
Multiparty Session Types Meet
Communicating Automata

Pierre-Malo Deniélou and Nobuko Yoshida

Department of Computing, Imperial College London

Abstract. Communicating finite state machines (CFSMs) represent processes
which communicate by asynchronous exchanges of messages via FIFO channels.
Their major impact has been in characterising essential properties of communica-
tions such as freedom from deadlock and communication error, and buffer bound-
edness. CFSMs are known to be computationally hard: most of these properties
are undecidable even in restricted cases. At the same time, multiparty session
types are a recent typed framework whose main feature is its ability to efficiently
enforce these properties for mobile processes and programming languages. This
paper ties the links between the two frameworks to achieve a two-fold goal. On
one hand, we present a generalised variant of multiparty session types that have
a direct semantical correspondence to CFSMs. Our calculus can treat expres-
sive forking, merging and joining protocols that are absent from existing session
frameworks, and our typing system can ensure properties such as safety, bound-
edness and liveness on distributed processes by a polynomial time type checking.
On the other hand, multiparty session types allow us to identify a new class of CF-
SMs that automatically enjoy the aforementioned properties, generalising Gouda
et al’s work [12] (for two machines) to an arbitrary number of machines.

1 Introduction
Multiparty Session Types The importance that distributed systems are taking today
underlines the necessity for precise specifications and full correctness guarantees for
interactions (protocols) between distributed components. To that effect, multiparty ses-
sion types [3, 14] are a type discipline that can enforce strong communication safety for
distributed processes [3, 14], via a choreographic specification (called global type) of
the interaction between several peers. Global types are then projected to end-point types
(called local types), against which processes can be statically type-checked. Well-typed
processes are guaranteed to interact correctly, following the global protocol. The tool
chain (projection and type-checking) is decidable in polynomial time and automatically
guarantees properties such as type safety, deadlock freedom, and progress. Multiparty
session types are thus directly applicable to the design and implementation of real dis-
tributed programming languages. They are used for structured protocol programming
in contexts such as security [8, 22], protocol optimisations for distributed objects [21]
and parallel algorithms [17], and have recently lead to industrial projects [19, 20].

Communicating Automata or Communicating Finite State Machines (CFSMs) [5],
are a classical model for protocol specification and verification. Before being used in
many industrial contexts, CFSMs have been a pioneer theoretical formalism in which

1



distributed safety properties could be formalised and studied. Building a connection
between communicating automata and session types allows to answer some open ques-
tions in session types which have been asked since [13]. The first question is about
expressiveness: to which class of CFSMs do session types correspond? The second
question concerns the semantical correspondence between session types and CFSMs:
how do the safety properties that session types guarantee relate to those of CFSMs? The
third question is about efficiency: why do session types provide polynomial algorithms
while general CFSMs are undecidable?

A First Answer to these questions has been recently given in the binary case: a two-
machine subclass (which had been studied by Gouda et al. in 1984 [12] and later by
Villard [23]) of half-duplex systems [7] (defined as systems where at least one of the
two communication buffers between two parties is always empty) has been found to
correspond to binary session types [13]. This subclass, compatible deterministic two-
machine without mixed states [12] (see § 3 and § 6), automatically satisfies the safety
properties that binary session types can guarantee. It also explains why binary session
types offer a tractable framework since, in two-machine half-duplex systems, safety
properties and buffer boundedness are decidable in polynomial time [7]. However, in
half-duplex systems with three machines or more, these problems are undecidable (The-
orem 36 [7]). This shows that an extension to multiparty is very challenging, leading to
two further questions. Can we use a multiparty session framework [14] to define a new
class of deadlock-free CFSMs with more than two machines? How far can we extend
global session type languages to capture a wider class of well-behaved CFSMs, still
preserving expected properties and enabling type-checking processes and languages?

Our Answer is a theory of generalised multiparty session types, which can automat-
ically generate, through projection and translation, a new class of safe CFSMs, which
we call multiparty session automata (MSA). We use MSA as a semantical interpreta-
tion of types to prove the safety and liveness of expressive multiparty session mobile
processes, allowing complexly structured protocols, including the Alternating Bit Pro-
tocol, to be simply represented. Our generalised multiparty session type framework can
be summarised by the following diagram:

Generalised
Global Type

Projection //
Local Types

≈
CFSMs (MSA)

Type checking //
General

Multiparty
Processes

Generalised Global Types This paper proposes a new global type syntax which en-
compasses previous systems [3, 14] with extended constructs (join and merge) and gen-
eralised graph syntax. Its main feature is to explicitly distinguish the branching points
(where choices are made) from the forking points (where concurrent, interleaved inter-
action can take place). Such a distinction is critical to avoid the state explosion and to
directly and efficiently type session-based languages and processes.

Fig. 1 illustrates our new syntax on a running example, named Trade. For the intu-
ition, Trade is also represented as a BPMN-like [4] activity diagram, where ’+’ is for
exclusive gateways and ’|’ for parallel ones, following session type conventions.

This scenario (from [6, § 7.3]) comprehensively combines recursion, fork, join,
choice and merge. It models a protocol where a seller S relies on a broker B to ne-
gotiate and sell an item to a client C. The seller sends a message Item to the broker, the

2



GTrade = def
x0 = S→ B : Item〈string〉;x1

x5 +x1 = x2
x2 = x3 +x6
x3 = B→ C : Offer〈nat〉;x4
x4 = C→ B : Counter〈nat〉;x5
x6 = x7 | x8
x7 = B→ S : Final〈nat〉;x9
x8 = B→ C : Result〈nat〉;x10

x9 | x10 = x11
x11 = end in x0

Fig. 1. Trade Example: Global Type and CFSM

broker then has a choice between entering the negotiation loop Offer-Counter with the
client as many times as he chooses, or finishing the protocol by concurrently sending
both messages Final and Result to the seller and the client respectively.

GTrade is called a global type as it represents the choreography of the interactions
and not just a collection of local behaviours. It is of the form def G̃ in x0 where G̃
represents the transitions between states, and where x0 is the initial state of all the
participants. A transition of the form x0 = S→ B : Item〈string〉;x1 corresponds to the
emission of a message Item carrying a value of type string from S to B, followed by the
interactions that happen in x1. A transition x2 = x3 +x6 denotes a choice (done by one
of the participants, here B) between following with x3 or x6. A transition x6 = x7 | x8
describes that the interaction should continue concurrently with the actions of x7 and
of x8. In a symmetric way, a transition x5 + x1 = x2 merges two branches that are
mutually exclusive, while a transition x9 | x10 = x11 joins two concurrent interaction
threads reaching points x9 and x10 into a single thread starting from x11.

Local Types and CFSMs We build the formal connection between multiparty session
types, CFSMs and processes by first projecting a global type to the local type of each
end-point. We then show that the local types are implementable as CFSMs. This de-
fines a new subclass of CFSMs, named Multiparty Session Automata, or MSA, that are
not limited to two machines or to half-duplex communications, and that automatically
satisfy distributed safety and progress.

To illustrate this relationship between local types and MSA, we give in Fig. 1 the
CFSM representation of Trade: on the left is the seller S, at the centre the broker B, on
the right the client C. These communicating automata correspond to the collection of
local behaviours represented by the local types (shown later in Ex. 3.1). Each automaton
starts from an initial state S0, B0 or C0 and allows some transitions to be activated.
Transitions can either be outputs of the form SB!Item where SB indicates the channel
between the seller S and the broker B and where Item is the message label; or inputs
of the symmetric form SB?Item. When a sending action happens, the message label is
appended to the channel’s FIFO queue. Activating an input action requires the expected
label to appear on top of the specified queue.

3



Our Contributions are listed below, with the corresponding section number:

– We introduce new generalised multiparty (global and local) session types that solve
open problems of expressiveness and algorithmic projection posed in [6] (§ 2).

– We give a CFSM interpretation of local types that defines a formal semantics for
global types and allows the standardisation of distributed safety properties between
session type systems and communicating automata (§ 3).

– We define multiparty session automata, a new communicating automata subclass
that automatically satisfy strong distributed safety properties, solving open ques-
tions from [7, 23] (§ 3).

– We develop a new typing system for multiparty session mobile processes gener-
alised with choice, fork, merge and join constructs (§ 4, § 5.1), and prove that typed
processes conform the safety and liveness properties defined in CFSMs (§ 5.2).

– We compare our framework with existing session type theories and CFSMs re-
sults (§ 6). Our framework (global type well-formedness checking, projection, type-
checking) is notably polynomial in the size of the global type or mobile processes.

The long version [18] provides proofs, auxiliary definitions and examples.

2 Generalised Multiparty Sessions

2.1 Global Types for Generalised Multiparty Sessions

This subsection introduces new generalised global types, whose expressiveness encom-
passes previous session frameworks. 1The new features are flexible fork, choice, merge
and join operations for precise thread management.

G ::= def G̃ in x Global type

G ::= x = p→ p′ : l〈U〉;x′ Labelled messages
| x = x′ | x′′ Fork
| x = x′+x′′ Choice

U ::= 〈G〉 | bool | nat | · · · Sorts

| x | x′ = x′′ Join
| x+x′ = x′′ Merge
| x = end End

A global type G = def G̃ in x0 describes an interaction between a fixed number of
participants. The prescribed interaction starts from x0, which we call the initial state,
and proceeds according to the transitions specified in G̃. The state variables x in G̃
represent the successive distributed states of the interaction. Transitions can be labelled
message exchanges x = p→ p′ : l〈U〉;x′ where p and p′ denote the sending and re-
ceiving participants (process identities), U is the payload type of the message and l its
label. This transition specifies that p can go from x to the continuation x′ by sending
message l, while p′ goes from x to x′ by receiving it. All other participants can go from
x to x′ for free. Sort types U include shared channel types 〈G〉 or base types.x = x′+x′′
represents the choice (made by exactly one participant) between continuing with x′ or
x′′ and x = x′ | x′′ represents forking the interactions, allowing the interleaving of ac-
tions at x′ and x′′. These forking threads are eventually collected by joining construct
x′ | x′′ = x. Similarly choices are closed by merging construct x′+ x′′ = x, where two
mutually exclusive paths share a continuation. x = end denotes session termination.

1 We omit the delegation for space reason. Its inclusion is straightforward, see [18].

4



The motivation behind this choice of graph syntax is to support general graphs.
A traditional global type syntax tree, with operators fork | and choice +, even with
recursion [3, 6, 10, 14], is limited to series-parallel graphs.

Example 2.1 (Generalised Global Types)). We now give several example, with their
graph representation. We keep this representation informal throughout this paper (al-
though there is an exact match with the syntax: variables are edges and transitions are
nodes). The examples are numbered 1–7, with increasing complexity.

1.
G1 = def x0 = Alice→ Bob : Msg〈nat〉;x1

x1 = end in x0

2.

G2 = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Alice→ Bob : Film〈string〉;x4

x3 +x4 = x5
x5 = end in x0

3.

G3 = def x0 = x1 | x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Bob→ Alice : Film〈string〉;x4

x3 | x4 = x5
x5 = end in x0

4.
G4 = def x0 +x2 = x1

x1 = Alice→ Bob : Msg〈string〉;x2 in x0

6.

G6 = def x0 = x1 +x3
x1 = Alice→ Bob : Book〈string〉;x2
x2 = Bob→ Carol : Item〈nat〉;x4
x3 = Alice→ Carol : Film〈string〉;x5

x4 +x5 = x6
x6 = Carol→ Bob : Order〈string〉;x7
x7 = end in x0

7.

GAB = def x0 = x1 | x2
x1 +x3 = x4
x2 +x5 = x6

x4 = Alice→ Bob : Msg1〈string〉;x7
x7 = x8 | x9
x8 = Bob→ Alice : Ack1〈unit〉;x10

x6 | x9 = x11
x11 = Alice→ Bob : Msg2〈string〉;x12
x12 = x13 | x14
x13 = Bob→ Alice : Ack2〈unit〉;x5

x10 | x14 = x3 in x0

1. A simple one-message (Msg of type nat) is exchanged between Alice and Bob.
2. A protocol with a simple choice between messages Book and Film.

5



3. Alice and Bob concurrently exchange the messages Book and Film.
4. A protocol where Alice keeps sending successive messages to Bob (recursion is

written using merging).
5. The Trade example from § 1 (Fig. 1) shows how choice, recursion and parallelism

can be integrated to model a three party protocol.
6. G6 features an initial choice between directly contacting Carol or to do it through

Bob. Note that without the last interaction from Carol to Bob (in x6), if the chosen
path leads to x3, Bob enters a deadlock, waiting forever for a message from Alice.

7. GAB gives a representation of the Alternating Bit Protocol. Alice repeatedly sends
to Bob alternating messages Msg1 and Msg2 but will always concurrently wait for
the acknowledgement Acki to send Msgi. This interaction structure requires a gen-
eral graph syntax and is thus not representable in any existing session type frame-
work, and is difficult in other formalisms (see § 6). We emphasise the fact that, not
only it is representable in our syntax, but our framework is able to demonstrate its
progress and safety and enforce it on realistic processes.

2.2 Well-formed Global Types

This subsection defines three well-formedness conditions for global types.

Sanity Conditions within global types prevent possible syntactic confusions about
which continuations to follow at any given point. A global type G = def G̃ in x0 satisfies
the sanity conditions if it satisfies the following conditions.

1. (Unambiguity) Every state variable x except x0 should appear exactly once on the
left-hand side and once on the right-hand side of the transitions in G̃.

2. (Unique start) x0 appears exactly once, on the left-hand side.
3. (Unique end) end appears at most once.
4. (Thread correctness) The transitions G̃ define a connected graph where threads

are always collected by joins.

G¬thr = def x0 = x1 +x2
x1=Alice→Bob :Book〈string〉;x3
x2=Alice→Bob :Film〈string〉;x4

x3 |x4=x5
x5=Bob→ Alice : Price〈nat〉;x6
x6=end in x0

The conditions (1–3) are self-explanatory.
(Thread correctness) aims at verifying connex-
ity, the ability to reach end (liveness) and that
global types should always join states that oc-
cur concurrently and only them: this prevents
both deadlocks and state explosion (see [18] for
the polynomial verification algorithm). In G¬thr (written above), an illegal join waits for
two mutually exclusive messages: as a consequence, Bob is in a deadlock, waiting for
both Book and Film to arrive from Alice.

Local Choice is essential for the consistency of a global type with respect to choice
(branching). For G = def G̃ in x0, we need to check that each choice is clearly la-
belled, local to a participant (the choice of which branch to follow should be made by
a unique participant) and propagated to the others. To this effect, we define a function
Rcv(G̃)(x) below, which computes the set of all the participants that will be expect-
ing at least one message starting from state x. Additionally, Rcv(G̃)(x) returns the la-
bel l of the received message and the merging points x̃ encountered. We say that the

6



equality Rcv(G̃)(x1) = Rcv(G̃)(x2) holds if ∀(p : l1 : x̃1) ∈ Rcv(G̃)(x1),∀(p : l2 : x̃2) ∈
Rcv(G̃)(x2), l1 6= l2∨ x̃1, x̃2 share a non-null suffix (i.e. the two branches have merged).
Note that G6 in Ex. 2.1 satisfies this condition (the Rcv sets of both branches contain
Bob and Carol).

Rcv(G̃)(x) = Rcv(G̃, /0, /0)(x) (remembers recursive calls and receivers)

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃, p̃)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ ∈ p̃ or if x | x′′ = x′ ∈ G̃

Rcv(G̃, x̃, p̃)(x) = {p′ : l : x̃}∪Rcv(G̃, x̃,p′p̃)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ /∈ p̃
Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃, p̃)(x′)∪Rcv(G̃, x̃, p̃)(x′′) if x = x′+x′′ ∈ G̃ or x = x′ | x′′ ∈ G̃

Rcv(G̃, x̃, p̃)(x) = /0 if x+x′ = x′′ ∈ G̃∧x′′ ∈ x̃ or if x = end ∈ G̃

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃x′′, p̃)(x′′) if x′+x = x′′ ∈ G̃∧x′′ /∈ x̃

G¬loc = def x0 = x1 +x2
x1=Alice→Bob :Book〈string〉;x3
x2=Bob→Alice :Film〈string〉;x4

x3+x4=x5
x5=end in x0

To guarantee that choices are local to a partici-
pant, we also define a function that asserts that,
for a choice x = x1 + x2 ∈ G̃, a unique sender p
is active in each branch x1 and x2. This is writ-
ten ASend(G̃)(x) = p and is undefined if there is
more than one active sender (i.e. if the choice is
not localised at a unique participant p) (the definition is in [18]). As an example, we
give above an illegal global type G¬loc where Alice and Bob are respectively the active
sender of branches x1 and x2: as both branches do not agree, the mutual exclusion of
Book and Film can be violated.

Definition 2.1 (Local Choice). A global type G = def G̃ in x0 satisfies the local choice
conditions if for every transition x = x′ + x′′ ∈ G̃, we have (1) (Choice awareness)
Rcv(G̃)(x′) = Rcv(G̃)(x′′); and (2) (Unique sender) ∃p,ASend(G̃)(x) = p.

Linearity In order to avoid processes with race-conditions, we impose that no partic-
ipant can be faced with two concurrent receptions where messages can have the same
label. This condition, linearity, is enforced by comparing the results of Lin(G̃)(x1) and
Lin(G̃)(x2) whenever a forking transition x = x1 | x2 is in G̃. The Lin function works in
a similar way on message labels as the Rcv function on message receivers (linearity is
to forks what choice awareness is to choice) and it thus omitted here. As an example,
linearity would prevent the labels Msg1 and Msg2 from both being renamed Msg0 in
GAB (since they can be received concurrently and thus confused), but would allow the
two labels of G3 to be identical (they are received by two different parties). Note that
the linearity condition incidentally prevents the unbounded creation of threads.

Definition 2.2 (Linearity). A global type G = def G̃ in x0 satisfies the linearity condi-
tion if, for every transition x = x′ | x′′ ∈ G̃, we have Lin(G̃)(x′) = Lin(G̃)(x′′).

Well-formedness We say that a global type G= def G̃ in x0 is well-formed, if it satisfies
the sanity, local choice and linearity conditions. These conditions are related to similar
CFSM properties, as discussed in § 3.2. We can easily check that global types from
Ex. 2.1 are well-formed. Since Rcv, ASend and Lin can be computed in polynomial
time in the size of G by a simple syntax graph traversal, we have:

Proposition 2.1 (Well-formedness Verification). Given G, we can determine whether
G is well-formed or not in polynomial time.

7



3 Multiparty Session Automata (MSA) and their Properties

This section starts by defining local types, details the translation from local types into
CFSMs, and shows that these CFSMs guarantee the properties given in § 3.3. We call
this class of communicating systems multiparty session automata (MSA).

3.1 Local Types and the Projection Algorithm

Local types represent the actions of session end-points that each process implementa-
tion must follow. As for global types, a local type T follows the shape of a state machine
definition: local types are of the form def T̃ in x0.

T ::= def T̃ in x local type
T ::= x =!〈p, l〈U〉〉.x′ send | x = x′⊕x′′ internal choice | x = x′ | x′′ fork
| x =?〈p, l〈U〉〉.x′ receive | x = x′ & x′′ external choice | x | x′ = x′′ join
| x = x′ indirection | x+x′ = x′′ merge | x = end end

The local type for send (!〈p, l〈U〉〉) corresponds to the action of sending to p a
message with label l and type U , while receive (?〈p, l〈U〉〉) is the action of receiving
from p a message with label l and type U . Other behaviours are the indirection (nop),
internal choice, external choice, merge, fork, join and end. Note that merge is used for
both internal and external choices.

We define the projection of a well-formed global type G to the local type of partici-
pant p (written G � p) below. The projection is straightforward: x= p→ q : l〈U〉;x′ is an
output from p’s viewpoint and an input from q’s viewpoint; otherwise it creates an in-
direction link from x to x′ (i.e. this message exchange is invisible). Choice x = x′+x′′
is projected to the internal choice if p is the unique (thanks to the local choice well-
formedness condition of definition 2.1) participant deciding on which branch to choose;
otherwise the projection gives an external choice. For local types, we also define a con-
gruence relation ≡ over T̃ which eliminates the indirections (T̃ ,x = x′ ≡ T̃ [x/x′]) and
locally irrelevant choices, and removes the unused local threads. See [18].

def G̃ in x � p = def G̃ �G̃ p in x
x = p→ p′ : l〈U〉;x′ �G̃ p = x =!〈p′, l〈U〉〉.x′
x = p→ p′ : l〈U〉;x′ �G̃ p′ = x =?〈p, l〈U〉〉.x′
x = p→ p′ : l〈U〉;x′ �G̃ p′′ = x = x′ (p /∈ {p,p′})

x | x′ = x′′ �G̃ p = x | x′ = x′′

x = x′ | x′′ �G̃ p = x = x′ | x′′

x = x′+x′′ �G̃ p = x = x′⊕x′′

(if p= ASend(G̃)(x))
x = x′+x′′ �G̃ p = x = x′ & x′′

(otherwise)
x+x′ = x′′ �G̃ p = x+x′ = x′′

x = end �G̃ p = x = end

Proposition 3.1 (Projection). Given a well-formed G, the computation of G � p is lin-
ear in the size of G.

Example 3.1 (Trade Example). We illustrate our projection algorithm by showing the
result of the projection of the global type GTrade from § 1 to the three local types of the
seller TTradeS, the broker TTradeB and the client TTradeC. Local type congruence rules are
used to simplify the result. When comparing with the CFSMs of Fig. 1, one can observe

8



the similarities but also that local types make the interaction structure clearer and more
compact thanks to more precise type constructs (⊕, & and |).

TTradeS = def x0= !〈SB, Item〈string〉〉.x1
x1=?〈BS,Final〈nat〉〉.x10

x10=end in x0

TTradeC = def x5+x0=x2
x2=x3 & x6
x3=?〈BC,Offer〈nat〉〉.x4
x4= !〈CB,Counter〈nat〉〉.x5
x6=?〈BC,Result〈nat〉〉.x10

x10=end in x0

TTradeB = def x0=?〈SB, Item〈string〉〉.x1
x5 +x1=x2

x2=x3⊕x6
x3= !〈BC,Offer〈nat〉〉.x4
x4=?〈CB,Counter〈nat〉〉.x5
x6=x7 | x8
x7= !〈BS,Final〈nat〉〉.x9
x8= !〈CB,Result〈nat〉〉.x10

x9 | x10=x11
x11=end in x0

3.2 Communicating Finite State Machines

In this subsection, we give some preliminary notations (following [7]) and definitions
that are relevant to establishing the CFSM connection to local types.

Definitions ε is the empty word. A is a finite alphabet and A∗ is the set of all finite
words over A. |x| is the length of a word x and x.y or xy the concatenation of two
words x and y. Let P be a set of process identities fixed throughout the paper: P⊆
{Alice,Bob,Carol, . . . ,A,B,C, . . . ,S, . . .}.

Definition 3.1 (CFSM). A communicating finite state machine is a finite transition
system given by a 5-tuple M = (Q,C,q0,A,δ ) where (1) Q is a finite set of states; (2)
C = {pq ∈P2 | p 6= q} is a set of channels; (3) q0 ∈ Q is an initial state; (4) A is a finite
alphabet of messages, and (5) δ ⊆ Q×(C×{!,?}×A)×Q is a finite set of transitions.

In transitions, pq!a denotes the sending action of a from process p to process q, and
pq?a denotes the receiving action of a from p by q. π,π ′, ... range over actions. A
state q ∈ Q whose outgoing transitions are all labelled with sending (resp. receiving)
actions is called a sending (resp. receiving) state. A state q∈Q which does not have any
outgoing transition is called a final state. If q has both sending and receiving outgoing
transitions, then q is called mixed.

A path in M is a finite sequence of q0, . . . ,qn (n ≥ 1) such that (qi,π,qi+1) ∈ δ

(0 ≤ i ≤ n− 1), and we write q π−→q′ if (q,π,q′) ∈ δ . M is connected if for every state
q 6= q0, there is a path from q0 to q. Hereafter we assume each CFSM is connected.

A CFSM M = (Q,C,q0,A,δ ) is deterministic if for all states q ∈ Q and all actions
π , (q,π,q′),(q,π,q′′) ∈ δ imply q′ = q′′.2

Definition 3.2 (CS). A (communicating) system S is a tuple S = (Mp)p∈P of CFSMs
such that Mp = (Qp,C,q0p,A,δp).

2 “Deterministic” often means the same channel should carry a unique value, i.e. if (q,c!a,q′) ∈
δ and (q,c!a′,q′′) ∈ δ then a = a′ and q′ = q′′. Here we follow a different definition [7] in
order to represent branching type constructs.

9



Let S = (Mp)p∈P such that Mp = (Qp,C,q0p,A,δp) and δ = ]p∈Pδp. A configuration
of S is a tuple such that s = (~q;~w) with ~q = (qp)p∈P with qp ∈ Qp and ~w = (wpq)p6=q∈P
with wpq ∈ A∗. A configuration s′ = (~q′;~w′) is reachable from another configuration
s = (~q;~w) by the firing of the transition t, written s→ s′ or s t−→s′, if there exists a ∈ A
such that either:
1. t = (qp,pq!a,q′p) ∈ δp and (a) q′

p′ = qp′ for all p′ 6= p; and (b) w′pq = wpq.a and
w′
p′q′ = wp′q′ for all p′q′ 6= pq; or

2. t = (qq,pq?a,q′q) ∈ δq and (a) q′
p′ = qp′ for all p′ 6= q; and (b) wpq = a.w′pq and

w′
p′q′ = wp′q′ for all p′q′ 6= pq.

The condition (1-b) puts the content a to a channel pq, while (2-b) gets the content
a from a channel pq. The reflexive and transitive closure of→ is→∗. For a transition
t = (s,π,s′), we write `(t) = π . We write s1

t1 · · · tm−−−→sm+1 for s1
t1−→s2 · · · tm−→sm+1. We use

the metavariable ϕ to designate sequences of transitions of the form t1 · · · tm. The initial
configuration of the system is s0 = (~q0;~ε) with ~q0 = (q0p)p∈P. A final configuration of
the system is s f = (~q;~ε) with all qp ∈~q final. A configuration s is reachable if s0→∗ s
and we define the reachable set of S as RS(S) = {s | s0→∗ s}.
Properties Let S be a communicating system, t one of its transitions and s = (~q;~w) one
of its configurations. The following definitions follow [7, Definition 12].
1. s is stable if all its buffers are empty, i.e., ~w =~ε .
2. s is a deadlock configuration if ~w =~ε and each qp is a receiving state, i.e. all ma-

chines are blocked, waiting for messages.
3. s is an orphan message configuration if all qp ∈~q are final but ~w 6= /0, i.e. there is at

least an orphan message in a buffer.
4. s is an unspecified reception configuration if there exists q ∈P such that qq is a

receiving state and (qq,pq?a,q′q) ∈ δ implies that |wpq| > 0 and wpq 6∈ aA∗, i.e qq
is prevented from receiving any message from buffer pq.

The set of receivers of transitions s1
t1 · · · tm−−−→sm+1 is defined as Rcv(t1 · · · tm) = {q | ∃i ≤

m, ti = (si,pq?a,si+1)}. The set of active senders are defined as ASend(t1 · · · tm) = {p |
∃i ≤ m, ti = (si,pq!a,si+1)∧ ∀k < i. tk 6= (sk,p

′p?b,sk+1)} and represent the partici-
pants who could immediately send from state s1. These definitions match the global
types ones. A sequence of transitions (an execution) s1

t1−→s2 · · ·sm
tm−→sm+1 is said to be

k-bounded if all channels of all intermediate configurations si do not contain more than
k messages.

Definition 3.3 (properties). Let S be a communicating system.
1. S satisfies the local choice property if, for all s∈ RS(S) and s ϕ1−→s1 and s ϕ2−→s2, there

exists ϕ ′1,ϕ
′
2,s
′
1,s
′
2 such that s1

ϕ ′1−→s′1 and s2
ϕ ′2−→s′2 with Rcv(ϕ1ϕ ′1) = Rcv(ϕ2ϕ ′2) and

ASend(ϕ1ϕ ′1) = ASend(ϕ2ϕ ′2).
2. S is deadlock-free (resp. orphan message-free, reception error-free) if s ∈ RS(S), s

is not a deadlock (resp. orphan message, unspecified reception) configuration.
3. S is strongly bounded if the contents of buffers of all reachable configurations form

a finite set.
4. S satisfies the progress property if for all s ∈ RS(S), s −→∗ s′ implies s′ is either

final or s′ −→ s′′; and S satisfies the liveness property3 if for all s ∈ RS(S), there
exists s−→∗ s′ such that s′ is final.

3 The terminology follows [6].

10



3.3 Multiparty session automata (MSA)

We now give a translation from local types to CFSMs, specifying the sequences of
actions in a local type as transitions of a CFSM. We use the following notation to keep
track of local states:

X ::= x | X | X X[ ] ::= | X[ ] | X | X | X[ ]

We also define an equivalence relation≡T̃ that identifies two states if one of them allows
the actions of the other:

X | X′ ≡T̃ X′ | X X | (X′ | X′′)≡T̃ (X | X′) | X′′

x = x′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ | x′′ ∈ T̃
X[x]≡T̃ X[x′ | x′′]

x | x′ = x′′ ∈ T̃
X[x | x′]≡T̃ X[x′′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x = x′⊕x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′⊕x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x′]≡T̃ X[x′′]

Definition 3.4 (translation from local types to MSA). Let T = def T̃ in x0 be the
local type of participant p projected from G. The automaton corresponding to T is
A(T) = (Q,C,q0,A,δ ) where:

– Q is defined as the set of states X built from the recursion variables {xi} of T. Q is
defined up to the equivalence relation ≡T̃ .

– C = {pq | p,q ∈G}; q0 = x0; and A is the set of {l ∈G}

– δ is defined by:
(X[x],(pp′!l),X[x′]) ∈ δ if x =!〈p′, l〈U〉〉.x′ ∈ T̃
(X[x],(p′p?l),X[x′]) ∈ δ if x =?〈p′, l〈U〉〉.x′ ∈ T̃

We call Multiparty Session Automata (MSA), communicating systems S of the form
(A(G � p))p∈G when G is a well-formed global type.

The generation of an MSA from a global type G is exponential in the size of G. It
is however polynomial in the absence of parallel composition. Note that neither well-
formedness nor type-checking requires the explicit generation of MSAs.

MSA Examples The following shows local types (projections from Ex. 2.1) and their
corresponding automata. The Trade example from Fig. 1 and Ex. 3.1 is another com-
plete example of MSA.

1.
G1 � Alice= def x0 = !〈Bob,Msg〈nat〉〉.x1

x1 = end in x0

2.

G2 � Bob= def x0 = x1&x2
x1 = ?〈Alice,Book〈string〉〉.x3
x2 = ?〈Alice,Film〈string〉〉.x4

x3 +x4 = x5
x5 = end in x0

3.

G3 � Alice= def x0 = x1 | x2
x1 = !〈Bob,Book〈string〉〉.x3
x2 = ?〈Bob,Film〈string〉〉.x4

x3 | x4 = x5
x5 = end in x0

11



1. The MSA of the projection of G1 to Alice has two states and one transition.
2. Since Bob is receiving Alice’s messages, the projection of G2 to Bob gives an

external choice. The automaton has two nodes x0 (equivalent to x1 and x2) and x5
(equivalent to x3 and x4), and two transitions between these nodes.

3. G3 has two concurrent communications. It results in an automaton for Alice with
four nodes, reflecting the interleavings of the concurrent interactions.

3.4 Properties of MSAs

This subsection proves that MSA satisfy the properties defined in definition 3.3. We
qualify executions of the form s ϕ1−→s1

ϕ2−→s2 with s ∈ RS(S) such that ϕ1 is an alter-
nation of sending and corresponding receive actions (i.e. the action pq!a is immedi-
ately followed by pq?a) and ϕ2 is only sending actions as being stable-outputs. The
key property is Lemma 3.1(3), whose proof is non-trivial and relies on Lemma 3.1(2)
and well-formed conditions of global types (except choice awareness in definition 2.1).
Then Lemma 3.1(4) (the existence of stable executions [7]) directly leads to unspecified
reception error-freedom and orphan message freedom. For the deadlock-freedom, we
require choice awareness of Lemma 3.1(1), ensured by the same condition in definition
2.1. Theorem 3.2 uses the results from [9, § 3]; in Theorem 3.3, progress is proved from
Theorem 3.1, while liveness directly uses the thread correctness condition.

Lemma 3.1 (Properties of MSAs). Suppose S is a MSA.
1. (local choice) S satisfies a local choice condition.
2. (diamond property) Suppose s ∈ RS(S) and s t1−→s1 and s t2−→s2 where (1) t1 and t2 are

both inputs; or (2) t1 is an output and t2 is an input, then there exists s′ such that
s1

t ′1−→s′ and s2
t ′2−→s′ where `(t1) = `(t ′2) and `(t2) = `(t ′1).

3. (stable-outputs decomposition) Suppose s ∈ RS(S). Then there exists s0
ϕ1−→·· · ϕn−→s

where each ϕi is stable-outputs.
4. (stable) Suppose s0

ϕ1−→·· · ϕn−→s with ϕi stable-outputs. Then there exists an execution
ϕ ′−→ such that s ϕ ′−→s3 and s3 is stable, and there is a 1-buffer execution s0

ϕ ′′−→s3.
Theorem 3.1 (Safety Properties). A MSA S is free from unspecified reception errors,
orphan messages and deadlock.

Theorem 3.2 (Strong Boundedness). Consider a MSA S, generated from the local
types of G. If all actions that are within a cycle in G are also part of causal input-
output cycle (IO-causality) [9, 14],4 then S is strongly bounded.

Theorem 3.3 (Progress and Liveness). A MSA S satisfies the progress property. If a
MSA S is generated from the local types of G and G contains end, then S satisfies the
liveness property.

4 General Multiparty Session Processes

This section introduces general multiparty session processes . Our new system handles
(1) new external and internal choice operators that allow branching with different re-
ceivers and merging with different senders; and (2) forking and joining threads which
are not verifiable by standard session type systems [3, 6, 14].

4 It is formally defined in [9, 14] and [18].

12



Syntax The syntax of processes is defined below.

v ::= a | true | false | ... values

P ::= def P̃ in X definition

P ::= process transition
| x(x̃) = x〈G〉.x′(ẽ) init

| x(x̃) = x[p](y).x′(ẽ) request

| x(x̃) = x !〈p, l〈e〉〉.x′(ẽ) send

| x(x̃) = x?〈p, l(y)〉.x′(ẽ) receive

| x(x̃) = x′(ỹ) | x′′(z̃) parallel

| x(x̃) =if e then x′(ẽ′) else x′′(ẽ′′) conditional

| x(x̃) = x′(x̃) & x′′(x̃) external choice

| x(ỹ) | x′(z̃) = x′′(x̃) join

| x(x̃)+x′(x̃) = x′′(x̃) merge

| x(x̃) = (νa) x′(ax̃) new name

| x(x̃) = 0 null

e ::= v | x | e∧ e | ... expression

h ::= /0 | h · (p,q, l〈v〉) messages

X ::= state
| x(ṽ) thread

| X | X parallel

| (νa)X restriction
| 0 null

N ::= network
| P def

| N || N parallel

| (νa)N new name
| 0 null
| (νs)N new session
| s : h queue

| a〈s〉[p] invitation

A process always starts from a definition P = def P̃ in x(ṽ), where the parameters of
x in P̃ are to be instantiated by ṽ. The form of process actions P̃ follows global and
local types and rely on a functional style to pass values around continuations. Variables
x̃ in x(x̃) occurring on the left-hand side of a process action are binding variables on
the right-hand side. Variables y in request and receive are also binding (e.g. in x(x,z) =
z?〈p, l(y)〉.x′(x,y,z), the final z is bound by z in x(x,z), while y is bound by the input).

A session is initialised by a transition of the form x(x̃) = x〈G〉.x′(ẽ) where G is a
global type. It attributes a global interaction pattern defined in G to the shared channel
a that x gets substituted to. The variables in ẽ are all bound by x̃. After a session ini-
tialisation, participants can accept the session with x(x̃) = x[p](y).x′(ẽ) (as long as x is
substituted by the same share channel a as the initialisation), starting the interaction: the
variables in ẽ are bound by x̃ and by y, which, at run-time, receives the session channel.

The sending action x!〈p, l〈e〉〉 allows in session x to send to p a value e labelled by a
constant l. The reception x?〈p, l(y)〉.x′(ẽ) expects from p a message with a label l. The
message payload is then received in variable y, which binds in x′(ẽ).

x(x̃) = x′(ỹ) | x′′(z̃) represent forking threads (i.e. P | Q): ỹ and z̃ are subsets of x̃.
The conditional (if e then x′(ẽ′) else x′′(ẽ′′) ) and the external choices (x′(x̃)& x′′(x̃))
are extensions of the traditional selection and branching actions of session types. The
join action collects parallel threads, while the merge action collects internal and external
choices. Note that external choice, fork, join and merge only allow a restricted use of
bound variables for continuations. x(x̃) = (νa)x′(ax̃) creates a new shared name a. 0 is
an inactive agent. For simplicity, we omit the action of leaving a session.

The process states X are defined from the state variables present in P̃. The network
N is a parallel composition of definition agents, with restrictions of the form (νa)N.

Once a session is running, our operational semantics uses run-time syntax not di-
rectly accessible to the programmer. X | X′ and (νa)X are for example only accessible
at run-time. Session instances are represented by session restriction (νs)P. The message

13



buffer s : h stores the messages in transit for the session instance s. A session invitation
a[p]〈s〉 invites participant p to start the session s announced on channel a.

A network which only consists of shared name restrictions and parallel composi-
tions of def P̃ in x(~v) is called initial.

Operational Semantics We define the operational semantics for processes and net-
works below. We use the following labels to organise the reduction of processes.

α,β ::= τ | s[p,q]!l〈v〉 | s[p,q]?l〈v〉 | a〈G〉 | a〈p〉[s]

The rules are divided into two parts. The first part corresponds to a transition relation
of the form P̃ ` X α−→X′ representing that a process in a state X can move to state X′
with action α . The second part defines reductions within networks (with unlabelled
transitions N−→ N′). e ↓ v denotes the evaluation of expression e to v.

x[ṽ/x̃] = a ẽ[ṽ/x̃] ↓ ṽ′

x(x̃) = x〈G〉.x′(ẽ) ` x(ṽ)
a〈G〉−−−→ x′(ṽ′)

[INIT]
x[ṽ/x̃] = a ẽ[ṽ/x̃][s/y] ↓ ṽ′

x(x̃) = x[p](y).x′(ẽ) ` x(ṽ)
a〈s〉[p]−−−−→ x′(ṽ′)

[ACC]

x[ṽ/x̃] = s[q] e[ṽ/x̃] ↓ v ẽ[ṽ/x̃] ↓ ṽ′

x(x̃) = x !〈p, l〈e〉〉.x′(ẽ) ` x(ṽ)
s[q,p]!l〈v〉−−−−−−→ x′(ṽ′)

[SEND]

x[ṽ/x̃] = s[q] ẽ[ṽ/x̃][v/y] ↓ ṽ′

x(x̃)=x?〈p, l(y)〉.x′(ẽ) ` x(ṽ)
s[p,q]?l〈v′〉−−−−−−→x′(ṽ′)

[RCV]
a 6∈ ṽ

x(x̃)=(νa)x′(ax̃) ` x(ṽ) τ−→(νa)x′(aṽ)
[NEW]

e[ṽ/x̃] ↓ true ẽ′[ṽ/x̃] ↓ ṽ′

x(x̃)=if e then x′(ẽ′) else x′′(ẽ′′) ` x(ṽ) τ−→ x′(ṽ′)
[IFT]

P̃,x(x̃) = x′(x̃) & x′′(x̃) ` x′(ṽ) α−→ X
P̃,x(x̃) = x′(x̃) & x′′(x̃) ` x(ṽ) α−→ X

[EXT] P̃ ` X α−→ X′

def P̃ in X α−→ def P̃ in X′
[DEF] P τ−→ P′

P−→ P′
[TAU]

P
s[p,q]!l〈v〉−−−−−−→ P′

P || s : h−→ P′ || s : h · (p,q, l〈v〉)
[PUT] P

s[p,q]?l〈v〉−−−−−−→ P′
P || s : (p,q, l〈v〉) ·h−→ P′ || s : h

[GET]

P
a〈G〉−−−→ P′ p0, . . . ,pk ∈G s 6∈ fn(P′)

P−→ (νs)(P′ || s : ε || a〈s〉[p0] || . . . || a〈s〉[pk])
[INITN ] P

a〈s〉[p]−−−−→ P′
P || a〈s〉[p]−→ P′

[ACCN ]

Rule [SEND] emits a message from p to q, substituting variables x̃ by ṽ and evaluating
e to v. Rule [RCV] inputs a message and instantiates y to the received value v. Rule [INIT]

initiates a session, while rule [ACC] emits a signal which signifies the process’s readiness
to participate in a session. Rule [IFT] internally selects the first branch with respect to the
value of e ([IFF] is similarly defined). Rule [NEW] creates a new shared name. Rule [EXT]

is the external choice, which invokes either the left or right state variable, depending on
which label α is received.

Rules [DEF] and [TAU] promote processes to the network level. [INITN ] is used in com-
bination with [INIT]. It creates an empty queue s : ε together with invitations for each
participant. Rule [ACCN ] consumes an invitation to participate to the session if someone
has been signalled ready (via [ACC]). Other contextual rules are standard (we omit the
structure rules, ≡). We write −→∗ for the multi-step reduction.

14



Example 4.1 (Trade Example). We write here an implementation of the Trade example
from § 1. The reader can refer to Fig. 1 and Ex. 3.1 for the global and local types.

PS = def x(x,y) = x〈GTrade〉.x′(x,y)
x′(x,y) = x[S](z).x0(y,z)
x0(y,z) = z !〈B, Item〈y〉〉.x1(z)

x1(z) = z?〈B,Final(y)〉.x10(z,y)
x10(z,y) = 0 in x(a,“HGG”)

PC = def x(x, i) = x[C](z).x0(i,z)
x5(i,z)+x0(i,z) = x2(i,z)

x2(i,z) = x3(i,z) & x6(i,z)
x3(i,z) = z?〈B,Offer(y)〉.x4(i,z,y)

x4(i,z,y) = z !〈B,Counter〈i〉〉.x5(i+5,z)
x6(i,z) = z?〈B,Result(y)〉.x10(y,z)

x10(y,z) = 0 in x(a,50)

PS and PC, respectively correspond to the seller S and client C. PS initiates the session
by announcing GTrade on shared name a. According to rule [INITN ], it creates a session
name s, a message buffer and invitations for S, B and C. PS then joins the session as the
seller S, the variable z being used to contain the session name. PS proceeds with x0(y,z)
where y is the string “HGG” and z the session name. The execution of x0(y,z) sends a
message Item with payload “HGG” in the message buffer. PC starts in x(a,50) where a is
the shared name and 50 the price it is ready to offer initially. It joins the session as the
client C, gets in variable z the session name s and continues with x0(i,z). The message
Offer is then countered as many times needed with a slowly increased proposed price.

5 Properties of Generalised Multiparty Session Processes

5.1 Typing Generalised Multiparty Session Processes
Environments We use u to denote a shared channel a and its variable x and c to denote
a session channel s[p] or its variable. The grammar of environments are defined as:

Γ ::= /0 | Γ ,u : U ∆ ::= /0 | ∆ ,c : T Σ ::= /0 | Σ ,x : Ũ
Γ is the standard environment which associates variables to sort types and shared names
to global types. ∆ is the session environment which associates channels to session types.
Σ keeps tracking state variable associations. We write Γ ,u : U only if u 6∈ dom(Γ ).
Similarly for other variables.

Judgements The different judgements that are used are:
Γ ` e : U Expression e has type U under Γ

Γ ` P�Σ [] Σ ′ Left/right variables in P have types Σ /Σ ′ under Γ

Γ ` P�∆ Process P has type ∆ under Γ

Γ , P̃ ` X�∆ State variable X has type ∆ under Γ and P̃
Γ ` N�∆ Network N has type ∆ under Γ

Typing Rules We only list two typing rules. There is one main difference with existing
multiparty typing system: to type a process P, we need to gather for every session
the typing constraints of the transitions P̃ in P, keeping track of associations such as
x1 =!〈p, l〈U〉〉.x2. We rely on an effective use of “matching” between local types and
inferred transitions to keep the typing system for initial processes simple.

ỹ : Ũ ` ẽ : Ũ ′ ỹ : Ũ ` x : 〈G〉 ∀i,Ti = T′i]x=x′

` x(ỹz̃) = x〈G〉.x′(ẽz̃)�x : Ũ T̃ [] x′ : Ũ ′ T̃′
[INIT]

ỹ : Ũ ` ẽ : Ũ ′ ỹ : Ũ ` x : 〈G〉 ∀i,Ti = T′i]x=x′ T = G � p
` x(ỹz̃) = x[p](y).x′(ẽz̃y)�x : Ũ T̃ [] x′ : Ũ ′ T̃′T

[REQ]

15



In the rules, ỹ and z̃ correspond to sorts and session types, respectively. Rule [INIT] types
the initialisation. ỹ should cover x and variables in ẽ appearing in the right hand side.
The type system records that every zi should have type T]x=x′, which means that we
record x=x′ at the head of T (formally defined as: def x=x′, T̃ in x if T = def T̃ in x′).
Rule [REQ] is similar except we record the introduced projected session type T = G � p.

Proposition 5.1 (Decidability). Assuming the new and bound names and variables in
N are annotated by types, type checking of Γ ` N terminates in polynomial time.

5.2 Properties of Typed Multiparty Session Processes

This subsection shows that typed processes enjoy the same properties as MSAs defined
in definition 3.3. The correspondence with CFSMs makes the statements of the proper-
ties of processes formally rigorous and eases the proofs.

Let ` range over transition labels for types: ` ::= τ | !〈p, l〈U〉〉 | ?〈p, l〈U〉〉. We de-
fine below a labelled transition relation between types T `−→T′, defined modulo structure
rules (for join and merge) and type equality.

def T̃ in x ≡ def T̃ ′ in x (T̃ = T̃ ′) bEQc
def x1 +x2 = x, T̃ in xi ≡ def x1 +x2 = x, T̃ in x (i = 1 or i = 2) bMERGEc

def x1 | x2 = x, T̃ in x1 | x2 ≡ def x1 | x2 = x, T̃ in x bJOINc

def x =!〈p, l〈U〉〉.x′, T̃ in x
!〈p,l〈U〉〉−−−−−→ def x =!〈p, l〈U〉〉.x′, T̃ in x′ bSEND`c

def x =?〈p, l〈U〉〉.x′, T̃ in x
?〈p,l〈U〉〉−−−−−→def x =?〈p, l〈U〉〉.x′, T̃ in x′ bRECV`c

def x = x1⊕x2, T̃ in x τ−→ def x = x1⊕x2, T̃ in xi (i = 1 or i = 2) bCONDc
def T̃ in x1

`−→ def T̃ in x′1
def x = x1 & x2, T̃ in x1

`−→ def x = x1 & x2, T̃ in x′1
bCHOICEc

def T̃ in x1
`−→ def T̃ in x′1

def T̃ in x1 | X2
`−→ def T̃ in x′1 | X2

bPARc
T1

!〈q,l〈U〉〉−−−−−→ T′1 T2
?〈p,l〈U〉〉−−−−−→ T′2

(s[p] : T1,s[q] : T2,∆)−→ (s[p] : T′1,s[q] : T′2,∆)
[COM]

The sending and receiving actions occur when the state variable x points to sending and
receiving types (Rules bSENDlc and bRECVlc). Others are contextual rules. We also use the
labelled transition relation between environments, denoted by (Γ ,∆) α−→(Γ ′,∆ ′) where
the main rule is bCOMc which represents the reduction between a message queue and a
process at the network level. Other omitted rules are straightforward.

The following theorem, which is often called type soundness, states that if a process
(resp. network) emits a label (resp. performs a reduction), then the environment can do
the corresponding action, and the resulting process and the environment match.

Theorem 5.1 (Subject Congruence, Transition and Reduction).
1. Suppose Γ , P̃ `X�∆ and P̃ `X≡X′. Then Γ , P̃ `X′�∆ . Similarly for P and N.
2. Γ , P̃ ` X�∆ and P̃ ` X α−→X′ imply Γ ′, P̃ ` X′�∆ ′ with (Γ ,∆) α−→(Γ ′,∆ ′).
3. Γ ` P�∆ and P α−→P′ imply Γ ′ ` P′�∆ ′ with (Γ ,∆) α−→(Γ ′,∆ ′).
4. Γ ` N�∆ and N−→ N′ imply Γ ` N′�∆ ′ with ∆ −→∗ ∆ ′.

We also use the following one-to-one correspondence between local state automata and
local types. We write ˜̀−→ for `1−→·· · `n−→. We use the notation `=⇒ for ( τ−→)∗ `−→( τ−→)∗ and
similarly for

˜̀
=⇒. The proof is straightforward by the definition in § 3.3.

16



Theorem 5.2 (CFSMs and Local Types). (G � p)
˜̀

=⇒ iff A(G � p)
˜̀−→.

We say P has a type error if expressions in P contain either a type error for a value
or constant in the standard sense (e.g. (true+ 7)) or a reception error (e.g. the sender
sends a value with label l0 while the receiver does not expect label l0). The following
theorem is derived by Theorems 5.1 and 5.2.

Theorem 5.3 (Type Safety). Suppose Γ ` N. For any N′ such that N −→∗ N′, N′ has
no type error.

Using Theorem 3.2, boundedness is derived as Theorem 5.4.

Theorem 5.4 (Boundedness). Suppose for all G in Γ , A({G � pi}1≤i≤n) with p1, ...,pn
∈G is strongly bounded. Then for all N′ such that Γ `N and N−→∗ N′, the reachable
contents of a given channel buffer is finite.

This result can be extended to other variants such as existential boundedness or K-
boundedness [12] by applying the global buffer analysis on 〈G〉 from [9].

5.3 Advanced Properties in a Single Multiparty Session

We now focus on advanced properties guaranteed when only a single multiparty session
executes. We say N is simple [14, 24] if N0 −→∗ N such that N0 ≡ P1 || · · · || Pn and
Γ ` N0 where each Pi is either an initiator def x0(x) = x〈G〉.x1,x1 = 0 in x0(a) or
an acceptor def x0(x) = x[p](y).x1, P̃ in x0(a) where P̃ does not contain any initiator,
acceptor or name creator. This means that, once the session is started, all processes
continue within that session without any interference by other sessions. In a simple
network, we can guarantee the following completeness result (the reverse direction of
Theorem 5.1).

Theorem 5.5 (Completeness). Below we assume X, P and N are sub-terms of deriva-
tions from a simple network. Then: Γ , P̃`X�∆ and (Γ ,∆) α−→(Γ ′,∆ ′) imply P̃`X α−→X′
with Γ ′, P̃ ` X′�∆ ′. Similarly P and N satisfy the reversed direction of Theorem 5.1.

We say N is a deadlock if all processes are blocked, waiting for messages. Formally N
is a deadlock if there exists N′ such that N −→∗ N′ = (νs)(s : /0 || P′1 || · · · || P′n) || N′′
and for all 1≤ j≤ n, if P′j

α j−→P′′j then α j = s[p,q]?l〈v〉 (i.e., P′j is an input process). The
following theorem can be proved by the deadlock-freedom of MSA (Theorem 3.1) and
Completeness (Theorem 5.5) with Theorem 5.2.

Theorem 5.6 (Deadlock Freedom). Suppose Γ ` N is simple. Then there is no reduc-
tion such that N−→∗ N′ and N′ is a deadlock.

Below (1), is by Theorem 5.5 and (2) is by Theorems 5.2 and 5.5 with (1).

Theorem 5.7. (1) (Progress) Suppose Γ ` N is simple. Then for all N−→∗ N′, either
N′ ≡ 0 or N′ −→N′′. (2) (Liveness) Suppose a : 〈G〉 `N and A({G � pi}1≤i≤n) satisfies
liveness with p1, ...,pn ∈ G. Assume N −→∗ (νs)(s : h || P1 || P2 || · · · || Pn) such that
a : 〈G〉 ` P j � s[p j] : T j. Then there exits a reduction such that N−→∗ 0.

Thanks to the strong correspondence that typing enforces between processes behaviours
and automata, we have proved that all the good properties enjoyed by MSA generated
by a global type G also hold in the processes typed by the same G.

17



6 Related Work
The relationship with other ses-
sion types and CFSMs is sum-
marised in the diagram. The out-
side box represents communicat-
ing automata, with the undecid-
able separation between deadlock-
free and deadlocking machines.
Within it, we represent the known
inclusions between session and
CFSMs systems. First, binary
(two party) session types [13] cor-
respond to the set of compati-
ble half-duplex deterministic two-
machine systems without mixed states [12, 23] (compatible means that each send is
matched by a receive, and vice-versa). This is not the case for the MSA generated
from secure session specifications [8], which satisfy strong sequentiality properties and
are multiparty. They can however be shown to be restricted half-duplex in [7, § 4.1.2]
(i.e. at most one queue is non-empty). The original multiparty session types [3, 14],
which correspond to our system when parallel composition is disallowed, are a subset
of the natural multiparty extension of half-duplex system [7, § 4.1.2] where each pair of
machines is linked by two buffered channels, one in each direction, such that at most
one is non-empty. Our MSA can have mixed states and are not half-duplex, as shown
in G3 (Ex. 2.1 (3), both Alice and Bob can fill both buffers concurrently). From this
picture are omitted Gouda et al.’s pioneering work [12] and Villard’s extension [16]
of [23] to unreliable systems, which proves that safety properties and boundedness are
still decidable. These works [12, 16, 23] only treat the two-machine case.

Finally, we mention two related works by Castagna et al. [6] and Bultan et al. [1, 2].
The first two papers [1, 6] focus on proving the semantical correspondence between
global and local descriptions. In Castagna et al. [6], global choreographies are described
by a language of types with general fork (∧), choice (∨) and repetition (G)∗ (which rep-
resents a finite loop of zero or more interactions of G). Note that these global types of [6]
use series-parallel syntax trees and are thus limited by the lack of support for general
joins and merges. This prevents many examples, such as the Alternating Bit Protocol
GAB in Ex. 2.1 (7), the Trade example from § 1 and G6 in Ex. 2.1 (6), from being algo-
rithmically projectable (i.e. implementable). In [1], on the other hand, global specifica-
tions are given by a finite state machine with no special support for parallel composition.
In both cases, their systems do not treat the extended causality between sends and re-
ceives (the OO-causality and II-causality at different channels [14]). They also do not
give a practical (language-based) framework, from types to processes to tackle real pro-
grams. In terms of results, [6] proposes well-formedness conditions under which local
types correspond to global types, while [1] describes a sound and complete decision
algorithm for realising (i.e. projecting) a choreography specification. Our work avoid
this theoretical completeness question by using sufficient well-formedness conditions
and by directly giving a global type semantics in terms of local automata. Recently, [2]

18



extends [1] to tackle the synchronisability problem (equivalent to our Lemma 3.1 (3)).
They however do not go as far as deadlock-freedom, progress and liveness.

When comparing these works with ours, the main differences are: (1) unlike [23]
and ours, [1, 6] only investigate the relationship between global and local specifications,
not from types (contracts) to programs or processes to ensure safety properties; (2)
while the semantical tools are close (formal languages, finite state machines), there are
subtle differences concerning buffer-boundedness [1, 2], finite recursion [6] and causal-
ity [1, 2, 6]; (3) Bultan et al. [1, 2] do not propose any global description language, while
Castagna et al.’s language [6] is not rich enough compared to ours; and (4) the algorith-
mic projectability in [6] is more limited than ours, and [1, 2] only propose exponential
decision results, limiting their applicability.

Message sequence graphs (MSGs) In terms of expressiveness, a very comparable sys-
tem is the extension of Message sequence charts (MSCs) to Message Sequence Graphs
(MSGs). MSGs are finite transition systems where each state embeds a single MSC.
Many variants of MSGs are investigated in the literature [11] in order to provide ef-
ficient conditions for verification and implementability, i.e. projectability to CFSMs.
Some of these conditions in MSGs are similar to ours: for example, our local choice
condition corresponds to the local choice condition with additional data of [11, Def. 2].
A detailed comparison between MSGs and global types is given in [6, § 7.1].

In general MSGs are however incomparable with our framework because MSGs’
transition system is global and non-deterministic. We aim our global type language
to be more compact, precise and suitable for programming. For example, extending the
Alternating Bit Protocol GAB to three parties can be easily done in our system (see [18]),
while it can only be written in a complex extension of MSGs, called Compositional
MSGs (CMSGs). The main benefit of our type-based approach is that there is no gap
between specifications and programs: we can instantly check the properties of programs
by static type-checking. More investigation on global types and MSGs properties would
however bring mutual benefits by identifying the expressiveness differences.

7 Conclusion and Future Work

We have introduced a new framework of multiparty session types which is tightly linked
to CFSMs, and showed that a new class of CFSMs, that we called multiparty session
automata (MSA), generated from global types, automatically satisfy safety and liveness
properties, extending the results in [12] to multiple machines. We use MSA to define
and prove precise safety and liveness properties for well-typed mobile processes. The
syntax of our session types and processes brings expressiveness to new levels (general
fork, choice, merging and joining) that have not been reached by existing systems [3, 6,
14], while keeping a polynomial tool chain. Our general choice is already included into
Scribble 1.0 [20], an industrial language to describe application-level protocols among
communicating systems based on the multiparty session type theory.

Future work include finding a characterisation of MSA that is independent of ses-
sion types, investigating model checking for MSA to justify typed bisimulations [15],
relating MSA with models of true concurrency, including Mazurkiewicz traces, extend-
ing MSA to parameterisation [24], multiroles [10] and multiparty contracts [16, 23].

19



Acknowledgments We are grateful to the anonymous reviewers, Kohei Honda, Ray-
mond Hu, Étienne Lozes, Rumyana Neykova and Jules Villard for their helpful com-
ments. This work was supported by EPSRC EP/F003757/01 and G015635/01.

References

1. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL’12. ACM
(2012), to appear

2. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asynchonously com-
municating systems. In: VMCAI’12. LNCS, Springer (2012)

3. Bettini, L., et al.: Global progress in dynamically interleaved multiparty sessions. In: CON-
CUR. LNCS, vol. 5201, pp. 418–433 (2008)

4. Business Process Model and Notation, http://www.bpmn.org
5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30, 323–342

(April 1983)
6. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party ses-

sions. In: FMOODS/FORTE. LNCS, vol. 6722, pp. 1–28 (2011)
7. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf. Comput.

202(2), 166–190 (2005)
8. Corin, R., Deniélou, P.M., Fournet, C., Bhargavan, K., Leifer, J.: Secure implementations for

typed session abstractions. In: CSF. pp. 170–186 (2007)
9. Deniélou, P.M., Yoshida, N.: Buffered communication analysis in distributed multiparty ses-

sions. In: CONCUR’10. LNCS, vol. 6269, pp. 343–357. Springer (2010)
10. Deniélou, P.M., Yoshida, N.: Dynamic multirole session types. In: POPL. pp. 435–446. ACM

(2011), full version, Prototype at http://www.doc.ic.ac.uk/˜pmalo/dynamic
11. Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Lectures on Concurrency

and Petri Nets. LNCS, vol. 3098, pp. 537–558 (2004)
12. Gouda, M., Manning, E., Yu, Y.: On the progress of communication between two finite state

machines. Information and Control. 63, 200–216 (1984)
13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for struc-

tured communication-based programming. In: ESOP’98. LNCS, vol. 1381, pp. 22–138.
Springer (1998)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL’08.
pp. 273–284. ACM (2008)

15. Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics. In: FMOODS/-
FORTE. LNCS, vol. 6722, pp. 228–243 (2011)

16. Lozes, E., Villard, J.: Reliable contracts for unreliable half-duplex communications. In: WS-
FM. Springer (2011), to appear

17. Ng, N., Yoshida, N., Pernet, O., Hu, R., Kryftis, Y.: Safe Parallel Programming with Session
Java. In: COORDINATION. LNCS, vol. 6721, pp. 110–126. Springer (2011)

18. Online Appendix, http://www.doc.ic.ac.uk/˜malo/msa/
19. Savara JBoss Project, http://www.jboss.org/savara
20. Scribble JBoss Project, http://www.jboss.org/scribble
21. Sivaramakrishnan, K.C., Nagaraj, K., Ziarek, L., Eugster, P.: Efficient session type guided

distributed interaction. In: COORDINATION. LNCS, vol. 6116, pp. 152–167 (2010)
22. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bharagavan, K., Yang, J.: Secure distributed

programming with value-dependent types. In: ICFP. pp. 266–278. ACM (2011)
23. Villard, J.: Heaps and Hops. Ph.D. thesis, ENS Cachan (2011)
24. Yoshida, N., Deniélou, P.M., Bejleri, A., Hu, R.: Parameterised multiparty session types. In:

FoSSaCs. LNCS, vol. 6014, pp. 128–145 (2010)

20


