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Outline

¢ |[ntroduction :- A. Thaliana as a model organism

¢ Photomorphogenesis

e A conservative estimate of differentially expressed genes

e A strategy for examining functional classification

¢ The picture of photomorphogenesis

e \Where to go from here...




Why is Arabidopsis thaliana a good system *?

e Short lifetime - around 40 days.

e |_arge number of genes - ~25,500 (Drosophila around
11,000 genes)

e Compact Genome - 125 Mbases (non-coding regions b S R Y S
~30-50%) | -

e | arge number of array experiments (65 Affymetrix data
sets, with 10’s of raw image files per data set at TAIR for
example)

e A huge number of different strains - over half a million
genotypes.




And why perhaps not so good....

e Not much Protein-Protein interaction data (Tandem Affinity Purification experiments
on the way).

e The genomes of near neighbours have not been sequenced.

e A lytra, C. rubella, B. rapa and T. halophilia are planned or underway

e Not clear how representative genes are for other agriculturally relevant species

e A. thaliana has a huge repertoire of Ubiquitination proteins.




Photomorphogenesis in
Arabidopsis thaliana

e Before exposure to light, seeding
grows via skotomorphogenesis
after germination - slow root
growth, no growth in shoot apical
meristem or cotyledon.

* \When exposed to light, cotyledon
grows through simple
reproduction (control).

e Meristem (stem cells) grow by
differentiation.

e Meristem source of true leaves.

e | ittle understood about process.
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he data

¢ RNA material was gathered from the shoot apical meristem and cotyledon of
Arabidopsis seedlings at

e 0 hour (in darkness)

e 1 and 6 hours (Cot and Mer with replicates)

e 2,24, 48 and 72 hours (Mer only)

e Samples hybridised with Affymetrix ATH1 GeneChip array.

e No amplification of RNA material !




Strategy

e Construct stringent test to determine genes which are clearly differentially
expressed.

¢ |dentify kinetic behaviour of different classes of differentially genes (i.e. try and find a
time line of events).

¢ |dentify functional groupings of genes and then examine how all the genes in that
functional grouping behave (i.e. including those that are not differentially expressed
according to our strict criteria).




-iInding differentially expressed genes

e | ook at three different normalisations for Affymetrix data

e GCRMA

e MAS5

e /SN

e Only consider genes that are differentially expressed in all three normalisations as
being significant.




est for significance

e Apply two-way ANOVA test. Look
for significance with respect to

¢ tissue

* time

¢ time and tissue
e Compute F-Ratio

e Only use data with two replicates
(i.,e. Cot and Merat 0, 1 and 6
hours)

Cot

Cot

A Mer




Finite sample size :-
bootstrapping

e 2 replicates for the ANOVA data
set.

e Cannot trust a p-value from such
data !

e Solution :- create a large set of
artificial data by randomly
selecting expression values from
all of the data.

e Compute histogram of resulting F-
values for ANOVA test to
determine a p-value.
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Meristem Log(fold change 0 -= 1 hour)

Finite sample size :- ;
bootstrapping -
e 2 replicates for the ANOVA data [ER

set. -

e Cannot trust a p-value from such

data ! | | | | |
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determine a p-value.
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-alse

Detection

Rate

e Bonferroni Correction is very
conservative.

e Estimate FDR by plotting a
histogram of the p-values.

e Fix FDR to 5% and set p-value.

e Important step : employ Present/
Absent filter in MAS5 to filter out
genes. Substantial improvement in

results.

e Final step : remove all genes with
fold chanae less than 2
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Initial Results

e Selected 5,620 genes (out of 22,810).

e (Very conservatively) 1/4 of the transcriptome is differentially expressed during
photomorphogenesis.

e Majority selected through time variation (2/3 time, 1/3 tissue).

¢ \Very small number selected using time-tissue variation (10).

12



-unctional Classification :- it should be easy....

e Many genes in Arabidopsis have some kind of functional annotation.

e Use Gene Ontology to give a structured functional annotation.

e Enumerate numbers of genes for a given annotation.

e Compute probability of over or under-representation using hyper-geometric
distribution.
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—unctional Classification :- but it isn’t....

e Gene Ontology are useful but far too specific at its lowest nodes - False Discovery
Rate calculation.

e |nitially interested in general picture, what is the highest level annotation ?

e GO slim should cover more general cases, however annotations of genes can have
multiple parents, e.g. a gene with kinase function and binds to DNA will sit in both
classes.

e Ultimately, we developed our own general functional annotation.

e | esson :- GO has a huge amount of information, but when looking at the big picture,
you need to make the decisions !
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o Oy Oy Gene Model Detail (=]

..;.:,‘.. I-:}v E‘ f;j '“FE : http://www.arabidopsis.org/serviets/TairObject?id=433057&type ¥ |= % - -*screen shot mac os x CL, -y @* Y

Getting Started Latest Headlines s  my del.icio.us post to del.icio.us Yahoo! Google News Ireland®  Main Page - Wikiped... PLoS Computationa... &

I I fl P
m'l"' | PDBsum H—’ | Text Search }—H | }.:.‘ e e

; GeneSearchRe.. @ (&  ArsTechnica @ | Gene Model Detail @ AT1G02970 GO ... @ /& MacDevCenter.c... @ @ fip://fip..0908 @ ~

Gene Model: AT5G60890.1 [Help] N
Update History © AT5G60890.1 replaces AT5GE0890.1 on 2004-02-23 d
Date last modified @ 2007-04-17

Name @ ATSGE0B90.1

Name Type @ orf

Gene Model Type @  protein_coding
TAIR Accession @ Gene:34418RR

Description Myb-like transcription factor that modulates expression of ASA1, a key point of control in the tryptophan pathway;, -
mutant has deregulated expression of ASA1 in dominant allele. Loss of function allele suggests ATR1 also
functions at a control point for regulating indole glucosinolate homeostasis.

Chromosome 3]
Locus @ ATS5GE0890 (Note: use this locus link to see assoclated gene models, markers and ESTs).
Gene Alias © name type ©
MSL3_10 orf
MSL3.10 orf
ATMYB34 symbaol
ATR1 symbol
MYEB DOMAIN PROTEIN 34  full_name
Annotations © Category Relationship Type @ Keyword ©
GO Biological involved in response to salt stress, response to abscisic acid stimulus, response o
Process gibberellin stimulus, response to jasmonic acid stimulus, response to
salicylic acid stimulus
GO Cellular located in nucleus
Component
GO Molecular functions in DMNA binding
Function
has kinase activity, franscription factor activity:
Annotation Detail
Protein Data name Length{aa) ml;ﬁtular i:uﬁtlentrin domains( # of domains) 3
Myb, DNA-binding;Molecular Function: DNA A
AT5G60890.1 295 32743.0 4.9866 mﬁu'ing [:IPRDD‘IEIIJEL'?} I3
£ Find: CL unknown - i Next it Previous = Highlight all | Match case
http:/ fwww.arabidopsis.org/serviets /TairObject?type=keyword&id=4449 lﬁ 11.601s Zotero E o g Safel 5_'_! y
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Example
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Over-representation
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Over-representation
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Clustering :- Understanding the time behaviour

¢ |[mportant lesson :- cluster early, cluster often.

e \While genes have been selected using data at 0,1,6 hours, all data is used for
clustering.

e Results quoted use K-Means (20 clusters) but checked with varying cluster size and
with Hierarchical Clustering (very different clustering algorithm) to check if clusters
are consistent.

e For each cluster, examine functional classes and explore any possible over-
representations.

16



Centered expression

Mer0 Mer1 Mer2 Mer6 Mer 24 Mer48 Mer72 Cot0 Cot 1 Cot 6

K-means clusters (reordered)
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Centered expression

Mer0O Mer1 Mer2 Mer6 Mer 24 Mer 48 Mer72 Cot0 Cot 1 Cot 6

Yes, but what does it
mean ?

K-means clusters (reordered)
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-Irst Phase

® Transcription Factors

e Ubiquitination

e Kinases

* More down-regulation than up.
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Second Phase

e Ribosomal activity

e cell cycle

e hormone-related activity

centered expression
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Up Auxin regulated genes Down
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hird

Phase

e Photosynthesis

e Cell wall loosening
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Cell Wall

¢ Plant cells have rigid cell walls.

¢ Expansion implies that cell walls
must become less rigid.

e Complicated process between cell
wall modification and internal
turgor pressure.

e Nonetheless, see late expression
iIn genes controlling this behaviour.
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Summary of what'’s been seen

e After constructing a set of genes which are strictly differentially expressed we find:

e An early burst (0O-1 hours after exposure to light) of genes In the meristem that are
regulatory in nature and are in general down father than up-regulated.

e Around 6 hours after exposure to light evidence for cell diyision and repfession of
growth.

e At later times, parts of meristem are already $tarting to belave like leaves and we

see growth through expansion rather than diyision {up-regplation of relejant
hormone-related genes, down-regulation of fibosomal gerjes).
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Where to go from here

e So far we’ve put together a picture of genes up and down regulated and looking at
their classification fits in with a picture of particular types of growth.

e Useful at middle and late times (6 hours and beyond)

¢ \We see sets of transcription factors, MAP kinases and Ubiquitination-related genes
which are over-represented.

e Can we identify targets of these regulators ?

e Start off with co-regulated sets and see if we have common upstream promoter
elements.

e How conserved are the above mechanisms elsewhere ?
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