
LECTURES NOTES∗

Organisational Aspects of Software Development

Pedro Contreras
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

pedro@cs.rhul.ac.uk

1. Introduction

Creating software is a complicated task: organising activities, managing people, maintaining

code, controlling the development process, assuring quality, estimating economically cost, re-

source allocation, etc. Software engineering gives an answer to most of these questions. The

intention of this document is to discus some useful tools and give a few tips that can help at the

moment of creating software.

This document is separated into two main sections. Development Process and Collaborative

Work deals with tools and techniques to improve communication within Virtual Organisations.

Software Engineering Tool deals with tools and standards to make coding faster and under-

standable for other programmers.

2. Organisational Aspects of Software Projects

A Virtual Organisation (or community) comprises a set of independent organisations (or per-

sons) that share resources and skills to achieve its mission/goal, it is not limited to an alliance

for commercial gain. The interaction among members of the virtual organisation is mainly

done through computer networks. For example a group of people sharing a common interest

can organise themselves by creating a virtual community through a web portal.

∗Guest Lecture, 14 February 2007



From the software engineering point of view, a virtual organisation will be organised to tackle

problems related with the software development process. Figure 1 shows a simplification of

the software development process. Thus, in that figure it can be appreciated where some or-

ganisational problems may arise when developing software.

Specification

Coding

Final Software

Problem

Requirements
Definition

Requirements Analysis

Desgin

Implementation

Testing

Maintenace

Figure 1. Software development process

The Virtual Organisation philosophy is usually one of an open collaboration. To allow people

to work in partnership effectively, a range of tools are required. In collaborative software devel-

opment projects there are different obstacles to overcome before the collaborative development

can become effective. Firstly, good communication is essential in many aspects. Developers

need to be aware of information regarding the project as a whole, information regarding spe-

cific sections, and they need to be able to directly communicate with other developers.

Adequate facilities for communication must be in place for developers to be able to exchange

ideas, and to make, and to respond to queries, so that the development process is as efficient as

possible. One important issue in relation to the development process cyclec is development by

2



second parties (other developers).

As well as communication facilities, there are other ways to ensure that the collaboration is as

effective as possible.

Standards play an important role in facilitating code development by second and third parties.

Standard software design methods will aid in code integration and coding style standards will

help reducing the time required for second party developers to familiarise themselves with the

software. Standard forms of code documentation can also greatly aid third party developers.

2.1. Communication Tools

A central portal can provide a common access point to the various communication tools avail-

able. For example Wiki pages can provide support by means of posting relevant documents.

Wiki is a leading-edge, web-based collaboration platform targeting the corporate Intranet world.

TWiki [7] fosters information flow within an organisation. Some Wiki features are: web

browser, auto links, text formatting, search, e-mail notification, structured content, attachment,

templates and skins, statistics and plug-in resources. Further to the Wiki pages a portal can also

provide a forum facility to encourage grouped discussion.

In this case the groups deal with site-related topics, project-specific topics and general areas

such as design, project organisations, and technical activities.

To allow developers to be kept up to date with various information about articles posted, items

of news, events and polls, a news section also can be accessible. The idea of a central portal

providing access to the various communication platforms is essential to effective collaboration.

There is no confusion over how to contact other members as all contacts can be seen through the

use of one central site. Further to these web-base community-oriented communication tools,

one-to-one contact is necessary in order to ensure that developers can carry out their task effi-

ciently. For example, in the case of second party development the ability to contact a previous

developer to query some aspect of the work greatly reduces re-development time. To facilitate

direct communications between project members, these can keep close contact through more

traditional tools such as: e-mail, telephone conferences, chat programs and regular meetings.

A web portal can include one or more of the following tools:

- Wiki

- Internet Forum

3



- Blogs

- News

- e-mail (e-mail lists)

- Chat & instant messaging programs (e.g. MSN)

- Others: telephone, meeting, video conference

3. Software Engineering Tools

3.1 Coding standards & Java

The core task when developing software is writing the code itself. In the same way that any

language has its own writing standards and protocols, coding in Java has some basic guide-

lines. This is with the propose of making the code more readable and understandable for other

developers.//

The following describes some simple principles when writing code in Java.

• Adhere to the style of the original: When modifying existing code do not change the

code’s style, and do not try to change the old code to make it match a new style.

• Adhere to the principle of least astonishment: This suggests to avoid doing things that

will surprise the software’s users.

• Do it right at first

• Document any deviation: No standard is perfect and universally applicable. Thus when

a situation that does not fit the norm arises, or when it is decided that a certain style

should not be applied, then document why you have done so.

Following these simple principles may help producing better quality software. From the coding

point of view this is not enough and additional conventions are needed for the following:

• Formatting: This include things such as indentation for block statements, breaking up

long lines, and use of white spaces instead of “hard tabs”. what looks perfectly formatted

in one environment can look completely chaotic in another.

• Naming: Usually Java Software Development Kit conventions from Sun Microsystems

are used (in Java case), which includes some of the following: how to name classes,

variables, methods, and constants, and when to capitalise.

4



• Documentation: Write documentation for those who will be using the software as well

as the people who will maintaining it. Documenting Java code for other programmers

can be done by means of using comments and using the Java documentation package

[5].

• Packaging code: Java code organises classes in packages, making sensible use of this

help at the moment of reusing code. For example, when creating a new package in-

clude only related classes, since when using the package they need to be imported, and

therefore if packages are not well organised the software becomes inefficient.

For complete the Java style guide refer to Vermeulen et al [8].

3.2 Interactive Development Environment Tools

Interactive Development Environment (IDE) is an integrated system to assist in writing soft-

ware. Usually this system includes tools to help with code editing, graphical design, compiling

and running programs, and debugging. Some examples of IDE tools include Visual C++ and

Visual Basic (both from Microsoft Corporation). In the Java world there are plenty of good and

free IDE systems, such as:

- Eclipse, http://www.eclipse.org/

- JBuilder Foundation, http://www.borland.com/us/productsjbuilder/index.

html#foundation

- NetBeans IDE, http://www.netbeans.org/

3.3 Version Control System

A version Control System (CVS) [3] is usually a centralised place where files can be stored,

and accessed from any machine with an Internet connection. Also it provides a way to store

different versions of a document. If a specific document version needs to be recovered it can

be done easily.

Figure 2 shows a typical CVS repository.

5



Network

check-out

commit

update

Developer
one

Developer
two

Developer
threeRepository

Figure 2. CVS working

A Version Control System includes the following sub-systems:

- The repository.

- Workspaces and file manipulation.

- Project, modules and files.

- Tags.

- Branches.

3.4 Bug Tracking System - Bugzilla

A key stage in the software life cycle is code maintenance and bug tracking. Bugzilla [2] is a

free Defect Tracking System that allows the individual or groups of developers to keep track of

outstanding bugs in their software effectively.

Bugzilla creates a web-based central repository to maintain a running list of reported defects

and it status. Some of the following tasks can be carried out with Bugzilla:

• Track bugs and code changes

• Communicate with team-mates

• Submit and review patches

• Manage quality assurance (QA)

6



3.5 Apache Ant

Apache Ant [1] is an open source Java-based build tool. Some of the advantages of using

Ant instead of other widely used building tools such as make, gnumake, nmake or jam are the

following.

• Ant build files are platform independent. Ant resolves any platform dependencies

such as Operating System (OS) commands (e.g. create directories) and how to format

correctly the Java classpath.

• Ant tracks files dependencies. javac compiler is only invoked when source files have

been changed. Thus when compiling files just the changes are recompiled and not ev-

erything.

• Ant Java-based tasks. Ant includes a wide range of tasks, that are very helpful for

customising processes. For example Ant includes a task for running JUnit tests. Also

Ant can be extended by writing custom tasks.

3.6 Software Testing, Unit Test

There are a lots of different kinds of test that can be performed on a software project. In some

cases testing requires extensive feedback from the end users; other form of testing may required

Quality Assurance team, or other extensive resources. Unit test, and more specifically JUnit [4]

is a piece of code dedicated to exercise a very small, and specific functionality of the code to

be tested. Basically it allows us to write a piece of code to test the software’s specific sections

in different situations.

3.7 File Access and Security

One problem not mentioned in the above sections is security and the identification of which

information is publicly accessible and which is not. In open source projects almost every doc-

ument and piece of code is publicly accessible through the Internet. Sometimes one exception

is the code, this from the point of view of who is allowed to modify what or who is allowed

to update code into a given repository. In any case usually downloading code is free and with

no restriction (depending of course on the kind of licence we are dealing with, and the kind

of project). Then there are restrictions in place as to who is authorised to upload and integrate

code. In this case the SSH [6] protocol can be used to allow secure communication between

developers and the server repository.

7



3.7.1 Secure Shell, SSH

SSH is a program for logging and executing commands into a remote machine. It provides

secure encrypted communications between two untrusted hosts over an insecure network. SSH

can use different authentication methods such as RSA (public cryptography) keys. Though

remote log-in is the primary use of SSH, the protocol can be used as a general purpose crypto-

graphic tunnel, capable of copying files, encrypting e-mail connections, and triggering remote

execution of programs.

References

[1] Ant. Apache Ant, 2004. http://ant.apache.org/.
[2] BugZilla. Defect tracking system, 2005. http://www.bugzilla.org/.
[3] CVS. Concurrent Versions System, 2005. https://www.cvshome.org/.
[4] JUnit. Unit Testing, 2005. http://www.junit.org/.
[5] S. Microsystems. Java Documentation Specification, 2005. http://java.sun.com/docs/.
[6] SSH. Secure Shell, 2005. http://www.ssh.com/support/downloads/secureshellwks/non-

commercial.html.
[7] TWiki. Enterprise Collaboration Platform, 2005. http://www.twiki.org/.
[8] A. Vermeulen, S. Ambler, G. Bumgardner, E. Metz, T. Misfell, J. Shur, and P. Thompson. The

Elements of JavaTMStyle. Cambridge University Press, UK, 2000.

8


