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Abstract

Distributed applications can be structured as parties that

exchange messages according to some pre-arranged com-

munication patterns. These sessions (or contracts, or pro-

tocols) simplify distributed programming: when coding a

role for a given session, each party just has to follow the

intended message �ow, under the assumption that the other

parties are also compliant.

In an adversarial setting, remote parties may not be

trusted to play their role. Hence, defensive implementa-

tions also have to monitor one another, in order to detect

any deviation from the assigned roles of a session. This task

involves low-level coding below session abstractions, thus

giving up most of their bene�ts.

We explore language-based support for sessions. We ex-

tend the ML language with session types that express �ows

of messages between roles, such that well-typed programs

always play their roles. We compile session type declara-

tions to cryptographic communication protocols that can

shield programs from any low-level attempt by coalitions

of remote peers to deviate from their roles. Our main result

is that, when reasoning about programs that use our ses-

sion implementation, one can safely assume that all session

peers comply with their roles�without trusting their remote

implementations.

1 Session types for distributed programming

Programming networked, independent systems is com-

plex, because the programmer has little control over the

runtime environment. To simplify his task, programming

languages and system libraries offer abstractions for com-

mon communication patterns (such as private channels or

RPCs), with automated support to help the programmer use

these abstractions reliably and to relieve him from their low-

level implementation details (such as message format and

routing). As an example, web services promote declarative

types and policies for messaging, with tools that can auto-

matically fetch these declarations and set up proxies with a

simple typed programming interface.

From a security perspective, when parts of the system

and some of the remote parties are not trusted, commu-

nication abstractions can be especially effective: relying

on cryptographic protocols, implementations of these ab-

stractions can sometimes entirely shield programmers from

low-level attacks (such as message interception and rewrit-

ing) [1, 2]. However, this is seldom the case in practice, as

security concerns force the programmer to understand low-

level protocol issues.

Beyond simple abstractions for communications, dis-

tributed applications can often be structured as parties that

exchange messages according to some �xed, pre-arranged

patterns. These sessions (also named contracts, or work-

�ows, or protocols) simplify distributed programming by

specifying the behaviour of each network entity, or role. By

agreeing on a common session speci�cation, the parties can

resolve most of the complexity upfront. Then, when cod-

ing a role for a given session, each party just has to follow

the message �ow for this role, under the assumption that the

other parties are also compliant. At run-time, sessions can

�nally be instantiated by mapping roles to actual principals

and their hosts.

Language-based support for sessions is the subject of ac-

tive research [7, 8, 9, 13, 16, 30, 32]. In particular, several

recent type systems statically ensure compliance to session

speci�cations. In their setting, type safety implies that user

code that instantiates a session role always behaves as pre-

scribed in the session. Thus, assuming that every distributed

program that may participate in a session is well-typed, any

run of the session follows its speci�cation.

In an adversarial setting, remote parties may not be

trusted to play their role. Hence, defensive implementa-

tions also have to monitor one another, in order to prevent

any confusion between parallel sessions, to ensure authenti-

cation, correlation, and causal dependencies between mes-

sages and, more generally, to detect any deviation from the

assigned roles of a session. Left to the programmer, this

task involves delicate low-level coding below session ab-

stractions, which defeats their purpose. Instead, we propose

to systematically compile session speci�cations to crypto-

graphic protocols.



In this paper, we explore language-based support for ses-

sions and their implementations, as follows:

1. We design a small embedded language of types for

specifying messages, roles, and sessions, and we iden-

tify a secure implementability condition for these ses-

sions.

2. We extend F# [28] (a dialect of ML [23, 24]) with

distributed communication and sessions, so that type

safety yields functional guarantees: any sent message

is expected by its receiver, with matching payload

types.

3. We compile session types to cryptographic communi-

cation protocols, coded in F#, that can shield our pro-

grams from any low-level attempt by coalitions of re-

mote peers to deviate from their roles. We thus obtain

a secure, functional, distributed implementation of ses-

sions.

4. Our main theorem states that the safety guarantees im-

plied by session types do not depend on the implemen-

tations of any remote peers: from the viewpoint of our

distributed programs, any action that may occur may

also occur in an abstract setting, using a centralized

implementation that enforces all session types.

To our knowledge, this paper provides the �rst secure im-

plementation of session types, both formally and concretely.

It relates the semantics of three languages: at the level of

types, simple processes to specify communication patterns

and payloads; as a source language, a subset of F# with dis-

tributed communications and typed sessions; as an imple-

mentation language, a subset of F# with distributed com-

munications and cryptography.

Our compiler extracts session de�nitions, veri�es that

they meet the secure implementability condition, generates

the corresponding cryptographic protocols, and emits their

code as F# modules. On the other hand, it leaves the code

that uses sessions unchanged, treating the session constructs

of the extended language as ordinary higher-order function

calls to their implementations. Hence, user code calls our

generated code to enter a session and then, for each received

message, generated code calls back user code and resumes

the protocol once user code returns the next message to be

sent. Taking advantage of this calling convention, with a

separately-typed user-code continuation for each state of

each role of the session, we can thus entirely rely on ordi-

nary typing �a la ML to enforce session typing in user code.

(In the following, as we focus on session security, we treat

this important but well-understood aspect of session types

informally.)

The compiled protocols rely on a combination of stan-

dard techniques for authentication and anti-replay protec-

tion. The compiler does not introduce any additional mes-

sage: each abstract session message is mapped to a crypto-

graphic message with the same sender and receiver. Prin-

cipals are authenticated using X.509 certi�cates. All mes-

sages include a unique session identi�er (obtained as the

joint cryptographic hash of its session type, its assignment

of principals to roles, and a fresh session nonce) and a se-

ries of signatures: one signature from the message sender,

plus one forwarded signature from each peer involved in

the session since the receiver's last message (or the start

of the session). At any point in a session, each protocol

role knows exactly which messages to expect and what they

should contain, so we can use compact wire formats and

compile simple, specialized message handlers. Any mes-

sage that deviates from the expected format can be silently

dropped, or reliably detected as anomalous.

The security of automatically-generated cryptographic

protocol implementations crucially relies on formal veri�-

cation. To this end, our language design and prototype im-

plementation build on the approach of Bhargavan et al. [4],

which narrows the gap between concrete executable code

and its veri�ed model. Our generated code depends on li-

braries for networking, cryptography, and principals, with

dual implementations. A concrete implementation uses

standard cryptographic algorithms and networking primi-

tives; the produced code supports distributed execution. A

second, symbolic implementation de�nes cryptography us-

ing algebraic datatypes, in Dolev-Yao style; the produced

code supports concurrent execution, and is also our formal

model. Thus, our security theorems apply directly to ar-

bitrary user code calling our session-generated code calling

our symbolic library code, within a formal model of a subset

of F# (rather than an ad-hoc abstract model of the protocol

loosely related to actual executable code).

Related work Session types have been explored �rst for

process calculi [17, 20, 32], to describe interaction on sin-

gle channels. Behavioral types [9, 21] support more expres-

sive sessions, typed as CCS processes possibly involving

multiple channels. Another type system [6] also combines

session types and correspondence assertions [19]. Recent

works consider applications of session types to concrete set-

tings such as CORBA [29], a multi-threaded functional lan-

guage [30], and a distributed object-oriented language [13].

In particular, the Singularity OS [16] explores the usage of

typed contracts in operating system design and implemen-

tation. In all these works, type systems are used to ensure

session compliance within fully trusted systems, excluding

the presence of an (active, untyped) attacker.

Sessions for Web Services are considered for the WSDL

and WS-SecureConversation speci�cation languages (see

e.g. [3, 8]); Bhargavan et al. [3] verify security guarantees

for session establishment and for sequences of SOAP re-

quests and responses. In recent, independent work, Car-



bone et al. [7] also present a language for describing Web

interactions from a global viewpoint and describe their end-

point projection to local role descriptions. Their approach is

similar to our treatment of session graphs and roles in Sec-

tion 2; however, their descriptions are executable programs,

not types. More generally, distributed languages such as

Acute and HashCaml [26, 12, 5] also rely on types to pro-

vide general functional guarantees for networked programs,

in particular type-safe marshalling and dynamic rebinding

to local resources.

Cryptographic communications protocols have been

thoroughly studied, so we focus on related work on their use

for securing implementations of programming-language ab-

stractions. They can provide secure implementations for

distributed languages with private communication chan-

nels [1, 2]. They can also help support the distributed im-

plementation of sequential languages such as JIF/Split [33],

while preserving high-level, typed-based integrity and se-

crecy guarantees. In a similar vein, the Fairplay [22] sys-

tem compiles high-level procedural descriptions toward se-

cure two-party computations. In other work, type-based

secrecy and integrity guarantees are enforced by a combi-

nation of static typechecking and compilation to low-level

cryptographic operations [15].

Protocol synthesis and transformation have been ex-

plored in other settings: for instance, the Automatic Pro-

tocol Generation (APG) tool [25] generates authentication

protocols then veri�ed using Athena [27] and, more re-

cently, Cortier et al. [11] verify the correctness of a generic

transformation to protect a protocol from active attacks (but

not from compromised participants).

Contents Section 2 de�nes two views of sessions, as global

communication graphs and as local role de�nitions. Sec-

tion 3 gives the (fairly standard) syntax and semantics for

our source and target languages. Section 4 outlines the li-

braries that embed our assumptions on cryptography and

principals, used by our implementation. Section 5 presents

our optimized cryptographic protocol, as a re�nement of a

basic, intuitively secure protocol. Section 6 describes our

implementation code for sessions. Section 7 states our main

results, formally showing the correctness of the implemen-

tation. Section 8 concludes.

The appendix provides additional details on our imple-

mentation, including listings for selected libraries. A com-

panion paper also includes a detailed programming example

and all proofs [10].

2 Sessions

In this paper, a session is a static description of the valid

message �ows between a �xed set of roles. Every message

is of the form f(ev), where f is the message descriptor, or

label, and ev is the payload. The label indicates the intent of

the message and serves to disambiguate between messages

within a session. (Throughout the paper, both ev and (vi)i<n
denote a comma-separated list of values v0, . . . , vn�1; we

use (vi)i<n instead of ev when we need to refer speci�cally

to indexed values.)

We denote the roles of a session by the set R =
fr0; : : : ; rn�1g for some n � 2. By convention, the �rst

role (r0) sends the �rst message, thereby initiating the ses-

sion. In any state of the session, at most one role may send

the next message�initially r0, then the role that received

the last message. The session speci�es which labels and

target roles may be used for this next message, whereas the

selection of a particular message and payload is left to the

role implementation.

As a running example, we consider a customer role C

arranging the delivery of an item with a store role S. This

arrangement may include several negotiation rounds, until

both C and S agree on the details, for instance the delivery

date and time. In addition, a third notary of�cer role O may

take part in the session to record the transaction, preventing

further disputes.

We de�ne two interconvertible representations for ses-

sions. A session is described either globally, as a graph

de�ning the message �ow, or locally, as a process for each

role de�ning the schedule of message sends and receives.

The graph describes the session as a whole and is conve-

nient for discussing security properties and the secure im-

plementability condition. More operationally, local role

processes are the basis of our implementation; they provide

a direct typed interface for programming roles.

Global session graphs We represent sessions as directed

graphs where nodes are session states tagged with their ac-

tive role, and edges are labelled with message descriptors.

Formally, a session graph G = hR;V;L;m0 2 V; E �
V � L � V; r : V ! Ri consists of a �nite set of roles

R = fr0; : : : ; rn�1g, a set of nodes m;m
0;mi 2 V and a

set of labels f; g; l 2 L, with initial nodem0, labelled edges

(m; f;m0) 2 E , and a function r from nodes to roles such

that r(m0) = r0 2 R. We require that session graphs meet

the following properties:

1. Edges have distinct source and target roles: if

(m; f;m0) 2 E , then r(m) 6= r(m0).

2. Two different edges cannot have the same label: if

(m1; f;m
0

1) 2 E and (m2; f;m
0

2) 2 E , thenm1 = m2

andm0

1 = m0

2.

Property 1 disallows a role from sending a message to it-

self; such a message would be invisible to the other roles

and should not be part of the session speci�cation. Prop-

erty 2 ensures that the intent of each message label is unam-

biguous; the label uniquely identi�es the source and target
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Figure 1. Graphs for (a) a basic session, (b) a
session with a cycle, and (c) a three-party
session.

session states. Note that one can always transform graphs

so that they meet Property 2 by renaming message labels

that occur on multiple edges.

As usual, a path is a sequence of connected edges. By

Property 2 above, a sequence of labels uniquely de�nes a

path, so we just write ef to denote paths. To emphasize the

�rst node of a path, we write a pair (m; ef). In particular,

paths of the form (m0; ef), where m0 is the initial node of

the graph, are called initial paths; they represent possible

message sequences for the session. We say that a role r is

active on a path ef when r is the role of any source node of

a label of the path.

Figure 1 displays three increasingly complex session

graphs for our running example:

(a) The customer C sends a Request message to store S,

which may reply with either an Accept message or a

Reject message.

(b) As a re�nement to (a), S may either Reject as before,

or accept the request and propose a delivery time by

sending an Offer message. C may then either Change

the delivery time or approve it by sending an Accept

message.

(c) A new of�cer role O acts as a notary for the transac-

tion. Initially, C sends its Request to O, which for-

wards this request to S. S negotiates with C as before,

and �nally O receives either a Con�rm from S indicat-

ing that the request is successful, or an Abort from C

indicating that the request is void.

In session (a), there are only two paths from the initial node;

hence, only two message sequences are allowed. In ses-

sions (b) and (c), however, the negotiation can be repeated

inde�nitely, so the number and the length of possible mes-

sage sequences are unbounded.

Local session roles We now de�ne a syntax for sessions,

as a map from roles to role processes that specify the local

operational behaviour of each role in the session:

� ::= Payload types

int j string base types

p ::= Role processes

!(fi : e�i ; pi)i<k send

?(fi : e�i ; pi)i<k receive

��:p recursion declaration

� recursion

0 end

� ::= Sessions

(ri : e�i = pi)i<n initial role processes

Role processes can perform two communication opera-

tions: send (!) and receive (?). When sending, the pro-

cess performs an internal choice between the labels fi for

i = 0; : : : ; k � 1 and then sends a message fi(ev) where

the payload ev is a tuple of values of types e�i, a possibly

empty tuple of int or string types. Conversely, when receiv-

ing, the process accepts a message with any of the receive

labels fi (thus resolving an external choice). The �� con-

struction sets a recursion point which may be reached by

the process �; this corresponds to cycles in graphs. Finally,

0 represents a completion of the role for the session. On

completion, a session role produces values whose types e� i
are speci�ed on the process role ri : e� i = pi. For conve-

nience, we often omit type annotations when the payload

or return type tuple is empty. Our concrete syntax uses the

keyword `mu' for � and keywords `session' and `role' in

front of session and role de�nitions.

Given the role processes for a session, if the sends and

receives are correctly matched, we can construct a corre-

sponding session graph. Appendix A details this construc-

tion; the companion paper [10] also gives the reverse con-

struction from session graphs to role processes.

We illustrate our local role syntax for the session graphs

of Figure 1(a,b). Session S1 corresponds to graph (a), with

role customer standing for C and role store standing for S.

Session S2 uses recursion to represent the negotiation loop

of graph (b).

session S1 =

role customer = !Request:string; ?(Reject + Accept)

role store:string = ?Request:string; !(Reject + Accept)

session S2 =

role customer = !Request:string;mu X.

?(Reject + Offer:string;!(Change:string;X + Accept))

role store:string = ?Request:string;mu X.

!(Reject + Offer:string;?(Change:string;X + Accept))

We equip role processes with a simple labelled semantics
that describes their execution, with labels � that range over

f , f with f a message label. We identify roles up to �-
unfolding, so our semantics has just two rules for sending
and receiving:

(SEND) !(fi : e�i ; pi)i<k fi�!r pi

(RECEIVE) ?(fi : e�i ; pi)i<k fi�!r pi



Traces of the labelled semantics represent possible series of

actions for these roles. For example, a complete trace for

customer in session S1 is:

!Request:string; ?(Reject + Accept)
Request
����!r

?(Reject + Accept)
Accept
���!r 0

Distributed session runs At runtime, a session run in-

volves processes running on hosts connected through an un-

trusted network. Each process runs on behalf of a principal.

In general, a principal may be engaged in multiple sessions

with other principals, may play multiple roles within a ses-

sion run, and may also communicate with other principals

outside the session.

A run of a session S begins as a principal P0 initiates it,

taking its initial role r0, selecting other principals to play

the other roles, and sending a �rst message. If P0 picked

the principal Pi to play role ri, then Pi joins the session

run in role ri only when it receives the �rst message sent

to this role. The session run proceeds by exchanging mes-

sages between these principals until all role processes have

completed, at which point the run terminates. We consider

implementations that enjoy �message transparency�, that is,

every message exchange in a session is implemented as a

single message exchange on the network.

As an example, a principal Alice may begin a run of the

session S1 as a customer. Alice computes a unique ses-

sion run identi�er s, picks the principal Bob to play the

role of store, and sends the �rst message Request(v), for

some string v, to Bob. (All messages implicitly contain the

session identi�er s.) On receiving the message, Bob joins

the running session s as a store, sends either a Reject or an

Accept message back to Alice, and completes its part of the

session. After receiving the response, Alice completes its

role process and the session run s is terminated. This de-

scribes a session execution in which every principal is com-

pliant. If a principal is malicious, however, it may deviate

from its role. We consider a threat model where some of the

principals participating in a session may be malicious and

may collude with an attacker that also controls the network,

and can thus intercept, modify, and replay all messages.

Session integrity We say that a distributed session imple-

mentation preserves session integrity if during every run, re-

gardless of the behaviour of the malicious principals or the

network, the process states at the compliant principals are

consistent with a run where all principals seem to comply

with all sessions. Intuitively, every time a compliant prin-

cipal sends or accepts a message in a session run, such a

message must be allowed by the session graph; conversely,

every time a malicious principal tries to derail the session

by sending or replaying an incorrect message, this message

must be ignored.

Session integrity requires that all message sequences ex-

changed at compliant principals are consistent and comply
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Figure 2. (a) A session graph with a vulnera-
ble fork and (b) its safe counterpart.

with the session graph. For instance, in a run of the session

graph of Figure 1(c), a compliant of�cer Charlie should ac-

cept a Con�rm from a store Bob only if a customer Alice

previously sent an Accept for the same session run to the

store Bob. Such properties on message sequences can also

be interpreted as injective correspondences between mes-

sage events [31] (see also Appendix C).

However, if in a session run, some malicious principals,

possibly in collusion with the network-based opponent, suc-

ceed in confusing a compliant principal into accepting or

generating a message sequence that deviates from the ses-

sion, we say that this run constitutes an attack against ses-

sion integrity. In the example above, if the store Bob is

malicious, it may Con�rm a transaction to Charlie, without

ever completing its negotiation with Alice, hence causing

the compliant principals Alice and Charlie to have incon-

sistent session states. To avoid this attack, Charlie would

typically require further cryptographic evidence from Bob.

Even if all principals are compliant, a network-based op-

ponent could confuse them by mixing messages from dif-

ferent session runs, or by replaying old messages. If in our

example session above, the customer Alice sends a Change

to store Bob, that then sends a Reject to the of�cer Charlie,

a network-based opponent may intercept the Reject and re-

play an old Offer to trigger a new iteration of the loop.

Such attacks, as well as simpler attacks on the integrity of

message payloads, are reminiscent of common Dolev-Yao-

style [14] attacks against (�awed variants of) cryptographic

protocols; indeed, such protocols can be seen as particular

sessions.

A secure implementability condition for sessions For

some session graphs, it is dif�cult to rule out certain attacks

without either trusting some principals, or introducing ad-

ditional messages, or relying on a trusted party.

Consider for instance the session of Figure 2(a), where

S may send either a Reject to C or an Accept to O. Unless

C and O exchange some information, they cannot prevent a

malicious S from sending both messages, thereby breaking

the session speci�cation.

To avoid such cases, we formalize a secure imple-

mentability condition as a third property of session graphs,

in addition to Properties 1 and 2 given above:



3. For any two paths ef1 and ef2 starting from the same

node and ending with roles r1 and r2, if neither r1
nor r2 are in the active roles of ef1 and ef2, then r1 = r2.

Property 3 is trivially met for sessions with two roles; it ex-

cludes only some particular sessions where messages are

not seen by all roles, like the vulnerable session of Fig-

ure 2(a). There, the principals instantiating the roles reach-

able on the paths ef1 and ef2 may form a coalition (consisting

of just S in this case) that attacks both r1 and r2 (C and O

in the �gure) by contacting them simultaneously. Neverthe-

less, such vulnerable session graphs can be transformed to

equivalent ones that meet Property 3, at the cost of insert-

ing additional messages. Figure 2(b) shows a safe coun-

terpart of the vulnerable session of Figure 2(a), in which

message Accept is split into two, Accept1 and Accept2, and

S is obliged to contact C no matter which branch is taken.

Appendix B shows the general transformation.

In the rest of this paper, we consider sessions that meet

Properties 1�3, and we describe distributed implementa-

tions that preserve their integrity.

3 Language speci�cation

We now extend ML with typed sessions. We follow the

concrete syntax of F#, a dialect of ML, to which we add

the syntax for session type de�nitions. Formally, we give a

semantics only to a subset of this language (which we call

F+S) with primitives for both sessions and channel-based

communications. We compile programs in this language to

a language without the session constructs (which we call F).

T ::= Type expressions

t type variable

int; string; unit base types

T chan channel type

T1 ! T2 arrow type

v ::= Values (also used as Patterns)

x variable

0, 1,. . . , Alice, , . . . constants for base types

l; c; n; : : : names for functions, channels, nonces

f(v1; : : : ; vk) constructed term (when f has arity k)

e ::= Expressions

v value

l v1 : : : vk function application

match v with (jvi ! ei)i<k
value matching

0 inert expression

let x = e1 in e2 value de�nition

let (li x0 : : : xki = ei)i<k in e

mutually-recursive function de�nition

type (ti = (jfji of eT ji)ji<ki)i<k in e

mutually-recursive datatype de�nition

session S = � in e session type de�nition

S:rb ev (v) session entry

s:p(e) session role (run-time only)

E[�] ::= Evaluation contexts

[�] top level

let x = E[�] in e2 sequential evaluation

s:p(E[�]) in-session evaluation (run-time only)

P ::= Processes

e running thread

P jP parallel composition

The grammar de�ned by T , v, and e (except for 0 and the �-

nal three session-related constructs) generates a simple sub-

set of ML; this is the language we call F. Remark that 0

corresponds to an expression that will not reduce anymore.

Type expressions T include constructed types t, base types

int, string and unit, channel types T chan (with payload

type T ), and arrow types. Channel types T chan are in-

cluded only for compatibility to the concrete F# language;

our formal semantics is in fact untyped, using simply name

instead of typed channels; this allows us to reason about

arbitrary opponents. Values v include constants, functions,

and terms built with type constructors. We assume given

a �nite set of principal constants, such as Alice and Bob,

which are implemented as strings.

Our language has four pi-calculus-like primitive func-

tions: new, send, recv, and fork, to which we give a se-

mantics below. It also has simple core libraries for func-

tional data, including booleans, tuples, lists and functional

records (as syntactic sugar for tuples). We omit their stan-

dard de�nitions.

F+S embeds the session types � of Section 2, as fol-

lows. F+S code can de�ne named session types S = �; it
can enter such sessions in a given role r using the expression

S:rb ea (e). In case r is the initial role of the session, the �rst
argument ea is a tuple of principals that binds all roles for the

session and e is a message send; otherwise, ea is the single

principal that attempts to join the session in role r and e is a

message handler. A message handler is a tuple (concretely

implemented as a record) of continuations for each message

that the role may receive in its current state, whereas a mes-

sage send is an expression that yields a pair of a message

to be sent and a message handler to receive the next mes-

sage, if any. Their structure is illustrated in the example

below. Note that our syntax for session entry expressions

is consistent with F# syntax for function application, where

sessions S are implemented as modules containing func-

tions r for each role, and message labels f are implemented

as datatype constructors. In our semantics, session entry

expressions reduce to active session roles s:p(e0), where s
ranges over unique session identi�ers, p is the current role

process, and e0 is the current expression for the role: either

a message-send expression or a message-handler value, de-

pending on p. (In session entries S:rb, the optional mark b

will be set to � to mark that the session is entered by the

opponent; this mark is used to specify security despite the

compromise of some principals.)



As an example, the following F+S code initiates session

S1 of Section 2 as a customer:

let handle accept a r =

printf "The request has been accepted." in

let handle reject a r =

printf "The request has been rejected." in

S1.customer

fcustomer=``Alice''; store=``Bob''g
(Request("12 May 2007",

f hAccept = handle accept; hReject = handle reject g))

In this code, the �rst argument to the customer role func-

tion instantiates the customer and store roles with prin-

cipals Alice (the running principal) and Bob (some re-

mote store). The second argument is the user code for the

customer role: it de�nes a Request to be sent with pay-

load "12 May 2007" and handlers (hAccept, hReject)

for each of the two messages Accept and Reject that may

be received next.

Semantics We de�ne a labelled semantics with an explicit

store �, that keeps track of generated names and active func-

tion and type de�nitions, plus, for programs with sessions,

session type de�nitions and information about running ses-

sions. Concretely, � contains names n; types (ti = (jfji of
eT ji)ji<ki)i<k; function de�nitions (li x0 : : : xki = ei)i<k;
session types S = �; and running sessions s ea (�) : S,
where ea are the principals for all roles, � is a set of roles

activated so far, and S is the session type variable name.

We use ] to express extensions of � with disjoint domain.

(Before extending �, we may use renaming to obtain dis-

tinct constructor, function, type, and session type names).

Transitions are either unlabelled (implicitly labelled with

the silent action) or labelled with an input z v or an output

z v, where z is either a channel name (e.g. c), or a session

name concatenated with a message label (e.g. sf; sf ), and

v is a value. We let �, � range over labels, and let ',  

range over series of labels.
For F expressions (without sessions yet), we give a

small-step semantics as follows:

(APPLY) �; l v0 : : : vk �!e �; efx0 = v0; : : : ;xk = vkg
when (l x0 : : : xk = e) 2 �

(MATCH) �;match v with (jvi ! ei)i<k �!e �; e0


when v = v0
 for some substitution 


(MISMATCH) �;match v with (jvi ! ei)i<k �!e

�;match v with (jvi ! ei)0<i<k otherwise

(LETVAL) �; let x = v in e �!e �; efx = vg
(LETFUN) �; let (li x0 : : : xki = ei)i<k in e �!e

� ] f(li x0 : : : xki = ei)i<kg; e
up to renamings of li

(TYPE) �; type (ti = �i)i<k in e �!e � ] f(ti = �i)i<kg; e
where �i = (jfji of eT ji)ji<ni
up to renamings of ti; fji

(FRESH) �; new () �!e � ] fng; n

(SEND) �; send c v
c v
��!e �; () when c 2 �

(RECV) �; recv c
c v
��!e �; v when c 2 �

This semantics is standard; labels are used only to col-

lect calls to send and recv; the rules (FRESH), (LETFUN),

and (TYPE) extend �.
For processes, we have rules for forking new threads and

communicating on both sides of a parallel composition.

(EVAL)
�; e

�
�!e �

0; e0

�;E[e]
�
�!P �0; E[e0]

(FORK) �;E[fork l] �!P �;E[()] j l ()

(COMMR)
�; P

z v
��!P �0; P 0 �0; Q

z v
��!P �00; Q0

�; P jQ �!P �00; P 0 jQ0

(COMML)
�;Q

z v
��!P �0; Q0 �0; P

z v
��!P �00; P 0

�; P jQ �!P �00; P 0 jQ0

(PARR)
�; P

�
�!P �0; Q

�;R jP
�
�!P �0; R jQ

(PARL)
�; P

�
�!P �0; Q

�; P jR
�
�!P �0; Q jR

The communication rules (COMMR) and (COMML) com-

bine a send and a receive action, which in turn may involve

session transitions that modify � (as shown below).

For sessions, we let � range over S:rb ea and s:p, that

is, session entries parametrized by principals as well as run-

ning sessions.

We �rst de�ne auxiliary transitions �; �
�
�!s �

0; s:p, from

role transitions p
�
�!r p

0 and with the same labels, in order

to keep track of running sessions in the store:

(INIT)
p0

g
�!r p

0 S = (ri : e�i = pi)i<n 2 � s fresh

�; S:rb0 (ai)i<n
g
�!s � ] fs (ai)i<n fr0g : Sg; s:p0

(STEP)
p

�
�!r p

0

�; s:p
�
�!s �; s:p

0

(JOIN)

pj
f
�!r p

0 S = (ri : e�i = pi)i<n 2 �

�0 = � ] fs (ai)i<n � : Sg

�0; S:rbj aj
f
�!s � ] fs (ai)i<n (� ] frjg) : Sg; s:p

0

Rule (INIT) initiates a session, adding a new record

s (ai)i<n fr0g : S to � with s being a freshly generated

session name. Rule (JOIN) requires that (1) rj for some

j < n is a role for the session S; (2) S is the session type

of s; (3) the set � of already-running roles for s does not

contain rj ; and (4) the joining principal aj matches the prin-

cipal for rj in s. The label f records the �rst input label

for pj according to S.



For sessions in expressions (hence in processes), we have:

(SESSION) �; session S = � in e �!e � ] fS = �g; e

up to renamings of S

(SENDS)
�; �

g
�!s �

0; s:p safe �

�; � (g(ev); w)
sg ev
��!e �

0; s:p (w)

(RECVS)
�; �

g
�!s �

0; s:p s ea � : S 2 � safe �

�; � (w)
sg ev
��!e �

0; s:p (w:g ea ev)
(ENDS) �; s:0 (v) �!e �; v

where the predicate safe �, de�ned later in Sec-

tion 4, depends on the principal that enters the ses-

sion. Rule (SESSION) adds a session type de�nition to �;

Rules (SENDS) and (RECVS) enable role processes to

send and receive messages using the session transitions;

Rule (ENDS) returns the �nal value computed by a role pro-

cess.

4 Libraries for cryptography and principals

We now describe the design and interfaces of our li-

braries for cryptography and principals, coded as F# mod-

ules. (Formally, a F# moduleM is just an expression con-

text that binds types, session types, values, and functions;

we write M M 0 as syntactic sugar for M [M 0[ ]].) We fol-

low the approach of Bhargavan et al. [4] and provide a sym-

bolic implementation in addition to the standard concrete

implementation of these libraries. The symbolic implemen-

tation, written in the formal subset F of F# (see Section 2),

is an important part of our security model. Its code is listed

in Appendix D.

Cryptography The cryptographic library includes the fol-

lowing types and functions, plus a few auxiliary formatting

functions such as concat and utf8.

type bytes

type keybytes

val nonce: name! bytes

val hash: bytes! bytes

val genskey: name! keybytes

val genvkey: keybytes! keybytes

val sign: bytes! keybytes! bytes

val verify: bytes! bytes! keybytes! bool

It has abstract types bytes for bitstrings and keybytes for

cryptographic keys, and functions for constructing mes-

sages: nonce takes a (typically fresh) name and returns a

nonce; hash returns the cryptographic hash of a message;

genskey returns the signing key associated with a name

(used as a seed); genvkey returns the veri�cation key as-

sociated with a signing key; sign signs a message using a

key, and verify checks a signature.

The concrete implementation of this library uses stan-

dard cryptographic algorithms. For example. the datatype

bytes is implemented as a byte array, and sign is imple-

mented as an asymmetric signing function (RSA-SHA1).

The symbolic implementation, on the other hand, uses

algebraic datatypes and datatype constructors to model

cryptographic operations. For example, the type bytes is de-

�ned as an algebraic datatype, and sign is implemented as

the application of a binary constructor Sign that represents

signed bytes. (Both bytes and keybytes types are abstract

in the interface, and hence values of these types can be ac-

cessed only through the exported functions, preventing e.g.

trivial key leakage by pattern matching on signatures.)

Executing code linked with our symbolic libraries is use-

ful for debugging. More importantly, the symbolic imple-

mentation encodes our formal model of cryptography that

is used to establish our security results in the subsequent

sections. Speci�cally, we consider a variant of the stan-

dard Dolev-Yao threat model: the opponent can control cor-

rupted principals (that may instantiate any of the roles in a

session), intercept, modify, and send messages on public

channels, and perform cryptographic computations. How-

ever, the opponent cannot break cryptography, guess secrets

belonging to compliant principals, or tamper with commu-

nications on private channels. (We rely on private channels

only for simplicity; we could use instead, for instance, mes-

sage authentication codes.)

Principals This library manages principals and their data;

our implementation uses it to exercise the two privileges

associated with the principals that play session roles, that is,

signing values and receiving messages. Principals are just

strings. (For clarity we use the type alias principal instead

of type string.) The interface contains:

val skey : principal! keybytes

val vkey : principal! keybytes

val psend : principal! bytes! unit

val precv : principal! bytes

val safe : principal! bool

val psend� : (principal � bytes) chan
val chans� : (principal � bytes chan) list
val skeys� : (principal � bytes) list

Functions skey and vkey return the signing and veri�cation

keys of a principal, respectively. (In the concrete implemen-

tation, we fetch keys from a local X.509 store, and return

an error if no certi�cate is available.) Functions psend and

precv provide message delivery with replay protection (ex-

plained below): psend a v asynchronously sends message v

to principal a, whereas precv a receives a message sent to a.

Calling skey a and precv a is a's privilege.

In the model, we assume a �xed �nite population of prin-

cipals and an arbitrary but �xed predicate safe that indicates

whether a principal is compliant or possibly corrupted. This

predicate is used only to specify the security properties that

hold for compliant principals�clearly, our implementation



could not guarantee the security of principals whose sign-

ing keys are compromised. To this end, in our semantics,

only safe principals may enter a session in compliant code,

and only unsafe principals may enter a session in oppo-

nent code. Formally, in rules (SENDS) and (RECVS), we

let safe � hold if and only if either � = S:r (ai)i<n and

safe a0, or � = S:r� (ai)i<n and not safe a0, or � = s:p.

Accordingly, opponent code is not given direct access to

psend, precv and skey. Instead, it is given a channel psend�

for sending messages to safe principals, a list chans� of

channels to receive messages sent to unsafe principals, and

a list skeys� of signing keys belonging to unsafe principals.

Using these, the attacker can receive messages sent to any

unsafe principal and sign any value on their behalf. Hence,

the initial knowledge of our Dolev-Yao opponent (called

K in Section 7) consists of the values psend�, chans� and

skeys�, and all the functions above except for psend, precv

and skey.

Anti-replay cache Like any protocol with responder roles,

our protocol relies on dynamic anti-replay protection for the

messages that may cause principals to join a session, that is,

the �rst messages they may receive in their roles. To prevent

such replays, each principal maintains a cache that records

pairs of session identi�ers and roles for all sessions it has

joined so far. The cache for principal a is used only to �lter

incoming messages through the call to an auxiliary func-

tion antireplay that can determine from the message header

whether the message may need replay protection (by check-

ing its header) and, when it is the case, which cache entry

is associated with the message. In the former case, the mes-

sage is transmitted. In the latter case, if the entry already

occurs in the cache for a, the message is ignored; other-

wise, the message is transmitted and the entry is added to

the cache. The code of psend, precv and antireplay is listed

in Appendix D. This simple mechanism is veri�ed within

our formal model. It can be re�ned using any standard,

timestamp-based technique to bound the size of the cache

while preserving its correctness.

5 Protocol outline

We now outline the security protocol used to enforce ses-

sion compliance. (Section 6 describes its compiled imple-

mentation.) We present this protocol (called Third Protocol

below) as a re�nement of simpler, intuitively secure pro-

tocols (First and Second protocols below), which are pre-

sented just as explanatory steps. Exploiting the session

structure and the implementability condition of Section 2,

our �nal, optimized protocol has compact messages and re-

quires minimal message processing.

These protocols implement sends and receives by con-

verting them to and from low-level bytes messages that con-

sist of a session identi�er, a payload, and a series of signa-

tures (depending on each protocol as described below). The

identi�er is computed as s = hash(D ea N ), where D ea N

is the tagged concatenation ofD = hash(�), a digest of the
whole session type de�nition; ea, the principals assigned to

the session roles; and N , a nonce freshly generated by the

initiator. Every initial message also includes ea and N .

First protocol: signing the full session history In order

to prevent any misbehaviour from any of the principals par-

ticipating in a session, every message may include a record

of the whole session history, countersigned by the sender of

every message that extends the session. Every receiver can

then verify the validity of incoming messages by replaying

the recorded path on the session graph and verifying all its

signatures.

Although intuitively correct, this solution is inef�cient,

as it requires both senders and receivers to do signi�cant

work, since session runs (and hence their records in mes-

sages) may be arbitrarily long in the presence of cycles.

Second protocol: signing message labels Since the ses-

sion type is statically known, and since Property 2 of Sec-

tion 2 ensures that every label has unique source and tar-

get nodes, each sender may simply sign the message label,

rather than countersign the whole session record. Thus, ev-

ery sender may forward previously-signed labels and ap-

pend its own signed label to every message. Speci�cally,

every message now carries a series of cryptographic sig-

natures, each computed as ts = sign(s f t,skey(a)) where

s f t is the concatenation of the session identi�er s, the

message label f , and a logical timestamp t and where a is

the principal assigned to the sending role of f , determined

by s. The timestamp disambiguates signatures for labels

occurring in cycles; when receiving a message, a series of

signatures is accepted only if they have increasing times-

tamps larger than the last-received message.

Although session records are now more compact, and

their processing may be partially cached, receivers still need

to dynamically replay session histories.

Third protocol: signing visible labels Next, we show how

to avoid any dynamic graph computation. We rely on the

following notion of visibility.

Let eg be the sequence of labels on a given path from

the initial node m0 to a node m with role r. Let ef be the

sequence of labels obtained from eg by erasing every label g

(1) whose sending role is r; or (2) that is followed by a label

whose sending role is either r or g's sending role. (Thus, ef

retains the last label sent by every role other than r, if any,

along the path eg.) We then say that ef is visible fromm.

For example, for session (c) of Figure 1, the bottom-right

node has a single visible sequence Accept-Con�rm; the

central node has two visible sequences, Request-Contract

(along the initial path) and Change (through the cycle).



Relying on visibility information computed at session-type

compile-time, we obtain an ef�cient protocol with compact

messages. To send a message with label f from node m

to m0 in the session graph, we compute (at compile-time)

the series of labels egf that is visible from m0 on a path

with �nal label f . The message for f then includes the

corresponding series of signatures, consisting of signatures

previously-received from other roles for eg, plus a new sig-

nature for f computed by the sender. Conversely, to verify

a bytes message received at nodem, we pre-compute all se-

ries of visible labels at m, and accept a message only if it

is well-formed and has valid signatures that match a series

of visible labels. Hence, message sizes and receiver checks

are statically bounded by the number of roles.

6 Compiler implementation

In this section we present a translation from the ses-

sion de�nitions of Section 2 to generated code for each of

their roles, built on top of the libraries of Section 4. For

a given valid session, we describe the generated interface,

then present the generated protocol, and �nally provide its

implementation.

Generated session-type interface We �rst generate type

declarations, including a record type principals that maps

roles to principals and, for each role, mutually recursive

types that re�ect the message �ow of a session from this

role's viewpoint. We generate a type for each message sent

or received by the role. For sending, we use a sum type with

a constructor for each message that the role may send at this

point, along with the corresponding continuation type. For

receiving, we use a record type, with a message-handler for

each message that the role may receive at this point. These

types are mutually recursive when there is a cycle in the

graph.

We omit a general de�nition, and list instead the types

for the customer and store roles of session S2 in Section 2.

type principals = f customer: principal; store: principal g

type msg0 = Request of (string � msg1)

and msg1 = f hReject : principals! unit! unit;

hOffer : principals! string!msg2g
and msg2 = Change of (string � msg1) j Accept of (unit � unit)

type msg3 = f hRequest : (principals! string!msg4) g
and msg4 = Reject of (unit � string ) j Offer of (string � msg5)

and msg5 = f hChange : (principals! string!msg4) ;

hAccept : (principals! unit! string) g

For each role of the session, we also generate a session-

entry function that inputs principal information and the

user's message (or message handler). For session S2, these

functions have the following types.

val customer: principals!msg0! unit

val store: principal!msg3! string

We rely on ordinary ML typing of the session-entry pa-

rameters against the generated msgir types to ensure that

the nested messages and handlers provided by the user will

comply with role r for the whole session. Hence, inasmuch

as all principals enter sessions by calling our typed inter-

face, all their sessions will be correctly executed. In the rest

of the section, we describe more dynamic implementation

mechanisms that provide guarantees even when some prin-

cipals are compromised.

Role implementation In our implementation, the dynamic

state for each active role consists of a principal assign-

ment prins, the nonce (used in the session identi�er), the

logical time (the timestamp of the last issued signature), and

a record tsigs of the last-received veri�ed signature for each

role of the given session type �, if any.

type tsig = f tstime: int; tsval: bytes g
type tsigs = f

�
r: tsig;

�
for each (r :e� = p) 2 � g

type state =

f prins: principals; nonce: bytes; time: int; sigs: tsigs g

In addition, much like in code implementing control au-

tomata, we generate distinct, mutually-recursive functions

indexed by series of labels, so that the current node and

stored signatures for the role are always statically known

when we generate the code for each of these functions. To

generate a message with label f in a state where eg denotes

the series of labels for the signatures currently stored in

tsigs, we implement:

val gen eg f : state � payload(f)! bytes

val gensig p f : state! bytes

The function gensig p f computes a signature ts for

label f with stored timestamp time, as described above;

gen eg f computes a message that carries some payload

for f and includes a series of signatures for the labels visi-

ble by the intended receiver, with a last signature computed

by gensig p f . To check that a received message contains

valid signatures for the visible labels eg0 in a state with stored

labels egf , we also implement

val chk egf eg0 : state � bytes! state � payload(eg0)
where f is the last label sent by the role, and can be omitted

when eg is empty (that is, when receiving a �rst message for

the role) and payload(eg0) is the payload type for the last

label of eg0, written last(eg0), as speci�ed in the session type.
For any path in the graph, there is a single active role r,

which can send a message to a role r0 with label selected

from the set F that collects the possible outgoing labels at

this particular node; moreover, we can pre-compute the se-

ries of stored labels eg for this active role. For each such eg,

our compiler generates the following sending and receiving



functions (the text in italics speci�es how the compiler pro-

duces the code):

for all reachable eg with corresponding r; r0;F :h�
let recjand

�
send eg st msg = match msg with

for each f 2 F :
�
j f (v,w)!

let a' = st.prins.r0 in let m = gen eg f st v in psend a' m ;

if the next node is terminal: w else: recv egf st w
�i

for all reachable eg with r; r0;F and for each f 2 F :h
and recv egf st w = let a = st.prins.r in

let m = precv a in verify egf st m w

and verify egf st m w = let path = visible egf m in

match path with

for each eg0 s.t. egf + eg0 visible from a receiving node for r:�
j t eg0 ! let st,payload = chk egf eg0 st m in

if the next node is terminal: w.last(eg0) st.prins payload
else: let next = w.last(eg0) st.prins payload in

send eg+eg0 st next �i

The function send eg takes st and msg = f (v,w) as pa-

rameters, for some label f 2 F ; it sends f (v) to r0 and calls

recv egf st with the next received message given by precv a

and the message handlers w. (If the process terminates after

the send, it simply returns w.) The function recv egf st calls

the function verify egf st on the message it has received.

This function extracts from the message the partial history

(i.e. the partial path) it contains and veri�es that it matches

one of the possible partial paths t eg0 the role can expect to

encounter in this state. Speci�cally, the function visible egf

matches the message against every acceptable partial his-

tory, pre-computed as the visible sequences at node egf (see

Section 5). Finally, the incoming message m is checked

to include the corresponding series of valid signatures, and

send eg+eg0 is invoked to send the next message in the up-

dated state (or, if the role terminates after the receive, the

function simply returns the value produced by w). Here,
ef+eg is the sequence of labels obtained from efeg by erasing

from ef any label that has the same sending role as a label

in eg. If any test fails while processing the message, the ses-

sion is stuck, with a 0 expression.

Relying on these de�nitions, our implementation exports

functions (ri)i<n and their types; these top-level functions

rely on auxiliary functions init and join that initialize the

state when a role initiates or joins the session:

val init: principals! unit state

for the initiator role r0:�
let r0 prins msg =

let st = init prins in send ; st msg
�

val join: bytes! unit state � bytes
for all other roles r:�
let r self w =

let m0 = precv self in let st,m = join m0 in

if st.prins.r = self then verify ; st m w
�

7 Correctness results

In order to express and prove the correctness of our im-

plementation, we �rst use a reduction and testing seman-

tics and then, more precisely, use a labelled semantics that

explicitly tracks all interactions with the opponent. (The

labelled semantics is also used to structure the security

proofs.) So, we relate the behaviour of high-level processes,

of the form L eS U O, to their implementations LMeS U O0,

where

� L consists of the symbolic libraries of Section 4;

� eS is a series of session declarations; MeS is their im-

plementation, as in Section 6;

� U represents code that use sessions but does not access

Prins;

� O represents an F+S opponent that can access the �op-

ponent� interface of Prins, including recv� and skey�,

but not recv and skey and may use S:r� session entries;

� O0 is similar to O at the F level, with similar assump-

tions; in the implementation, we assume that O0 does

not accessMeS�this entails no loss of generality, since

O0 may in particular include its own copy of our im-

plementation.

The conditions on U , O, and O0 can be checked easily (e.g.

by typing). Their code can freely use cryptography, and ex-

change messages on shared channels. This re�ects our intu-

ition that U andO,O0 may be located on different machines

connected by a public network.

Our �rst security theorem is stated in terms of may test-

ing. As customary in process calculi, we use a special chan-

nel ! to mark global failure. We say that a con�guration

;; P may fail when ;; P �!P
�
!()
��!P.

Theorem 1 If LMeS U O0 may fail in F for some O0 where

! does not occur, then L eS U O may fail in F+S for someO

where ! does not occur.

The theorem states that low-level F con�gurations, where

sessions are implemented as described in Section 6, can not

deviate from high-level F+S con�gurations, where sessions

are ideally followed as prescribed by the session semantics

of Section 3.

Conversely, we can check that the theorem does not hold

if we relax our secure implementability condition. For in-

stance, consider the session of Figure 2(a), which fails to

satisfy Property 3. Assume that the principals for the client

and of�cer are safe and run a single session with an unsafe

principal for the store. As discussed in Section 2, a low-

level opponentO0 implementing the store can attack the ses-

sion by sending both Accept and Reject messages. The user



code for the client and the of�cer can then communicate on

some auxiliary channel, detect that both of them have re-

ceived a �nal message, then emit ! in protest. On the other

hand, no high-level opponent running the store can cause

the same user code to emit !. Appendix E lists the concrete

user code for conducting this test and reporting the attack.

Our second security theorem is more precise; it pro-

vides an explicit correspondence between high-level and

low-level runs. To this end, we extend our labelled seman-

tics so that it can represent the adversary as an abstract en-

vironment, rather than a top-level program.

Labelled transitions for modelling the adversary In the

transitions of Section 3, we do not maintain scope for the

sessions and values available to the opponent, and maintain

a global store � instead, using interfaces to ensure that the

opponent code cannot access some values. Now, we intro-

duce labelled transitions with an abstract environment, and

keep track of the values and sessions available to that en-

vironment. We let K represent this knowledge and capa-

bilities. Initially, K contains the opponent interfaces of our

libraries, including the veri�cation keys of all principals and

the signing keys and channels of unsafe principals, as well

as any value exported by U . The set K grows as the oppo-

nent obtains new values in labelled output transitions. We

let Val(K; �) represent values computed fromK by repeat-

edly applying type constructors in � to the elements of K

and constants in base types.

For all the active sessions recorded in �, high-level Ks

also record the state of all the roles instantiated to unsafe

principals, written s:p. (Hence, if � initially has no ses-

sions, K initially records no session states.) We de�ne

auxiliary notations to access these session states: we write

K = K 0[�] either when K records the state � = s:p for an

active session s of �, or whenK = K 0 and � = S:r�i ea with

safe ai = false.

We de�ne transitions for F and F+S con�gurations
withK as follows:

(KAPPLY)

li; v0; : : : ; vk 2 Val(K; �)
(li x0 : : : xk = e) 2 �

�; li v0 : : : vk �!e
� �;w

K; �; P �!K K [ fwg; �; P

(KSEND)
�; P

c v
��!P �; P 0 c 2 K

K; �; P
c v
��!K K [ fvg; �; P 0

(KRECV)
�; P

c v
��!P �; P 0 c; v 2 Val(K; �)

K; �; P
c v
��!K K; �; P 0

(KSTEP)
�; P �!P �0; P 0

K; �; P �!K K; �0; P 0

(KSENDS)
�; P

sg v
��!P �0; P 0 K; �0

sg
�!o K

0; �00

K; �; P
sg v
��!K K0 [ fvg; �00; P 0

(KRECVS)

K; �
sg
�!o K

0; �0 �0; P
sg v
��!P �00; P 0

v 2 Val(K; �)

K; �; P
sg v
��!K K0; �00; P 0

(OSTEP)
�; �

�
�!s �

0; s:p

K[�]; �
s�
�!o K[s:p]; �0

(OCOMM)
K; �

sg
�!o

sg
�!o

sf
�!o K

0; �0

K; �
sf
�!o K

0; �0

Rule (KAPPLY) lets the environment apply functions; its

hypothesis requires that the function be pure, and that both

the function and its arguments are known to the environ-

ment. (In addition, function with side effects, or calls

fromP to the environment, may be modelled using channel-

based communications.) Rules (KSEND) and (KRECV)

similarly represent channel-based communications with the

environment. Rule (KSTEP) enables P to make progress.

Rules (KSENDS) and (KRECVS) represent session steps

in the source semantics. They rely on auxiliary transitions

K; �
�
�!o K

0; �0 that represent session operations in the en-

vironment. Rule (OSTEP) performs session steps for roles

in the environment (inits, joins, sends, and receives). In

addition, Rule (OCOMM) accounts for communications be-

tween roles in the environment, which may advance the ses-

sion without involving compliant user code.

We let �!KD denote a transition among the subset of the

�!K transitions that are silent. We write
'
)K for a series of

transitions where the observable transitions (with series of

labels ') are interleaved with any number of silent ones.

The lemma below relates the reduction-based and

labelled-based semantics in F+S. A similar lemma holds

in F. These lemmas enable us to prove Theorem 1 using in-

ductions on traces.

Lemma 1 We have transitions K ] feng; � ] feng; P
 
)K

!()
��!K for some fresh names en if and only if �; P jO

�!P
�

!()
��!P for some process O that does not contain !,

does not match on constructors in �, calls only pure func-

tions of �, and whose values de�ned in � are all included

inK.

Relating abstract and compiled sessions at runtime The

state of a role implementation in F is not entirely deter-

mined by the role process in F+S; in addition to S and s

recorded in �, and s:p within P , the implementation state

records the time, the session nonce, and a sequence of

signed timestamped labels eg. We let T record this infor-

mation: T is initially empty; for every s (ai)i<n ferg : S



in �, T (s) provides a term Ns in K and a path in the ses-

sion graph of S, decorated with strictly-increasing integers,

such that, for all roles ri attributed to safe principals safe ai,

there is a running session role process s:p if and only if the

role has received a message in the path, and p is the last role

process for that role of the path. Also, T records, for each

safe principal, the state of their cache. Finally, T records,

for each receiving role, whether a bad input has been re-

ceived so far�in that case, our session implementation for

the role has silently terminated.

We de�ne a translation [[�]]T from F+S session expres-

sions to implementation states (F expressions and context).

In stores �, we replace every session type de�nition S with

the types and function de�nitions ofMS , remove every ses-

sion entry s, and, if s is initiated by a safe principal, add a

fresh nonce Ns. In processes and expressions, we translate

only active session roles, as follows:

[[s.p(e)]]T = letxs = [[e]]T in S.send eg st (xs)
when p is an output

[[s.p(w)]]T = S.recv eg stw when p is an input

[[s.p(w)]]T = 0

when p is an input, after receiving a bad input

[[s.p(e)]]T = [[e]]T when p is 0

where s:p must be the last node for the role of p, denoted

r(p), in the trace of s in T , eg is the sequence of labels vis-

ible from s:p for this trace, and st is computed from Ns
and T (s) (including valid tsigs for eg). Expressions of the

form S:r : : : are unchanged, but now interpreted as func-

tion calls, rather than primitive session entries. The transla-

tion also adds to the original processes the forward process

used by the adversary to communicate and the processes in-

volved in the cache management for all safe principals (as

described in Appendix D). InK, we replace high-level ses-

sion records for s with the session nonces recorded in T ,

and we add all the signatures from safe principals built from

T (s), as de�ned in function gensig p f , that are visible

from any role on the path that is instantiated to an unsafe

principal.

Implementation soundness for transitions We let �LeS
be de�ned by the deterministic reductions ;; L eS [ ] �!P

�

�LeS ; [ ]. An F+S con�guration H = K; �; P is valid when

� includes �LeS ; the names of P are de�ned in � and do not

include Prins names; the values in K de�ned in �LeS are

built from the library interfaces of Section 4; the session

types in � are valid; and the sessions in � have a session

role in P for each safe principal and a session role inK for

each unsafe principal, such that these roles are reached on

a path in the graph of their session types, with a last label

with (at least) a safe sender or a safe receiver.

An F con�guration W is a valid implementation of an

F+S con�guration H when H is valid andW = [[H]]T for

some low-level state T , up to functional steps. Further, W

has no bad inputs when T has no bad input record for any

session. A low-level trace with labels ' is a direct transla-

tion of a high-level trace with labels  when ' is  after

replacing all session inputs and outputs s� v of  with in-

puts on channel psend� and outputs on channels in chans�,

respectively. We consider low-level traces where some low-

level inputs have been discarded (such as message replays)

or have not been processed yet (such as inputs that have

passed anti-replay �ltering): a low-level trace is a transla-

tion of a high-level trace when it is a direct translation in-

terleaved with additional inputs on channel psend�.

The following theorem states that all low-level events on

the network can be explained by the high-level semantics,

thereby ensuring that attackers do not get anything from try-

ing to break the sessions at the low-level.

Theorem 2 Let W be a valid implementation of H . For

all transitionsW
'
)K W

0 in F, where ' represents the ob-

servable actions of these transitions, there exists W � valid

implementation of H� such that W
'
)K W � �!�

KD
W 00,

W 0 �!�

KD
W 00, and H

 
)K H

� with ' a translation of  .

8 Conclusions and future work

We present a simple language for specifying sessions be-

tween roles, and implement it as an extension of ML, with

protocol support for running secure distributed sessions. Al-

though session types are a rich area of study [7, 8, 9, 13, 16,

30, 32], we believe this paper is the �rst to address their se-

cure implementation. Our compiler generates custom cryp-

tographic protocols that guarantee global compliance to the

session speci�cation for the principals that use our imple-

mentation, with no trust assumptions for the principals that

do not. Our theorems relate the runs and labelled traces

of a source semantics with primitive sessions to those of

an implementation semantics using ordinary communica-

tions and cryptographic primitives. Thus, we obtain a full-

�edged implementation for distributed sessions with strong

security guarantees.

Discussion In terms of protocol veri�cation, our results

hold for any number of session declarations and any number

of principals, some of them controlled by the adversary, run-

ning in parallel any number of instances of these sessions.

Even for a single �xed session, we believe such results are

beyond automated tools for verifying cryptographic proto-

cols as soon as the session uses loops and branching. More-

over, our result holds for a realistic model�except for the

cryptographic primitives, the model is a functional refer-

ence implementation.

Cryptographically, our results hold within a symbolic

model �a la Dolev-Yao. Although a probabilistic polynomial

semantics of ML is clearly outside the scope of this paper,

we believe our session-authentication mechanisms are also



correct under standard, concrete cryptographic hypotheses.

Speci�cally, our usage of signing keys in generated proto-

cols complies with the rules of unforgeability under adap-

tive chosen-message attacks [18].

We do not consider other session security properties such

as con�dentiality, left for future work. Moreover, we do not

treat important liveness properties, such as progress, global

termination, and resistance to denial of service. This is in

line with typical security protocol analyses, where the op-

ponent may block all messages anyway.

Prior work consider secure implementation for small

process calculi. In comparison, our host language is more

expressive and realistic. Hence, we have a running imple-

mentation for a language very close to the formal language

of the theorems, Also, we rely on this additional expres-

siveness: we use higher-order functions (and typing, in-

formally) to enforce the session discipline, and use stan-

dard functional programming for processing messages. Al-

though we could compile F+S to some process calculus,

this would considerably complicate our formalization and

proofs.

Overall, we believe that our work illustrates a compelling

alternative to protocol handcrafting. For any distributed ap-

plication that �ts our session language, a few lines of high

level code can yield a complete distributed implementation

with authentication guarantees. In comparison, for session

graphs with a dozen of nodes, the design, implementation,

and veri�cation of an adequate ad hoc protocol is a chal-

lenging task, even for security experts, even if one assumes

that all point-to-point communications are already secure.

Future work We are exploring variants of our design to

increase the expressiveness of sessions, with extended com-

piler and proof support. In particular, we are considering

session-scoped data bindings, to ensure that the same val-

ues are passed in a series of messages, as well as more dy-

namic principal-joining mechanisms, to enable new princi-

pals to enter a role by agreement among the current prin-

cipals. More generally, we would like to integrate sessions

with other language-based security mechanisms, such as se-

cure marshalling for richer types. It would also be inter-

esting (and delicate) to develop secure implementations for

existing session-description languages such as BPEL.

Another direction for future work is to extend sessions

with more explicit security requirements and relax our

message-transparency principle. For instance, one may dis-

tinguish �critical messages� with strong authenticity and

atomicity, and support them by running a complex sub-

protocol, such as Byzantine agreement or fair signing. (In

principle, F+S already enables this approach, as principals

may run other protocols on communication channels, but

does not offer linguistic support for them.) However, such

extensions would also unavoidably complicate our security

model for session programmers.
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A From role processes to session graphs

Session graphs and syntactic sessions are interconvert-

ible. Given a session graph and a mapping from labels and

roles to their types, we can construct role processes for each

role by translating each edge in the graph to dual send and

receive operations. Conversely, given the role processes for

a session, if the sends and receives are correctly matched,

we can construct the corresponding graph, as detailed be-

low.

Given a session � = (ri : e�i = pi)i<n, we build the

graph G(�) = hR;V;L;m0; E ; ri as follows.

� V , m0: we create a node m(fi)i<k for every sending

subprocess !(fi : e�i ; pi)i<k within �; in particular, we
let m0 be the node for the process p0 (which must be

a send). We similarly create a node for each 0 subpro-

cess after a receive.

� E : we create an edge (m ef ; fi;m) for every label fi,

where m depends on the subprocess q of � after re-

ceiving fi. (The subprocess q must exist and be

unique.) If q is a send, or q = 0, we use the corre-

sponding node created in V; if q is ��:q0, we use q0

instead of q; if q = �, we use q0 in the binding ��:q0

within �. (This binding must exist.)

The de�nitions for R, L, and r are straightforward. The

construction fails if any of the conditions above fail, e.g. if

there is a send without a corresponding receive.

B Transforming graphs to meet Property 3

We say that a sessions graph has a blind fork for each

two paths that violate Property 3. We show how to eliminate

blind forks.

Suppose a graph G = hR;V;L;m0; E ; ri has a blind

fork for the paths (m; ef) and (m; eg), ending in nodes m1

andm2 respectively. Hence, the roles r(m1) and r(m2) are
distinct, and not active on ef and eg. In particular, ef is not

a pre�x of eg, and vice versa. Let mfork be the last common

node on two paths; we call it the forking node. To eliminate

this blind fork, we use the following transform:
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Figure 3. Eliminating blind forks

� for each edge (mfork; l;m
000) 2 E , introduce two new

nodes m0;m00 62 V and two new labels l0; l00 62
L; replace (mfork; l;m

000) with the three new edges

(mfork; l
0;m0), (m0; l00;m00) and (m00; l;m000); and ex-

tend r with r(m0) = r(m1) and r(m
00) = r(mfork).

We check that this transform introduces no new blind fork

at mfork and does not affect Property 3 at any other node.

Hence, by repeated application of this transform, we can

eliminate all blind forks.

Figure 3 illustrates the transform for a sample graph with

a blind fork: the graph on the left has two paths ending in

roles C and D with a forking node at B; the transformed

graph eliminates this fork by inserting C on all paths leading

out of the forking node; moreover, by inserting B on each

path, the transformed graph maintains the same source and

destination roles for all the original labels.

C Session integrity and correspondences

Session graphs enforce causal relationships between

message events. In cryptographic protocol analyses, such

relationships are typically written as injective correspon-

dence properties [31]. Indeed, from a session graph, one

can read a series of injective correspondences that hold in

any session run. Our session integrity theorem (Theorem 1)

guarantees that every correspondence read from a session

graph holds for compliant principals.

Consider, for example, session (c) in Figure 1. The fol-

lowing are some of the injective correspondence proper-

ties that hold in a session run where the principals Pc, Ps,

and Po play the roles C, S, and O, respectively:

� If Pc and Ps are compliant, for each Offer message

accepted by Pc, Ps must have sent one.

� If Ps and Po are compliant, for each Abort message

accepted by Po, Ps must have sent a Reject message

to Pc.

� If Po is compliant, then it never accepts both an Abort

and a Con�rm message.

These correspondences correlate only two message events

occurring on a path. More generally, one can write nested

correspondences for sequences of messages on a path in

the graph, also enforced by session integrity. On the

other hand, some other session-integrity properties (with

mutually-exclusive events, or loops) are not expressible as

correspondence properties.

D Symbolic code for the libraries

In this appendix we provide the symbolic implementa-

tions for the libraries described in Section 4. Our code relies

on syntactic sugar: if ... then ... else is a shortcut for stan-

dard pattern-matching on the result of the test; the semi-

colon, which expresses sequentiality, can be written with

our let construct; function application where arguments are

not values can be unfolded using let bindings; and anony-

mous functions introduced with fun can be replaced by a

freshly named let binding for the function body.

Symbolic code for the Crypto library We �rst list the

Crypto library, which implements cryptographic types as al-

gebraic datatypes:

type keybytes = SKey of name j VKey of keybytes
type bytes = Nonce of name

j Hash of bytes
j Concat of bytes � bytes
j Sign of bytes � keybytes
j Utf8 of string

let nonce (n: name) : bytes = Nonce n

let genskey (n: name) : keybytes = SKey n

let genvkey (n:keybytes) : keybytes =

match n with

j SKey !VKey n

let hash (b:bytes) : bytes = Hash b

let concat (m1 : bytes) (m2 : bytes) : bytes = Concat (m1, m2)

let sign (m : bytes) (k : keybytes) : bytes = Sign (m, k)

let verify (m : bytes) (s : bytes) (k : keybytes) : bool =

match s with

j Sign (mm, sk)!
if k = VKey sk && mm = m then true else false

j !0

let iconcat (m : bytes ) : (bytes � bytes) =
match m with

j Concat (m1, m2)! (m1, m2)

let utf8 (s:string) = Utf8 s

let iutf8 (m: bytes) = match m with j Utf8 m1!m1

Symbolic code for the Prins library In our model, the

implementation of the Prins library is parameterized by a

�nite list of principals and a safety predicate on those prin-

cipals. (In contrast, our concrete prototype implementation

retrieves cryptographic materials from a partial database

and does not serve the opponent!)



let prins = : : : (� a �xed list of all principals �)
let safe (a:principal) = : : : (� a �xed predicate on principals �)
let skeys = List.map (fun a! (a, genskey (new()))) prins

let skey (a : principal) = List.assoc a skeys

let vkey (a : principal) = genvkey (skey a)

let chans = List.map

(fun a! let (n:name) = new() in (a, n)) prins

type cache contents = (bytes � int) list
type cache result = Stale j Fresh of cache contents

let asend m a = fork (fun ()! send a m)

let caches = List.map

(fun a! let (n:name) = new() in (a, n)) prins

let = map (asend []) caches (� caches init �)

let header s =

let (msg, sigs) = iconcat (ibase64 s) in

let (join�ag,header,payload) = iconcat3 (msg) in

let (host2, dest2, sid) = iconcat3 header in

let join = if (iS (iutf8 join�ag)) = "J" then true else false in

((int of string (iS (iutf8 dest2)),sid),join)

let antireplay old a msg =

let ((sid, r) as k), joining = header message in

if joining then

if List.mem k old then Stale

else Fresh(k::old)

else Fresh(old)

let psend (a : principal) (m : bytes) =

let ch = List.assoc a chans in

let cache = List.assoc a caches in

let oldcache = recv cache in

let r = antireplay oldcache a m in

match r with

j Fresh(newcache)! asend cache newcache; send ch m

j Stale! asend cache oldcache

let precv (a : principal) = recv (List.assoc a chans)

(� for modelling the opponent's knowledge only: �)
let psend� = new()

let rec forward () =

let a,m = recv psend� in

fork forward; psend a m in

fork forward

let chans� = List.�lter (fun (a,n)! not (safe a)) chans

let skeys� = List.�lter (fun (a,k)! not (safe a)) skeys

The psend� channel implements a small server that receives

requests to call psend; this enables the opponent to send

messages to safe principals, but not to receive such mes-

sages sent by our implementation, by calling psend.

The opponent is given access to prins, safe, vkey,

psend�, chans�, and skeys�. Our generated protocol imple-

mentations access safe, skey, vkey, psend, and precv. User

code is given access only to principal constants.

E Counter-example for Theorem 1 without

enforcing Property 3

We list the concrete code for the two compliant roles

for the counter-example described below Theorem 1 for the

session S given in Figure 2(a), which violates Property 3.

Let U be the process:

let pr =

f client = "Alice"; server = "Eve"; of�cer = "Bob"; g
let x = new()

let acceptbranch = send x "OK"

let rejectbranch pr0 =

if pr = pr0 then let = recv x in send ! ()

let of�ce () = S.of�cer "Bob" fhReject=rejectbranchg in
fork of�ce;

S.client pr (Request (42,fhAccept=acceptbranchg))

In this code, Alice plays the client role and Bob plays the

of�cer role for at most one run of the session. These com-

pliant principals synchronize using the side communication

channel x only when they both receive Accept and Reject

messages. In that case, Bob fails with !. This behaviour

would be enabled in the F implementation but not in F+S.


