module: This is a given name to a project, or project part in the repository,

which can also be a branch. When checking out a module name can be specify,

doing so simplify the development process in large project by means of creating

small modules.

= Branch: A set of files may be branched at a point in time so that, from that

time forward, two copies of those files may be developed at different speeds and in

different ways independently of the other.

34

= Merge: This brings together two sets changes to a file or set of files into a unified

revision of that file or files.

= Tag: This refers to an important snapshot in time, consistent across many files.

These files at that point may all be tagged with a user-friendly, meaningful name

or revision number. This is relevant when a specific tagged version may be needed.

= Conflict: This occurs when two changes are made by different parties to the same

document or place within a document. Since the software may not be intelligent

enough to decide which change is “correct”, a user is required to resolve the conflict.

Figure 4.1 shows a simplified working representation of the control version system.

Network

check-out

commit

update

Developer
one

Developer
two

Developer
threeRepository

Figure 4.1: CVS repository and client

As mentioned above, usually the repository is created in a server. In the CVS case

the repository can be accessed using the Pserver or external techniques. In Pserver

mode, CVS runs a server process on the repository machine, and all clients connect to

it. Pserver mode has some advantages:

= It is relatively simple to set up.

= It can enforce read-only users.

= It supports anonymous access.

35

However Pserver mode also has some drawbacks.

= It uses its own network port, and many corporate firewalls will not allow this traffic

to pass.

= It uses very weak encryption of passwords, and file contents are transmitted in

cleartext.

= It requires separate administration.

The other method used to access the repository is the external – ext – method, which

works slightly differently. Here, CVS uses existing operating system commands to set up

a data pipe (or tunnel) between the client and the server. The default version of external

CVS uses “remote shell” (rsh). Also SSH can be configured to access the repository giving

extra security when connecting to the repository.

4.4.2 Secure shell – SSH

Secure Shell [67] (SSH) is a set of standards that allows to log into another computer over

a network, to execute commands in a remote machine, and to move files from one ma-

chine to another. It uses public-key cryptography to authenticate the remote computer

and allow the remote computer to authenticate the user automatically if needed. SSH

provides confidentiality of data exchanged between the two computers using encryption

and message authentication codes (MACs). SSH also supports tunneling, forwarding

arbitrary TCP ports and X11 [90] connections; it can transfer files using the associated

secure file transfer (SFTP) or secure copy (SCP) protocols. An SSH server listens on

the standard TCP port 22 by default.

4.5 Other tools

4.5.1 Apache web server

With a market share around 70% [52], Apache [3] is by far the most used web server on

the Internet today. The following list presents some characteristics of the Apache web

server:

36

= Static and Dynamic web pages: Interaction with the most common dynamic con-

tent pages generators such as Perl, Python, Java Servlets and PHP.

= Highly configurable: Apache is built in a modular architecture, modules which can

be added, removed or configured if needed.

= Security: Several methods of authentication are supported by the web server, such

as, for example SSL encryption.

= Portability: Apache runs on almost any available platform today, and certainly is

very well supported on Windows, Linux, Unix and OS/2.

= Licencing: All the Apache software is distributed under ASF (Apache Software

Foundation) licencing, which basically means that the software can be used for

free, subject to minor restrictions1.

4.5.2 Apache TomCat

Apache TomCat [75] is a Java Servlets and JavaServer Page container (this technology

allows to run Java code in a browser). TomCat is the official reference implementation

for Servlet and JSPs, which means that one can be sure the Java code will run either in

TomCat container or in any container that accomplishes with the standard definition.

Tomcat can contain a number of web application archive (WAR) files. When a web ap-

plication is built with Java a WAR file should be created and copy within the “webapps”

folder in TomCat. This will decompress the WAR file – process called deployment –.

4.5.3 Building deployment automatically

Additional to the tools already mentioned, there is a set of other Apache tools that help

deploying the code automatically. Some of the most important are the following:

= Maven [46] is a software project management and comprehension tool. Based on

the concept of a project object model (POM), Maven can manage a project’s build,

reporting and documentation from a central piece of information.
1A good source of information regarding different licencing systems can be found on the Open Source

Initiative http://www.opensource.org

37

= Ant [2] is used to create scripts, pretty much in the same way as the traditional

make tools, with the advantage that Ant uses XML to define tasks to be carried

out; making Ant scripts portable to different platforms.

= Jelly [39] is a tool for turning XML into executable code.

4.6 Summary

In this chapter we have a look to the software development process in AstroGrid giving

special attention to the tools used to co-ordinate AstroGrid’s work. Not just from the

coding point of view, but also looking into the tools available to share knowledge and

ideas.

Chapter 5

NodeMap, an ontology
constructor

5.1 Introduction

Previous chapters have described the AstroGrid project and shown how it is managed

and co-ordinated. It has been shown that AstroGrid can be considered as a virtual

organisation, where each partner works from a different location. This is not restricted

to AstroGrid or indeed to any of the other Virtual Observatory members. The same

tools used to develop code and to co-ordinate work in AstroGrid can be used by any

project with similar needs.

This chapter introduces the NodeMap ontology designer software for the WS-Talk [88]

framework which was developed by the author of this dissertation (i.e. design, coding

and documentation of NodeMap standalone, applet and servlet software) with the help of

Dimitrios Zervas (i.e. NodeMap standalone and applet coding). In order to develop this

software similar tools to the ones described in chapter four were used. Java is the main

development language, TomCat is the servlet container, Apache is the web server, CVS

the code sharing tool, and finally an eGroupWare (see http://www.egroupware.org)

tool –this includes a Wiki, forum, calendar, file sharing facilities, etc.– which is used to

disseminate knowledge.

NodeMap is a user-friendly tool to visually manage concept hierarchies within (but not

limited to) the WS-Talk context (e.g. Astrogrid tools such as AstroScope and ElioScope

38

39

presented in chapter three are designed around hierarchical representation of informa-

tion).

Currently the WS-Talk text mining area consists of a set of tools, which working co-

operatively, help to retrieve a set of documents (or web services), based on applying

different techniques to them. An approximate exploitation sequence is as follows:

a) Load a set of documents to retrieve more frequent and relevant terms.

b) Create concept hierarchies based on more relevant terms.

c) Load concept hierarchies into the WS-Talk system (i.e. WS-Talk repository [13]).

d) Load documents into the WS-Talk system.

e) Query the WS-Talk system.

Concept hierarchy (CH) generation (point b in the above sequence) is of special impor-

tance since it constitutes the bridge between the terms to be searched and the documents

to be queried. Therefore, this is used to provide indexes for document matching.

Experts in a relevant area create concept hierarchies, and once they are stable, which

means that very few changes are introduced later into the ontology, they can be uploaded

to the WS-Talk system.

NodeMap is an intuitive and easy to use tool that aims to help the expert user to create

concept hierarchies in a visual way, and to export the results in a WS-Talk compatible

format.

In this chapter, after introducing NodeMap, the following is presented; how the concept

hierarchies are read and stored, how documents are searched, and how the NodeMap

client interacts with its server component. This is followed by a brief look into the code.

40

5.2 NodeMap

5.2.1 Ontologies and concept hierarchies

Before presenting NodeMap software it is necessary to point out the importance of

ontologies within the WS-Talk framework.

The word ontology has a long history in philosophy, and more recently it has entered

the computer science field, where it has become important to the artificial intelligence

community. From our point of view an ontology is the formal description of concepts and

relationships within a domain, where a domain is a specific subject that can be defined

as an information space.

WS-Talk uses concept hierarchies as a “specification mechanism” for information spaces

within a domain. Section 5.4 of this document gives a detailed explanation of how CH

are defined and used by NodeMap.

In this document the words ontology, concept hierarchy and hierarchy are use inter-

changeably.

Building a CH can be a complex process. Michael Denny [16] gives an approximation of

the steps needed to create an ontology, which are presented below:

1. Acquire domain knowledge: Gather appropriate information and expertise that

will define, with consensus and consistency, the terms used formally to describe

things in the domain of interest. These definitions must be collected so that they

can be expressed by a common language selected for the ontology.

2. Organise the ontology: Design the overall conceptual structure of the domain.

This involves identifying the domain’s principal concrete concepts and their prop-

erties, identifying the relationships among the concepts, creating abstract concepts

as organising features, referencing or including supporting ontologies, distinguish-

ing which concepts have instances, and applying other guidelines of your chosen

methodology.

41

3. Flesh out the ontology: Add concepts, relations, and individuals to the level of

detail necessary to satisfy the purposes of the ontology.

4. Check your work: Reconcile syntactic, logical and semantic inconsistencies

among the ontology elements. Consistency checking may also involve automatic

classification that defines new concepts based on individual properties and class

relationships.

5. Commit the ontology: Necessary for any ontology development effort is a final

verification of the ontology by domain experts and the subsequent commitment of

the ontology by publishing it within its intended deployment environment.

There are a good number of tools to create ontologies, and we will look at two of the

most well known:

1. Protégé: [59] This is a free, open source, Java based ontology editor and knowledge-

base framework. The Protégé platform supports two main ways of modelling on-

tologies:

� The Protégé–Frames editor enables users to build and populate ontologies

that are frame-based, in accordance with the Open Knowledge Base Connec-

tivity protocol (OKBC) [53].

� The Protégé–OWL editor enables users to build ontologies for the Seman-

tic Web, in particular in the W3C’s Web Ontology Language (OWL) [54].

2. Thinkmap: [73] This is a software platform for developing tailored and interactive

visualisation interfaces from complex data. Thinkmap SDK includes a set of Java

libraries for data visualisation, with easy integration to different data sources (flat

files, database, XML, and Web Services). Some other advantages presented by this

product are:

� Real time data interaction.

� The client can be deployed as a “thin” web-based client, standalone .exe or

other modes.

� Multiple Thinkmaps can be run simultaneously to represent the same data.

42

� Highly documented, with examples and templates available.

Within the WS-Talk context Thinkmap presented a very good option for data

representation and mining. The price of this tool in order of the US$ 20.000 for a

license, therefore a big disadvantage.

The tools mentioned above presents a good option to implement ontologies, but within

the WS–Talk context a tailored application is needed, in particular a tool that can be

adapted to the use of WS–Talk text retrieval libraries and that can be deployed as

standalone application as well as within a web browser.

5.2.2 NodeMap features

The main features of NodeMap include the following:

= Start a new concept hierarchy and then connect nodes.

= Import an existing ontology to add, remove, or reorganise information.

= Import relevant terms obtained from text mining techniques applied to a set of

texts (or documents), and then organise these terms in a new ontology that can

be saved to a file or uploaded directly to a WS-Talk compliant database.

= Use concept hierarchies currently uploaded into the WS-Talk system to search a

document.

Figure 5.1 shows a screenshot of NodeMap version 1, which can be downloaded from

http://thames.cs.rhul.ac.uk/wstalk (under the “Prototypes” link); an example file

containing an astronomy CH can also be downloaded from that address for testing pur-

poses. Once a concept hierarchy has been designed, it can be exported to a file that

can be loaded into the WS-Talk system, such as the “repository demonstrator” [13]

presented at http://thames.cs.rhul.ac.uk/wstalk/prototype.html. Should direct

interaction with the database be needed, an option to commit a CH directly to the

database is available.

Table 5.1 shows the list of features currently used in Version 1 of NodeMap. The first

column shows the icon, the second column shows the keyboard shortcut, and the third

column shows a hint or description representing the action carried out by the icon.

43

Figure 5.1: NodeMap main screen

= New node map: This option cleans the current NodeMap design board leaving

a new empty working area.

= Open file: This opens a file storing a CH according to the standard defined in

Table 5.3.

= Import terms: This option opens a list of terms stored in a file.

= Save: This saves the CH tree presented in the NodeMap designer board into a file.

= Save as: Saves CH tree presented in the NodeMap designer board into a new file.

= Undo and Redo: This feature includes the ability to undo and redo activities car-

ried out on the CH tree, such as renaming nodes, disconnecting nodes, connecting

nodes, etc.

44

Icon Short cut Description

Ctrl - N New map

Ctrl - O Open file

Ctrl - I Import terms

Ctrl - S Save

= Save as

Ctrl - Z Undo

Ctrl - X Redo

= New node

Delete Delete node

Ctrl - C Connect node

= Disconnect node

= Rename node

Ctrl - F Find node

Ctrl - T Tree view

Ctrl - L Level view

= Seek Documents

= View Preferences

= Help

= About box

Table 5.1: NodeMap toolbar

= New node: This option creates a new node which is placed in the upper left

corner of the NodeMap design board with the tag node and a sequence number.

= Delete node: This deletes the node currently selected, all the child nodes will

also be deleted.

= Connect node: Nodes that are disconnected can be connected to other nodes by

selecting this option, and a line from the node leading to the mouse pointer will

be shown. When clicking on another node a new connection will be produced.

= Disconnect node: Nodes are connected with visible lines. These connections can

be rearranged or modified. This option will disconnect the node currently selected.

45

= Rename node: This changes the name of a selected node.

= Find node: This searches for exact matches in the CH tree (not case sensitive).

Should a match be found the tree will be expanded automatically. If the “seek

documents” option is active, related documents will be shown.

= Visualisation mode: Two visualisation modes are available, one that gives access

to the whole tree, as displayed in Figure 5.2, and a “level view” that allows visu-

alising large ontologies. This consists of visualising cross sections or “tree levels”

of an ontology, where an indicator (upper left corner) shows the current position

within a tree. In this way the graphical space within the NodeMap drawing board

is maximised.

Figure 5.2: NodeMap tree and level view

46

= Seek documents: When this option is selected, a new panel appears on the

screen. This panel shows document matches when a node is expanded or double

clicked with the mouse pointer. In turn each document presents a list of associated

terms, which trigger a new search when clicked. Additionally the text search panel

contains tree icons; back, forward, home , for browsing the document’s history.

= View preferences: This shows the pointers to the server side of the application,

where a Servlet and a database should be configured if searching documents or

committing ontologies to the database is needed.

= Help: This launches the browser with a URL pointing to a HTML help file stored

locally.

Another important feature is the implementation of working spaces. A workspace is

the combination of a hierarchy that has not been finished by the user, with loose nodes in

the design board. This working space can be saved into a temporary file, to be completed

later. With this option flexibility when designing an ontology is introduced.

Additionally a file viewer (see Menu −→ View −→ CH Table) feature is available

allowing the visualisation of a concept hierarchy in raw format when being stored in a

file or in a database, with the column ID (which is a sequence number), parent ID (which

indicates parent node within an ontology), and label (which shows the node name), as

shown in Table 5.1 in section 5.4 of this document.

Other important features included in the menu are: Import from DB (as shown in

Figure 5.3) allowing direct communication with the ontologies stored in the DB. Commit

to the DB which allows to insert a new CH into the database. Import unorderer

which allows to import a list of terms (separated by and end of line) from a text file, to

be organised onto a CH.

47

Figure 5.3: Import CH from database

5.3 NodeMap applet implementation

A Java standalone application offers a good solution for the ontology design problem. It

gives flexibility from the developer point of view, but it also has some disadvantage as it

cannot be displayed with a browser, or be embedded into a web site. In order to solve

this problem a Java applet version of NodeMap have been designed and implemented.

Figure 5.4 shows a screenshot of NodeMap applet implementation running under Mozilla

Firefox [21].

48

Figure 5.4: NodeMap applet

Table 5.2 shows the applet’s toolbar, which implements similar features as those used

with NodeMap’s standalone version, but with some limitations, e.g. the applet applica-

tion does not implement the feature of exporting ontologies into files, or undo and redo

(for now). Another difference is that the open icon connects directly to the database and

retrieves the existing ontologies which are presented to the user. Once one is selected it

can be opened into the applet.

= New node map: This option cleans the current NodeMap design board leaving

a new working area empty.

= Open CH: This connects to the database and retrieves the ontologies stored there.

= New node: This option creates a new node which is placed in the upper left

corner of the NodeMap design board with the tag node and a sequence number.

= Delete node: This deletes the node currently selected, and all the child nodes

49

Icon Description

New map

Open a CH from DB

New node

Delete node

Connect node

Disconnect node

Rename node

Find node

Tree view

Level view

Seek Documents

About box

Table 5.2: NodeMap applet toolbar description

also will be deleted.

= Connect node: Nodes that are disconnected can be connected to other nodes;

by selecting this option a line from the node leading to the mouse pointer will be

shown. When clicking on another node a new connection will be produced.

= Disconnect node: Nodes are connected with visible lines. These connection can

be rearranged or modified. This option will disconnect the node currently selected.

= Rename node: This changes the name of a selected node.

= Find node: This searches for exact matches in the CH tree (not case sensitive).

Should a match be found the tree will be expanded automatically. If the “seek

documents” option is active, related documents will also be shown.

= Tree visualisation: This visualises a concept hierarchy in the form of a tree

where the branches can be expanded or contracted in a “level view” that allows

visualising large ontologies.

= Level visualisation: This consists of visualising cross sections or “tree levels”

of an ontology, where an indicator (upper left corner) shows the current position

50

within a tree. In this way the graphical space within the NodeMap drawing board

can be maximised.

= Seek documents: When this option is selected a new panel appears on the

screen. This panel shows document matches when a node is expanded or double

clicked with the mouse pointer. In turn each document presents a list of associated

terms, which triggers a new search when clicked. Additionally the text search

panel contains three icons; back, forward, home , for browsing in the document

history.

= Help: This launches the browser with a URL pointing to a HTML help file stored

locally.

5.4 NodeMap and the concept hierarchy format

Table 5.3 shows the file format currently managed by NodeMap to produce concept

hierarchies, that is a sequence ID as the first field, a parent ID as second, and finally the

node name or label (please refer to Appendices B and C for complete examples). In order

to construct a CH, the parent ID field is related with the ID field. In this way complete

concept hierarchies can be easily described. For instance, in the Table 5.3, “Bipolar

Nebulae” and “Bright Nebulae” have as parent ID “2”, which means that “Nebulae” is

their parent node. Following the same logic, “Nebulae” have as parent ID “1”, as this is

the concept hierarchy root (Stars). Based on this structure NodeMap constructs a tree

representation of the data.

Currently the encode standard used to read and write files is UTF-8, without byte

order mark (BOM), and the tab character to separate the fields. For more information

regarding this encoding please visit the following link: http://www.unicode.org/faq/

utf bom.html.

Additional to this format a new database schema is now being specified in conjunction

with (WS-Talk partners) IRIT1 and Lucky Eye2, which will be supported in the next
1l’Institut de Recherche en Informatique de Toulouse. France
2LuckyEye Group, Istanbul. Turkey

51

ID Parent ID Label

1 0 Stars

2 1 Nebulae

3 2 Bipolar Nebulae

4 2 Bright Nebulae

5 2 Compact Nebulae

6 2 Dark Nebulae

7 6 Bok Globules

8 2 Dense Clouds

9 2 Dense Matter

10 9 Diffuse Nebulae

11 9 Dust Nebulae

12 2 Emission Nebulae

13 12 H II Regions

14 13 Compact H II Regions

...

id n P id n L n

Table 5.3: Concept hierarchy text representation

NodeMap release. With these partners also a data exchange format in XML has been

planned. Additionally some other rules are applied to the graphical representation:

a) There is only one root node.

b) A parent node can have as many child nodes as necessary.

c) A child node can have just one parent node.

d) Child nodes cannot be connected to other child nodes.

NodeMap, when designing a concept hierarchy, checks all the above conditions.

52

5.5 Search

5.5.1 Searching documents

Figure 5.5 shows a NodeMap screenshot when the searching document option is activated.

Each time a node is expanded, a new search is triggered. Each query result shows the

following information: number of search matches, document URL, related terms for each

document, voting, and server processing time.

The related terms associated with a document can be many, filtering may be applied to

constrain the number of them. Due to the limited space available to display information

and to keep things simple, a more option was implemented by me, so that in order to

access the full list of related terms the more link should be followed. Also it is important

to notice that each related term can produce a new search when clicked.

Document search uses Servlet technology for retrieving documents, whereas WS-Talk

libraries (interpreter, locator, stemmer, and others) are used for text matching. A com-

plete discussion regarding the method used for matching documents is given by Mothe

et al. [57].

A client request is handled by means of calling a URL (HTTP) address where the Servlet

is located, and passing the parameters: query, language, Servlet host, Servlet port, and

Servlet name.

Thus the HTTP request takes the following form:

http://host:port/servletName/search?query=query&language=language&host=host

&port=port&servlet=servletName

As an example a request call to thames server at RHUL, querying for the word mujer,

in spanish would look like the following URL:

http://thames.cs.rhul.ac.uk:8080/nodemap/search?query=mujer&language=spanish

&host=thames.cs.rhul.ac.uk&port=8080&servlet=nodemap

53

The request response is sent compressed with GZip, and since most modern browsers

support decompression on the fly, the above address could be tried directly in a browser.

That returns a list of matches for the mujer query.

Figure 5.5: NodeMap seek documents

54

5.5.2 Looking into the database

The following sections provide a description of the tables used in the database to store

data and indexes.

Figure 5.6 shows a partial representation of the database schema [57, 13]. White tables

are “static”, which means they are created once during the system initialisation. If any

of these tables are deleted, the concept hierarchies repository loses its data integrity.

Within this category the following tables can be found:

= URL: This contains each document location as a URL address.

= Documents: This stores document annotations, or document metadata.

= LinkCH CHTable: This stores concept hierarchy data, that is, the names of CH

tables generated automatically by the system, their names, and language.

= CHStemmed: This stores all the CH stemmed entries.

Figure 5.6: Concept hierarchy database schema

Grey–coloured (yellow if colour is available) tables are dynamically created when a new

Concept Hierarchy is loaded in the database. For each new Concept Hierarchy, a new

55

CH (TableName) and LinkCH (Table Name) are created. Here “TableName” is the

composition of the CH assigned name, and its language. For example when a new CH is

loaded in the database with name “STAR” in the English language, the tables created

will be called CH STAR EN and LINKCH STAR EN respectively. There are as many

CH (TableName) and LinkCH (Table Name) tables as concept hierarchies.

Querying the database

Querying the database is an essential step to retrieve documents. When data is stored in

the database, information can be retrieved using SQL language. This allows flexibility

to format the data output in such a way that will suit different processes to be applied

in order to match searched terms. Thus a key issue is what matching process is used for

retrieving information.

Some experiments were carried out in order to test some retrieval methodologies. The

following presents the sequential steps used to build a demonstrator that uses hierarchical

clustering from the correspondence analysis factor projections [50].

1. The textual input is Porter-stemmed [56].

2. A contingency table is built up of QA (question-answer) texts crossed by all terms

resulting from the Porter stemming. A selection of terms is made, based on the

middle or discriminating region of the Zipf rank/frequency curve [92].

3. Term profiles are considered, endowed with the chi squared metric, which takes

account of relative weighting. (Term profile vectors are doubled in the sense of

the doubling operation used in correspondence analysis: this results in the terms

being equally weighted in the analysis to follow). Because a chi squared metric is

not a natural one for display, mapping it into a Euclidean space is needed. This

Euclidean space is the correspondence analysis factor space. Its dimensionality is

the smaller of the numbers of terms considered and the numbers of QA texts.

4. The factor projections of terms are used for the hierarchical clustering of terms.

(For correspondence analysis, and hierarchical clustering, and software see [49]).

56

5. A partition of terms is derived from the hierarchical clustering. Clusters of too

great a size (viz., number of terms) are excluded; and singleton clusters are of no

benefit to us. Remaining clusters will be used for query expansion.

6. When the user submits a query, query expansion implies that closely related terms

will be added to the user’s request. All then will be used to rank QA text hits,

before these are returned to the user.

An implementation of the above method can be found for the English and Spanish

languages in the following address: http://thames.cs.rhul.ac.uk:8080/wstalk en/

TextQuery.

The WS-Talk consortium uses the voting method [33, 48, 57] to match documents, which

is the one used by the NodeMap demonstrator presented in this document. But since

NodeMap communicates with a Servlet that processes the information sent when a node

is clicked, the introduction of the matching method presented above is a question of

changing the pointers in the program, therefore a trivial thing to do. Thus, it can be

said that NodeMap supports both matching method, the correspondence analysis factor

projections and the voting method.

Committing new CH to the database

Committing a new CH to the database can be done directly with NodeMap software,

without the need of third party programs. Figure 5.7 shows the dialogue window that

opens with the option Menu −→ File −→ Commit to DB. This will require CH name,

database user, database password, and CH language. Also this assumes that the database

configuration has been completed as explained in section 5.6

57

Figure 5.7: Commit to the database

5.6 Servlet and database client configuration

Configuration data is stored locally in the “data” folder which is inside the NodeMap

installation directory. The configuration file is called “config.dat” and the parameters

are as follows:

1. Servlet host e.g. thames.cs.rhul.ac.uk or IP address

2. Servlet port e.g. 8080, the default for Apache TomCat

3. Servlet name e.g. nodemap which is assigned when deploying the WAR file

4. Servlet language e.g. Spanish, English, German, etc. (only one)

5. DB drivers e.g. jdbc:mysql (in MySQL case)

6. DB host e.g. thames.cs.rhul.ac.uk or IP address

7. DB port e.g. 3306 which is default for MySQL

8. DB name e.g. wstalk which contains the indexes for a set of documents

It is important to keep the above order, since currently the parameters are read in that

sequence from the “config.dat” file. In any case this file is changed automatically by

NodeMap as shown in Figure 5.8 and Figure 5.9. Thus no direct file handling is needed.

Therefore it is suggested that this file must not be modified.

58

Figure 5.8: Servlet configuration

Figure 5.9: Database configuration

59

5.7 Exploring NodeMap’s Java code

Before understanding the Java code it is necessary to highlight which are the compo-

nents of the software presented in this document. We again note that this software was

designed, developed and deployed by the author of this dissertation and Dimitios Zervas.

Currently the software is composed as follows:

Java Swing client: It uses Java Swing technology to create the GUI.

Java applet client: It uses Java applet technology to create a client that runs over

a browser.

Servlet component: It uses Java Servlet specification to display and dynamically

create web pages. It is deployed as a WAR file

Database: It is used for indexing and to store information.

The three first components are in different Java packages. The database needs a valid

user name with grants to retrieve and commit information into the database.

5.7.1 Client/Server communication on NodeMap

NodeMap is composed of a client and a server side. The client can perform some tasks

independently of the server, which has two components: a Servlet that allows document

search; and the database where the indexes are kept. Usually the Servlet is deployed

in Apache TomCat (or any another Servlet compliance container) running on the port

8080. Currently MySQL [51] is used running on the port 3306.

The NodeMap client can be used without any interaction with its server side, but de-

pending on the tasks to be carried out communication with the server may be necessary.

For instance when designing a new ontology from scratch, importing relevant terms from

a file, opening a working space, or saving changes to a file, no communication with the

server is needed.

On the other hand the following includes a list of the features that needs interaction

with the server:

60

= Searching document: The client requests to the server a matching from a key-

word.

= Commit CH into the DB: The client requests inserting a new CH into the

database.

= Import CH from DB: The client requests information from the database.

= Preference configuration: The client requests connection verification to the

server.

Of course the model presented above can change if either the database or the Servlet are

running physically in the same machine.

5.7.2 Compression on NodeMap

After the first tests retrieving data with NodeMap we were discouraged to see the re-

sponse time, which was of the order of 10 to 15 seconds for retrieving a query. Thus

we decided that some improvements were needed to speed up the application. The first

target was to have a look at the database and the queries, then how the information was

being requested, and finally how the information was transmitted. We made changes

to all these areas, and some of the most useful were the implementation of compression

when data is transmitted, and the SQL query optimisation. Regarding query optimi-

sation MySQL nested query was changed to manage each query individually directly

from the Java code and not from the SQL sentence since nested queries in MySQL work

recursively for each sub query, slowing down the retrieving process from the database.

The NodeMap client communicates with its server side based on the TCP/IP protocol.

When sending/retrieving data the HTTP/1.1 [35] protocol is used (through URL), which

allows for clients to optionally request the compression of content from the server. The

standard itself specifies two compression methods: “gzip” (the content wrapped in a gzip

stream) and “deflate” (the content in a raw, headerless DEFLATE stream). Both are

supported by many HTTP client libraries and almost all modern browsers.

61

Table 5.4 shows compression ratios in bytes for the set of twelve text documents currently

used by the NodeMap prototype as demonstrations. It can be observed that the average

compression ratio is x̄ = 2.1, with a standard deviation σ = 0.2

Table 5.5 shows the compression ratios for a set of twelve queries. Since query answers

are HTML documents, it is observed that compression ratios are much higher when

compared with documents text only. x̄ = 7.3 and σ = 0.9

GNU zip [26] (gzip) compression is a natural choice as compression method. It is well

known, open source, built-in on most modern browsers, and fast. Should more infor-

mation be needed regarding compression ratios and compression times please refer to

Collin [11] and HDF5 [31].

File name Non-Compressed Compressed Compression ratio

AlimentosQueCuran.txt 4085 1946 2.10

BotiquinDePrimerosAuxilios.txt 2485 1408 1.76

ConsejosParaUnaPielSaludable.txt 5500 2594 2.12

DeLaPiletaACasa.txt 2707 1397 1.94

DirectoAlCorazon.txt 3626 1661 2.18

DolorDePechoYAtaqueCardiaco.txt 2655 1447 1.83

ElAcidoFolico.txt 4238 1781 2.38

ElSueno.txt 5377 2390 2.25

InfeccionRespiratoriaInfantil.txt 2807 1428 1.97

LactanciaMaterna.txt 10624 4705 2.26

LaImportanciaDelCalcio.txt 5079 2213 2.30

PrevencionDeCancerDeMama.txt 3172 1515 2.09

Table 5.4: Compression ratios for text files

62

Query Non-Compressed Compressed Compression ratio

agua 4947 844 5.86

causa 9328 1161 8.03

fibras 6057 888 6.82

mujer 6110 903 6.78

hombre 6127 904 6.78

riesgos 9013 1102 6.78

mayor 11861 1281 9.26

menor 7619 993 7.67

meses 6065 922 6.58

piel 6107 874 6.99

sangre 7554 988 7.65

tipo 7919 1079 7.34

Table 5.5: Compression ratios for query (HTML) files

Table 5.6 shows the Java Servlet method used to compress data when a request is pro-

duced. This method is called every time a response is made from a NodeMap client.

Therefore all the communication between the client and the server side is compressed.

Compression using Servlet technology can be achieved by many methods such as Servlet

filter or direct compression. Experiments were carried out with this two methodologies,

but due to simplicity direct compression was selected. This is presented in Table 5.6.

63

private PrintWriter getPr intWri te r (HttpServ letRequest request ,

HttpServletResponse re sponse)

throws IOException {

PrintWriter out = null ;

r e sponse . setHeader (‘ ‘ Content−Encoding ’ ’ , ‘ ‘ gz ip ’ ’) ;

//compress query answer on UTF-8 format

Buf feredWriter bw = new Buf feredWriter (new OutputStreamWriter (

new GZIPOutputStream(response . getOutputStream ()) , ‘ ‘UTF−8 ’ ’)) ;

out = new PrintWriter (bw) ;

return out ;

}

Table 5.6: Data compression

Once a request to the server is made, the URL address containing the stream of data is

produced. As seen above, this data stream is compressed using the gzip algorithm, and

to make it readable by the user (on the client side) it needs decompression.

Table 5.7 shows the current Java code for decompressing an URL which contains the

request response delivered by the server.

64

public stat ic St r ing decompress (URL ur l) {

St r i ngBu f f e r sb = new St r i ngBu f f e r () ;

//this decompress an URL’s content

try {

GZIPInputStream gz ip = new GZIPInputStream (u r l . openStream ()) ;

BufferedReader zipReader = null ;

z ipReader = new BufferedReader (

new InputStreamReader (gzip , ‘ ‘UTF−8 ’ ’)) ;

char chars [] = new char [1 0 2 4] ;

int l en = 0 ;

//Write chunks of characters to the StringBuffer

while ((l en = zipReader . read (chars , 0 , chars . l ength)) >= 0) {

sb . append (chars , 0 , l en) ;

}

chars = null ;

gz ip . c l o s e () ;

z ipReader . c l o s e () ;

}

catch (IOException ex) {

}

return (sb . t oS t r i ng ()) ;

}

Table 5.7: Data decompression

65

5.7.3 Understanding the graphics on NodeMap

This subsection describes the NodeMap design and how the system can be used in

practice.

NodeMap displays hierarchies graphically as rooted trees. Trees are constructed by

interconnected nodes.

Nodes can have only one parent node but there is not a restriction on the number of child

nodes they can have. The nodes are instances of the Node class and the TreeDataBase

is the class which holds the whole tree:

The Node class

Attributes

= Parent is of type Node and is a pointer to the parent node.

= Children is of type vector and stores the child nodes.

= X, Y are of type float and used to store the node’s current x, y position.

= dirX, dirY are of type float and used to store the direction a node has when

attached to its parent node. When a user moves the node around using the mouse

then the direction is used to move it to its initial position and create a rubber band

effect.

= armLength is the distance a node has to its parent. It has the default value of 100

but it increases if the node is expanded by multiplying the EXPANDED OFFSET

constant and armLength.

= Image is used to store the image that represents the node. Currently two different

images are used: one for the root node and one the rest of the nodes.

= width, height are the dimensions of the node and they are calculated using the

image size. They are used for selecting and moving the node with the mouse.

66

= Radius of the node calculated using the width and height values. This is used

together with x, y as a boundary sphere.

= spanAngle is the angle the node has with its parent.

= entryLabel is a string describing the node.

= idEntry is a unique id assigned to each node.

= parentId is the node’s parent idEntry. It is used to construct the tree hierarchy.

Constants

= SPEED: It is the speed with which a node returns to its initial position after

dislocation with the mouse.

= EXPANDED OFFSET: It is the offset distance for expanded nodes.

Constructors

= public Node(int idEntry, int parentId, String entryLabel)

= public Node(int idEntry, int parentId, String entryLabel ImageIcon imageIcon)

Access methods

Access methods are used to access and set private members of the class.

= public Node getParrent()

= public String getEntryLabel()

= public int getWidth()

= public int getHalfWidth()

= public int getHeight()

= public int getHalfHeight

= public int getIdEntry()

67

= public Rectangle getRectangle

= public int getParentId()

= public void setParentId(int id)

= public void setParent(Node node)

= public float getRadius

= public int getNumChildern()

= public float getArmLength()

= public boolean isExpanded()

= public void setExpanded()

= public void setPosition(Point p)

= public Point getPosition()

= public Node getChild(int i)

= public int numChildren()

Other methods

= public void setShrink(): Shrinks an expanded node.

= public void animate (): Animates a node on the screen when the user moves it.

The node returns to its initial position creating a rubber band effect.

= public void recalculateAngles(): Recalculates the positions and angles of the child

nodes.

= public void setExpanded(): Expands the node (makes its children visible) for nor-

mal tree viewing.

= public void setExpandedLevel(): Expands the node (makes its children visible) for

level viewing.

68

= public void addChild(int idEntry, int parentId, String entryLabel, ImageIcon im-

ageIcon): Adds a new child to the node.

= public void addChild(Node child): Adds an existing child to the node.

= public boolean contains(Point p): Checks if point x, y is contained within the

boundary rectangle of a node.

= public void deleteChild(Node node): Removes a child node using its instance.

= public void deleteChild(int i): Removes a child using its index in the children list.

= public void checkForCollisions(Node node): Checks for collisions using the bound-

ary sphere of the node. This method currently is deprecated.

= public void drawOnlyThis(Graphics2D g): Draws a node but not its children.

= public void draw(Graphics2D g):Draws a node and its children.

= public void drawLevel(Graphics2D g): Draws a node and its children in level format

(not the whole tree).

= public void animateChildren(): Animates the children of the node.

The TreeDataBase class

Attributes

= initMousePos stores the mouse position. It is used for the movement of the whole

tree using the mouse.

= treePos holds the x, y coordinates of the whole tree.

= maxBounds stores the maximum x, y of the tree and is used for setting the

scrollbars.

= Root is of Node type and as its name implies is the root node for the whole tree.

= Unconnected is of type vector and stores the nodes not connected to the tree.

69

= maxId stores the maximum idEntry. It is used to assign larger idEntry numbers

to new nodes.

= unconnectedY holds the Y offset of the newly added unconnected nodes.

Constants

= TMP FILE, TMP FILE2 strings for filename used for temporary files which are

created when the tree is modified. The files store information for the tree so the

user can undo changes to the tree.

Constructors

= public TreeDataBase()

= public TreeDataBase(int x, int y)

Access methods

These are used to access and set private members of the class

= public void setInitUnconnectedY(int y)

= public int getMaxId()

= public void setPosition(Point p)

= public void setPosition(int x, int y)

= Node getRoot()

= void setRoot(Node node)

= public void setMousePos(Point p)

Other methods

= public void addUnconnected(int idEntry, String entryLabel): Creates and adds a

new node which is not connected to the tree using a default position (left upper

corner of the screen).

70

= public Node addNewUnconnected(String entryLabel, int x, int y): Creates and

adds a new node which is not connected to the tree using the provided x, y coor-

dinates.

= void clear(): Clears the whole tree database and the unconnected node list.

= void clearUnconnected(): Clears the the unconnected node list.

= public void addEntry(int idEntry, int parentId, String entryLabel): Adds a new

node in the tree.

= private void addEntry(Node node, int idEntry, int parentId, Sring entryLabel):

Adds an existing node to the tree.

= private Node selectNode(Node node, Point p): Used by selectNode(Point); see

below.

= public Node selectNode(Point p): Providing an x, y coordinate, a node is selected

if the coordinate is on a node.

= public Node selectNodeLevel(Node node, Point p): Providing an x, y coordinate,

a node is selected if the coordinate is on a node. This is used when the tree is

presented in level format.

= public void drawUnconnected(Graphics2D g): Draws the unconnected nodes.

= private void animate(Node node): Used by animate();see below.

= public void animate(): Animates the whole tree.

= private void moveAll(Node node, Point p): Used by moveAll(); see below.

= public void moveAll(Point p): Moves the whole tree depending the mouse’s move-

ment.

= private void checkForCollisions(Node node) (Currently deprecated): Used by check-

ForCollisions(); see below.

= public void checkForCollisions() (Currently deprecated): Checks for collisions be-

tween nodes in the tree.

71

= public void setAnimation(boolean val): Currently deprecated

= private void getMaxBounds(Node node): Used by getMaxBounds(); see below.

= public Dimension getMaxBounds(): Returns the maximum bounds of the tree

depending on its expansion.

= public void deleteNode(Node delNode): Removes the selected node from the tree.

= public void disconnectNode(Node selNode): Disconnects the selected node from

the tree.

= public void removeFromUnconnected(Node selNode): Removes a node from the

unconnected list.

= private void writeToFile(PrintStream os, Node node): Used writeToFile(String

filename) see below.

= public void writeToFile(String filename): Saves the tree to a UTF-8 text file. The

text file has the following format:idEntry, parentId, entryLabel. The attributes are

separated with tab and each entry with a new line.

= private void AddToBT(BinaryTree bt, Node node): Used by the writeToFileSoft-

edByIdEntry(String filename) function to sort the entries by their id using a binary

tree, see below.

= public void writeToFileSoftedByIdEntry(String filename): Saves the tree to a UTF-

8 text file sorted by their idEntry. The text file has the following format:idEntry,

parentId, entryLabel. The attributes are separated with tab and each entry with

a new line.

= public void writeToDB(String url, String user, String password, String chName,

String language): Saves the tree to a database.

= public void saveWorkSpace(String filename) throws Exception: Saves both the tree

and the unconnected list to a UTF-8 text file.

= public void loadWorkSpace(String filename) throws Exception: Loads a UTF-8

text file created by saveWorkSpace(String filename).

72

= private Node search(Node node, String text): Used by search(String text); see

below.

= public Node search(String text): Searches for a node within the tree using entry-

Label. If the node is found, it is returned otherwise Null is returned.

= void expandParent(Node node): Expands (makes visible) the parent node of a

node.

= private void expandTree(Node node): Used by expandTree (); see below.

= public void expandTree(): Expands the whole tree.

= public void createTempFile(): Saves both the tree and the unconnected list to a

temporary UTF-8 text file. It is used for the Undo and Redo options.

= public void loadTempFile(): Loads a UTF-8 text file created by createTempFile().

It is used for the Undo and Redo options.

5.8 Summary

This chapter presents NodeMap ontology designer within the WS-Talk framework. This

software was developed using a range of open source tools to allow inter-organisational

co-operation not just limited to the code development process, but extending to sharing

of knowledge. It is important to highlight that ontologies are not just used in the context

of WS-Talk, but in a wide range of applications, such as the field of astronomy. Thus,

the software presented here can be adapted to retrieve information in the astronomical

field, using astronomical ontologies.

Chapter 6

Future work and conclusion

6.1 Current and future work

Within the NodeMap context some of the areas that currently are being developed are

the following:

= Servlet filters: Filters are important when working with Servlets. A filter dy-

namically intercepts Servlet requests or responses to manipulate them. In the

NodeMap case, filters can help implementing cache files, in order to speed up the

information retrieval process. For instance, when a request (or query) is sent to the

server, the server could check if similar requests have been made in the past, and

send the file associated to the query. If no similar request exists the database will

be queried and a new cache file is produced. Also a mechanism can be implemented

to deal with old cache files, so the systems do not fall out of date.

= Motion algorithms research: The motion algorithms currently implemented

in the software still have space for improvement. The methods related with node

overlap and space optimisation in the visual area can be improved.

= WS-Talk database and XML support: Currently we are discussing in con-

junction with Lucky Eye1 and IRIT2 a new standard to be used on the database

and XML format. Once this has been formalised, database and XML support for

the new standards in NodeMap will be introduced.
1WS-Talk partner in Turkey
2WS-Talk partner in France

73

74

= Association rules: Currently we are discussing in conjunction with UDP/Solu-

ciones3 the implementation of association rules to extract related terms. Some

progress has already been made but the current code still needs improvement.

= Search configuration: Currently WS-Talk offers a set of different methods for

document (or web service) searching. Introducing a configuration module in NodeMap

will give flexibility to the user at the moment of deciding which search methods

will suit his/her needs best.

= Customisation: If needed, customisation can be added to the software in order

to personalise its “feel and look”, e.g. change node colours and size, or the thickens

of the link. Additionally, translation to at least one another language (Spanish)

will be implemented.

3WS-Talk partner in Chile

75

6.2 Conclusion

Tools that group independent packages (e.g. wiki, news, forum, calendar, etc.) ad-

dressing the problem of how to organise distributed work and knowledge have started

to emerge in the open source community. That is the case of eGroupWare http:

//www.egroupware.org/ just to mention one. Commercial tools have an advantage in

this case, specially the ones oriented to the corporate market (e.g. Lotus www.lotus.com

from IBM). But open source (OS) software is catching up quickly in this area. This OS

tools are the special interest of the author of this dissertation, since in inter-academic

research projects licencing and price can be an issue.

Despite the fact that open collaborative tools can be considered as being in their infancy

when working in a co-ordinated way, it is not less true that packages grouping a wide

range of these tools will appear – as mentioned in the case of the eGroupWare –, focusing

not just in the planning and knowledge sharing but in the way that this share-knoledge

affects the software being developed. Following this idea it can be foreseen that packages

integrating software development tools such as Maven, Ant, CruiseControl, and CVS

– to name a few –, will be integrated with tools such as wiki, news, forum and other

project management tools. This can of tools can hugely facilitate the work between

virtual organisations.

Finally, if more information is needed regarding how the NodeMap prototype is used

for building concept hierarchies, the RHUL web site for this project can be accessed

at http://thames.cs.rhul.ac.uk/wstalk where an installer for Windows, Mac OS,

Linux and other operating systems can be found; also an example file is presented there

(Appendix B).

Publications related to this thesis

P. Contreras and F. Murtagh, “AstroGrid as an e-Learning Environment”, 1st International

Kaleidoscope Learning Grid SIG Workshop on Distributed e-Learning Environments (Nicola

Capuano, Pierluigi Ritrovato, and Fionn Murtagh, eds.), Italy. 2005, http://www.bcs.org/

server.php?show=ConWebDoc.3871.

S. Johnstone, P. Contreras, F. Murtagh, P. Sage, “Peer-to-Peer Information Access and Re-

trieval”, Ingénierie des systèmes d’information. Volume 10 – no 1, France. pp 101 - 122, 2005.

P. Contreras, S. Johnstone, F. Murtagh and K. Englmeier, “Distributed multimedia content with

P2P JXTA technology”, Inclusive Design in the Information Society, Volume 4 of universal access

in HCI 2003 International Conference on Human Computer Interaction, Eds. C. Stephanidis,

Crete. June 2003, Lawrence Erlbaum, Mahwah, NJ, pp. 690-694, 2003.

F. Murtagh, T. Taskaya, P. Contreras, J. Mothe and K. Englmeier, “Interactive visual user

interfaces: a survey”, Artificial Intelligence Review, 19, 263-283, 2003.

P. Contreras, M. Köküer, M. Louys and F. Murtagh, “Semantic description of signal and image

databases”, in: Opto-Ireland 2002: Optical Metrology, Imaging, and Machine Vision. Eds. A.

Shearer, F.D. Murtagh, J. Mahon, and P.F. Whelan. Proceedings of the SPIE, Volume 4877, pp.

230-237, 2003.

P. Contreras, S. Johnstone, and F. Murtagh, “Peer to Peer based retrieval of distributed im-

age stores: demonstrator using JXTA”, Proceedings of the iAstro/IDHA Workshop Strasbourg

Observatory, 28-29, 2002.

76

77

F. Tao, P. Contreras, B. Pauer, T. Taskaya and F. Murtagh, “User interest correlation in log

data”, Usability Evaluation and Interface Design: Cognitive Engineering, Intelligent Agents and

Virtual Reality, Volume 1 of HCI 2001 International Conference on Human Computer Interaction,

Eds. M.J. Smith, G. Salvendy, D. Harris, and R.J. Koubek, New Orleans, LA, August 2001,

Lawrence Erlbaum, Mahwah, NJ, pp. 938-942, 2001.

Related reports

P. Contreras, D. Zervas, F. Murtagh, J. Pereira, R. González, and K. Englmeier, “WS-Talk In-

terpreter, Repository Specification, and Database Handling”. Deliverable D3.2/D3.3, September

2005, http://thames.cs.rhul.ac.uk/wstalk/papers/rhulpapers/DeliverableUDP-RHUL.pdf.

CS, RHUL.

P. Contreras, F. Murtagh. “SOA and WS-TALK Integrating Web Services in WS-TALK with

BPEL and UDDI”. July 2006, http://thames.cs.rhul.ac.uk/wstalk/papers/rhulpapers/

RHULdeliverableJuly2006.pdf. CS, RHUL.

P. Contreras, F. Murtagh, D. Zervas. “Distributed Development Process: AstroGrid Experi-

ence for WS-Talk”. April 2005, http://thames.cs.rhul.ac.uk/wstalk/papers/rhulpapers/

wsTalkatRHUL.pdf. CS, RHUL.

Acronyms and web references

Astronomical on-line data archives

2MASS: Two-micron All-Sky Survey - Infra-red (Caltech). http://www.ipac.caltech.

edu/2mass

AAT: Anglo-Australian Telescope - archive. http://www.aao.gov.au/archive

ADC: Astronomical Data Center (GSFC). http://adc.gsfc.nasa.gov

AEQ: ADC External Query engine (GSFC). http://tarantella.gsfc.nasa.gov/viewer/

AEQdoc.html

Aladin: Image Archive and Browser (Strasbourg). http://aladin.u-strasbg.fr

AMASE: Astrophysics Multi-spectral Archive Search Engine (GSFC). http://amase.

gsfc.nasa.gov/amase/WelcomeToAMASE.html

APM cat: Astronomical Plate Measuring engine catalogue site (Cambridge). http:

//www.ast.cam.ac.uk/∼apmcat

APS: Automated Plate Scanner (University of Minnesota). http://aps.umn.edu

ASCA: ASCA Science Archive (ISAS, Japan). http://www.astro.isas.ac.jp/asca/

index-e.html

Astrobrowse: Astrobrowse query engine (GSFC). http://heasarc.gsfc.nasa.gov/ab

CADC: Canadian Astronomy Data Centre (Victoria, BC). http://cadcwww.dao.nrc.ca

CDS: Centre de Données de Strasbourg. http://cdsweb.u-strasbg.frCDS

CEUV: Center for Extreme Ultraviolet Astrophysics (Berkeley).http://www.cea.berkeley.

edu/∼science/html/Archive.htmlCEUV

Chandra: Chandra X-ray Observatory Center (Harvard). http://chandra.harvard.

eduChandra

78

79

Chandra-UK: Chandra data archives - UK mirror (Leicester). http://ledas-cxc.star.

le.ac.ukChandra-UK

DAO: Dominion Astrophysical Observatory (Victoria BC). http://www.hia.nrc.ca/

facilities/daoDAO

DPOSS: Palomar Digital Sky Survey (Caltech). http://www.astro.caltech.edu/∼george/

dposs/DPOSS

EGSO: European Grid of Solar Observatories. http://www.mssl.ucl.ac.uk/grid/egsoEGSO

ESO-archive: European Southern Observatory archive (Garching).http://arch-http.

hq.eso.orgESO-archive

FIRST: Faint Images of Radio Sky at Twenty-centimeters (VLA) http://sundog.stsci.

eduFIRST

GSC-II: Guide Star Catalog-II (STScI). http://oposite.stsci.edu/pubinfo/pr/2001/

18/GSC-II

HEASARC: High Energy Astronomy Science Archive Research Center (GSFC). http:

//heasarc.gsfc.nasa.govHEASARC

HERA: HEASARC data analysis tool (GSFC). http://heasarc.gsfc.nasa.gov/heraHERA

IMPRESS: IMage PeRimeters of Sky Surveys - graphical database interface (GSFC).

http://tarantella.gsfc.nasa.gov/impress/IMPRESS

INES: IAU Final Archive data (Strasbourg). http://godot.u-strasbg.fr/ines/INES

INT: Isaac Newton Telescope - wide field survey. http://www.ast.cam.ac.uk/∼wfcsur/

INT

IoA: Institute of Astronomy (Cambridge). http://www.ast.cam.ac.ukIoA

IoA-archive: Institute of Astronomy (Cambridge) archive. http://archive.ast.cam.

ac.ukIoA-archive

IPAC: Infrared Processing and Analysis Center (Caltech). http://www.ipac.caltech.

eduIPAC

IRSA: InfraRed Science Archive (Caltech). http://irsa.ipac.caltech.eduIRSA

ISO: Infrared Space Observatory (Vilspa). http://www.iso.vilspa.esa.esISO

80

IUE: International Ultraviolet Explorer archive (Vilspa) http://www.vilspa.esa.int/

iue/iue.htmlIUE

jMAISON: Multi-wavelength Astronomical Image Service ON-line http://maison.isas.

ac.jpjMAISON

LEDA: Lyon-Meudon Extragalactic Database. http://leda.univ-lyon1.frLEDA

LEDAS: Leicester Data Archive Service. http://ledas-www.star.le.ac.ukLEDAS

MAST: Multimission Archive at STScI. http://archive.stsci.edu/mast.htmlMAST

NED: NASA/IPAC Extragalactic Database (Caltech). http://nedwww.ipac.caltech.

eduNED

NSSDC: National Space Science Data Center (GSFC). http://nssdc.gsfc.nasa.govNSSDC

NVSS: NRAO VLA Sky Survey. http://www.cv.nrao.edu/∼jcondon/nvss.htmlNVSS

PDS: Planetary Data System (JPL). http://pds.jpl.nasa.govPDS

Querator: Advanced Multi-Archive Search Engine. http://archive.eso.org/queratorQuerator

ROSAT: Röntgensatelit X-ray Data Centre (Garching). http://wave.xray.mpe.mpg.

deROSAT

SAO: Smithsonian Astrophysical Observatory (Harvard).// http://hea-www.harvard.

eduSAO

SDAC: Solar Data Analysis Center (GSFC). http://umbra.nascom.nasa.gov/sdac.

htmlSDAC

SDSS: Sloan Digital Sky Survey. http://www.sdss.orgSDSS

SIRTF: Space Infrared Telescope Facility. http://sirtf.caltech.eduSIRTF

SSDS: Space Science Data System (GSFC). http://ssds.nasa.govSSDS.

Starcast: Starcast interface to STScI archive. http://archive.stsci.edu/starcastStarcast.

Starview6: Starview database browser - (StSCI). http://starview.stsci.edu/htmlStarview6

STScI: Space Telescope Science Centre - archive (Baltimore). http://archive.stsci.

eduSTScI

SuperCOSMOS: Wide Field Astronomy Unit (Edinburgh)sky survey.http://www-wfau.

roe.ac.uk/sss/SuperCOSMOS

81

SX: Sloan Digital Sky Survey Science Archive (Johns Hopkins University). http://www.

sdss.jhu.edu/ScienceArchive/home.htmlSX

UKADC: UK Astronomical Data Centre (Cambridge). http://archive.ast.cam.ac.

uk/UKADC

VizieR: Catalogue archive with browser (Strasbourg). http://vizier.u-strasbg.frVizieR

Bibliographical sites and Documentation

ADS: The Smithsonian/NASA Astrophysics Data System. http://adswww.harvard.

edu/

Astro-ph: Astrophysics preprint service (Southampton). http://xxx.soton.ac.uk/

archive/astro-ph

ASDS: Astronomical Software & Documentation Service. http://asds.stsci.edu/

Bibcode: Bibliographic reference code. http://cdsweb.u-strasbg.fr/simbad/refcode.

html

Simbad: Bibliographic database (Strasbourg). http://simbad.u-strasbg.fr

Virtual Observatory Projects and Forums

Astro-wise: Astronomical Wide-field Imaging System for Europe. http://www.astro-wise.

org

Astrovirtel: Accessing Astronomical Archives as Virtual Telescopes. http://www.euro-vo.

org/astrovirtel

Astrogrid: Astrogrid - UK’s Virtual Observatory project. http://www.astrogrid.ac.

uk

AuVO: Australian Virtual Observatory. http://aus-vo.org/

AVO: Astrophysical Virtual Observatory. http://www.atnf.csiro.au/projects/avo

China-VO: Virtual Observatory of China. http:///www.china-vo.org

Digital Sky: Digital Sky Project (Caltech). http://digital-sky.org

iAstro: iAstro - Computational and Information Infrastructure in the Astronomical Data-

Grid. http://www.iastro.org

IVOA: International Virtual Observatory Alliance. http://www.ivoa.net/

82

NVO: National Virtual Observatory (USA). http://us-vo.org

OASIS: On-line Archive Science Information Services (Caltech). http://irsa.ipac.

caltech.edu/applications/Oasis

Opticon: Optical Infrared Coordination Network. http://www.astro-opticon.org

OST: UK Office of Science and Techology. http://www.dti.gov.uk/ost

RVO: Russian Virtual Observatory. http://www.inasan.rssi.ru/eng/rvo

SEA: Scientists Expert Assistant (GSFC).

Skycat: Skycat data visualiser (Garching). http://archive.eso.org/skycat

SkyServer: Sloan Digitial Sky Survey server (JHU). http://www.skyserver.org

Skyview: Virtual Observatory image viewer (GSFC). http://skyview.gsfc.nasa.gov

Urania: Universal Research Archive of Networked Information in Astronomy. http:

//www.aas.org/Epubs/webinfo/Urania

Bibliography

[1] Aladin, The Aladin Sky Atlas. Centre de Données astronomiques de Strasbourg, 2006, http:

//aladin.u-strasbg.fr/.

[2] Ant, Apache Ant, 2005, http://ant.apache.org/.

[3] Apache, Apache Software Foundation, 2004, http://httpd.apache.org/.

[4] Arecibo, Arecibo Observatory, 2005, http://www.naic.edu/.

[5] AstroGrid, Astrogrid Portal, 2005, http://www.astrogrid.org.

[6] AstroScope, AstroScope Tool, 2006, http://www2.astrogrid.org/documentation/

ag-help-docs/data-explore/astroscope/?searchterm=AstroScope.

[7] Axis, Apache Axis, 2005, http://ws.apache.org/axis/.

[8] BugZilla, Bug-tracking system, 2005, http://www.bugzilla.org/.

[9] Cactus, Cactus code, 2005, http://www.cactuscode.org/.

[10] Chandra, Chandra X-ray Observatory, 2006, http://chandra.harvard.edu/.

[11] Lasse Collin, A Quick Benchmark: Gzip vs. Bzip2 vs. LZMA, 2005, http://tukaani.org/

lzma/benchmarks.

[12] Pedro Contreras, Steven Johnstone, Fionn Murtagh, and Kurt Englmeier, Distributed multi-

media content with P2P JXTA technology, HCI 2003 International Conference on Human

Computer Interaction (Constantine Stephanidis, ed.), Lawrence Erlbaum Associates, Inc,

June 2003, pp. 690–694.

[13] Pedro Contreras, Dimitri Zervas, Fionn Murtagh, Javier Pereira, Rodrigo Gonzalez,

and Kurt Englmeier, WS-Talk Interpreter, Repository Specification, and Database Han-

dling. Deliverable D3.2/D3.3, 2005, http://thames.cs.rhul.ac.uk/∼wstalk/papers/

rhulpapers/DeliverableUDP-RHUL.pdf.

83

84

[14] CTIP, Thermosphere ionosphere plasmasphere model.

[15] CVS, Concurrent Versions System, 2005, https://www.cvshome.org/.

[16] Michael Denny, Ontology Building: A Survey of Editing Tools, 2006, http://www.xml.com/

pub/a/2002/11/06/ontologies.html.

[17] CMS Directory, Content Management Directory, 2005, http://

content-management-directory.com/.

[18] Eclipse, Eclipse Foundation, 2004, http://www.eclipse.org/.

[19] Gordon Richards et al, Spectroscopic target selection in the sloan digital sky survey: The

quasar sample, The Astronomical Journal, vol. 123, The American Astronomical Society,

June 2002, pp. 2945–2975.

[20] Robert E. Williams et al, The Hubble Deep Field: Observations, data reduction, and galaxy

photometry, Astronomical Journal 112 (1996), 1335.

[21] FireFox, Open Source Browser Mozilla FireFox, 2006, http://www.mozilla.com/.

[22] FITS, Flexible Image Transport System, 2005, http://fits.gsfc.nasa.gov/.

[23] Grid Forum, Global Grid Forum, 2005, http://www.gridforum.org.

[24] Roger Freedman and William Kaufmann, Universe, sixth ed., W. H. Freeman, 2001.

[25] GAIA, Graphical Astronomy and Image Analysis Tool, 2006, http://star-www.dur.ac.

uk/∼pdraper/gaia/gaia.html.

[26] Jean-loup Gailly and Mark Adler, GNU zip, 2006, http://www.gzip.org/.

[27] GALEX, The Galaxy Evolution Explorer, 2006, http://www.galex.caltech.edu/index.

html.

[28] Alex Garrett, JUnit antipatterns, 2005, http://www-128.ibm.com/developerworks/

opensource/library/os-junit/?ca=dgr-lnxw07JUnite.

[29] Globus, Globus Alliance, 2006, http://www.globus.org/.

[30] Robert Hanisch and Peter Quinn, The International Virtual Observatory, http://www.

ivoa.net/pub/info/TheIVOA.pdf.

[31] HDF5, Compression Performance Evaluation Report, 2006, http://hdf.ncsa.uiuc.edu/

HDF5/papers/papers/bzip2/bzip2 reportps.pdf.

85

[32] HelioScope, HelioScope Tool, 2006, http://www2.astrogrid.org/documentation/

ag-help-docs/data-explore/helioscope.

[33] Nathalie Hernandez and Josiane Mothe, Ontologies pour l’aide à l’exploration d’une collec-

tion de documents, Veille Stratégique Scientifique & Technologique, October 2004, pp. 405–

416.

[34] HST, Hubble Space Telescope Archive, 2005, http://archive.eso.org/archive/hst/.

[35] HTTP, Hypertext Transfer Protocol - HTTP/1.1, 1999, http://www.w3.org/Protocols/

rfc2616/rfc2616.html.

[36] Hyperz, Photometric redshift, 2005, http://webast.ast.obs-mip.fr/hyperz/.

[37] IVOA, International Virtual Observatory Alliance, 2005, http://www.ivoa.net/.

[38] JBuilder, Borland JBuilder, 2005, http://www.borland.com/jbuilder/.

[39] Jelly, Jelly Execuatable XML, 2005, http://jakarta.apache.org/commons/jelly/.

[40] Steven Johnstone, Pedro Contreras, Fionn Murtagh, and Paul Sage, Peer-to-Peer Informa-

tion Access and Retrieval, Ingénierie des systèmes d’information 10 (2005), 101–122.

[41] JUnit, Java� Testing Framework, 2005, http://www.junit.org/.

[42] Paul Lagasse, Lora Goldman, Archie Hobson, and Susan Norton (eds.), The Columbia En-

cyclopedia, sixth ed., Columbia University Press, New York, 2001-05.

[43] Tony Linde, Astrogrid Architecture Thesis, 2003, http://wiki.astrogrid.org/bin/view/

AstrogridArchitectureThesis#Bib3.

[44] Tanu Malik, Alex S. Szalay, Tamas Budavari, and Ani R. Thakar, Skyquery: A webser-

vice approach to federate databases, 2002, http://www.citebase.org/abstract?id=oai:

arXiv.org:cs/0211023.

[45] CMS Matrix, Content Management Directory Matrix, 2005, http://www.cmsmatrix.org/.

[46] Maven, Apache Maven Project, 2005, http://maven.apache.org/.

[47] MERLIN, Multi-Element Radio Linked Interferometer Network, 2005, http://www.jb.man.

ac.uk/e-merlin/.

[48] Josiane Mothe, Gilles Hubert, Jérôme Augé, and Kurt Englmeier, Catégorisation automa-

tique de textes basée sur des hiérarchies de concepts, Journées Bases de Données Avancées,

October 2003, pp. 69–87.

86

[49] Fionn Murtagh, Correspondence Analysis and Data Coding with R and Java, first ed., Chap-

man & Hall/CRC, 2005.

[50] Fionn Murtagh, Dimitri Zervas, and Pedro Contreras, A text analysis matching demonstra-

tor, 2006, http://thames.cs.rhul.ac.uk:8080/wstalk en/TextQuery.

[51] MySQL, MySQL Database Manager System, 2006, http://www.mysql.org/.

[52] NetCraft, Net Craft, 2005, http://news.netcraft.com/archives/2005/04/01/april

2005 web server survey.html.

[53] OKBC, Open Knowledge Base Connectivity, 2006, http://www.ai.sri.com/∼okbc/.

[54] OWL, Web Ontology Language, 2006, http://www.w3.org/2004/OWL/.

[55] Palomar, Palomar Observatory, 2006, http://www.astro.caltech.edu/palomar/.

[56] Martin Porter, Porter Stemmer, 2006, http://www.tartarus.org/∼martin/

PorterStemmer.

[57] Sandra Poulain and Josiane Mothe, Release of WS-Talk utilities. Deliverable D2.1, 2005,

http://www.akra.de/ws-talk/.

[58] AstroGrid problems list, Astrogrid, 2002, http://wiki.astrogrid.org/bin/view/VO/

ScienceProblemList.

[59] Protégé, Protégé Software, 2006, http://protege.stanford.edu/.

[60] SExtractor, Object cataloguer for astronomical images, 2005, http://terapix.iap.fr/

rubrique.php?id rubrique=91/.

[61] SIAP, Simple Image Access Protocol, 2005, http://www.ivoa.net/Documents/latest/

SIA.html.

[62] SIMBAD, Astronomical Database, Centre de Données astronomiques de Strasbourg , 2005,

http://simbad.u-strasbg.fr/.

[63] SOAP, Simple Object Access Protoco, 2005, http://www.w3.org/TR/soap/.

[64] SOHO, Solar & Heliospheric Observatory, 2005, http://sohowww.nascom.nasa.gov/.

[65] Spitzer, Spitzer Space Telescope, 2005, http://www.spitzer.caltech.edu/.

[66] SPLAT, Spectral Analysis Tool, 2006, http://star-www.dur.ac.uk/∼pdraper/splat/.

[67] SSH, Secure Shell, 2005, http://www.openssh.com/.

[68] Subversion, Subversion Version Control System, 2006, http://subversion.tigris.org/.

87

[69] Swift, Swift Gamma-Ray Burst Explorer Mission, 2006, http://www.swift.psu.edu/.

[70] Alexander S. Szalay, Tamas Budavari, Tanu Malika, Jim Gray, and Ani Thakara, Web

services for the virtual observatory, 2002, http://www.citebase.org/abstract?id=oai:

arXiv.org:cs/0208014.

[71] AstroGrid ten science problems, Astrogrid, 2002, http://wiki.astrogrid.org/bin/view/

Astrogrid/ScienceProblems.

[72] thefreecountry.com, Free Source Code Version Control Management Software, 2005, http:

//www.thefreecountry.com/programming/versioncontrol.shtml.

[73] ThinkMap, ThinkMap Software, 2006, http://www.thinkmap.com.

[74] Dave Thomas and Andy Hunt, Pragmatic version control using cvs, Pragmatic Bookshelf,

Sep 2003.

[75] Tomcat, Apache Tomcat, 2006, http://tomcat.apache.org/.

[76] TopCat, Tool for OPerations on Catalogues And Tables, 2006, http://www.star.bristol.

ac.uk/∼mbt/topcat/.

[77] TWiki, Enterprise Collaboration Platform, 2005, http://www.twiki.org/.

[78] Allan Vermeulen, The Elements of Java�Style, Cambridge University Press, Cambridge,

2000.

[79] VisIVO, Visualisation Interface to the Virtual Observatory, 2006, http://visivo.cineca.

it/.

[80] VISTA, Visible and Infrared Survey Telescope for Astronomy, 2005, http://www.vista.

ac.uk/.

[81] VLA, Very Large Array, 2005, http://www.vla.nrao.edu/.

[82] VOSpec, A Tool to Handle VO-SSAP compliant Spectra, 2006, http://esavo.esa.int/

vospecapp.

[83] VOTable, Virtual Observatory Table, 2005, http://www.us-vo.org/VOTable/.

[84] W3C, The World Wide Web Consortium, 2005, http://www.w3.org/.

[85] Nicholas Walton, Andrew Lawrence, and Tony Linde, Scoping the UK’s virtual observa-

tory: Astrogrid’s key science drivers, Astronomical Data Analysis Software and Systems

XII (Harry Payne, Robert Jedrzejewski, and Richard Hook, eds.), The Astronomical Soci-

ety of the Pacific, December 2003, pp. 25–28.

88

[86] WFCAM, Wide Field Infrared Camera For UKIRT, 2005, http://www.roe.ac.uk/atc/

projects/wfcam/.

[87] IVOA WS, Web services for the virtual observatory, 2006, http://voservices.org/.

[88] WS-Talk consortium, Web services communicating in the language of their community, Eu-

ropean project supported under the CRAFT program. COOP-CT-2004-006026.

[89] WSDL, Web Service Definition Language, 2005, http://www.w3.org/TR/wsdl.

[90] X11, X.Org Foundation, 2005, http://www.x.org/.

[91] XMM-Newtown, ESA XMM-Newton, 2006, http://xmm.vilspa.esa.es/.

[92] George Kingsley Zip, Zipf Law, 2006, http://en.wikipedia.org/wiki/Zipf’s law.

Appendix A

NodeMap UML diagrams

NodeMap client UML diagrams

NodeMap client UML diagrams included in this appendix are the following:

= Figure A.1 shows the TreeDataBase Java class

= Figure A.2 shows the NodeMap Java class

= Figure A.3 shows the Node Java class

= Figure A.4 shows the BinaryTree Java class

= Figure A.5 shows the OntoTableModel Java class

= Figure A.6 shows the DrawingPane Java class

= Figure A.7 shows the GZip Java class

= Figure A.8 shows the Config Java class

= Figure A.9 shows the PorterStemmer Java class

= Figure A.10 shows the Util Java class

89

90

Figure A.1: TreeDataBase Java class

91

Figure A.2: NodeMap Java class

92

Figure A.3: Node Java class

93

Figure A.4: BinaryTree Java class

94

Figure A.5: OntoTableModel Java class

95

Figure A.6: DrawingPane Java class

96

Figure A.7: GZip Java class

97

Figure A.8: Config Java class

98

Figure A.9: PorterStemmer Java class

99

Figure A.10: Util Java class

100

NodeMap servlet UML diagrams

NodeMap servlet UML diagrams included in this appendix are the following:

= Figure A.11 shows the Cluster Java class

= Figure A.12 shows the MoreTerms Java class

= Figure A.13 shows the Matching Java class

= Figure A.14 shows the TextProcessing Java class

= Figure A.15 shows the Interpreter Java class

= Figure A.16 shows the Query Java class

= Figure A.17 shows the Search Java class

= Figure A.18 shows the Connect Java class

= Figure A.19 shows the TestServletConnection Java class

= Figure A.20 shows the ServletUtilities Java class

101

Figure A.11: Cluster Java class

102

Figure A.12: MoreTerms Java class

103

Figure A.13: Matching Java class

104

Figure A.14: TextProcessing Java class

105

Figure A.15: Interpreter Java class

106

Figure A.16: Query Java class

107

Figure A.17: Search Java class

108

Figure A.18: Connect Java class

109

Figure A.19: TestServletConnection Java class

110

Figure A.20: ServletUtilities Java class

Appendix B

Astronomy ontology

The following presents an astronomy ontology that shows a Nebulae hierarchy obtained from

the International Astronomical Union at http://www.mso.anu.edu.au/library/thesaurus/

english/hier-NEBULAE.html. The first column presents a sequential number, second column

presents the level within the ontology and finally the third column presents the label or node

name.

1 0 Stars

2 1 Nebulae

3 2 Bipolar Nebulae

4 2 Bright Nebulae

5 2 Compact Nebulae

6 2 Dark Nebulae

7 6 Bok Globules

8 2 Dense Clouds

9 2 Dense Matter

10 9 Diffuse Nebulae

11 9 Dust Nebulae

12 2 Emission Nebulae

13 12 H II Regions

14 13 Compact H II Regions

15 12 Herbig Haro Objects

16 12 Planetary Nebulae

17 2 Filamentary Nebulae

18 2 Gaseous Nebulae

19 18 Emission Nebulae

20 19 H II Regions

21 20 Compact H II Regions

22 19 Herbig Haro Objects

23 19 Planetary Nebulae

24 2 Planetary Nebulae

25 2 Reflection Nebulae

26 2 Ring Nebulae

Figure B.1 shows a section of the above ontology once loaded into the NodeMap software.

111

112

Figure B.1: Astronomy ontology displayed with NodeMap software

Appendix C

Animal ontology

The following presents an animal ontology, where the data is store in three columns. The first

column presents a sequential number, second column presents the level within the ontology and

finally the third column presents the label or node name.

1 0 animals

2 1 vertebrates

3 1 invertebrates

4 2 fish

5 2 amphibians

6 2 reptiles

7 2 mammals

8 2 birds

9 3 worms

10 3 molluscs

11 3 arthropods

12 3 corals

13 3 echinoderms

14 4 sharks

15 4 bony fish

16 14 great white shark

17 14 tiger shark

18 14 blue shark

19 15 tuna

20 15 salmon

21 15 trout

22 5 salamanders

23 5 frogs

24 5 toads

25 23 arrow frog

26 23 bull frog

27 6 snakes

28 6 lizards

29 6 crocodilia

30 27 anaconda

31 27 rattle snake

32 27 asp

33 27 cobra

34 28 gecko

35 28 chameleon

36 29 crocodiles

37 29 caimans

38 29 gharial

39 7 carnivora

40 7 artiodactyla

41 7 afrosoricida

42 39 felidae

43 39 mongooses

44 39 canidae

45 42 tigers

46 42 cats

47 42 lions

48 43 civet

49 43 meerkats

50 44 coyote

51 44 wolf

52 44 fox

53 8 paleognathae

54 8 neognathae

113

114

55 39 mustelidae

56 55 weasels

57 55 martens

58 55 badgers

59 55 otters

60 41 afrosoricida

61 41 paenungulata

62 40 suina

63 40 tylopoda

64 40 ruminantia

65 53 ostrich

66 53 emus

67 53 kiwis

68 54 eagles

69 54 hawks

70 54 falcons

71 54 pigeons

72 54 parrots

73 54 owls

74 54 cuckoos

75 10 cephalopods

76 10 gastropods

78 75 octopus

79 75 squid

80 75 cuttlefish

81 76 snails

82 76 slugs

83 76 limpets

84 9 annelida

85 9 nematomorpha

86 9 onychophora

87 11 chelicerata

88 11 myriapoda

89 11 crustacea

90 87 spiders

91 87 scorpions

92 87 ticks

93 88 centipedes

94 88 millipedes

97 13 starfish

98 13 sea urchins

99 13 sea cucumbers

100 89 crabs

101 89 shrimps

102 89 lobsters

Figure C.1 shows a section of the above ontology once loaded into the NodeMap software.

115

Figure C.1: Animal ontology displayed with NodeMap software

