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Abstract

We characterize weakly Hamiltonian-connected ordinary multipartite tournaments. Our
result generalizes such a characterization for tournaments by Thomassen and implies a
polynomial algorithm to decide the existence of a Hamiltonian path connecting two given
vertices in an ordinary multipartite tournament and find one, if it exists.

1 Introduction

It is well-known that tournaments have a very rich structure. Recently it has been shown that
there are several classes of much more general digraphs, containing the tournaments, which
share a lot of this structure with the tournaments, see for example [2, 3, 4, 6, 12, 13].

Multipartite tournaments are another generalization of tournaments. A digraph is a multi-
partite tournament if it can be obtained from a complete k−partite graph, for some k ≥ 2, by
orienting the edges. For a survey on results on multipartite tournaments see [9]. An ordinary
multipartite tournament is a special kind of multipartite tournament in which all arcs between
two classes in the partition have the same direction. One can also view it as a digraph obtained
from a tournament by replacing each vertex with a set of independent vertices. Obviously all
tournaments are ordinary multipartite tournaments. Ordinary-multipartite tournaments are
also quasi-transitive. A digraph D is quasi-transitive if, whenever x→y and y→z are arcs of
D, then x and z are adjacent. It has been shown that these digraphs share many properties
with tournaments, [2, 6], hence, so do ordinary multipartite tournaments.

One notable difference between tournaments and multipartite tournaments is that while
every tournament has a Hamiltonian path, there is no degree of strong connectivity that guar-
antees the existence of a Hamiltonian path in a multipartite tournament, cf. [5]. In fact, here
the existence of an almost factor, i.e., a disjoint collection of cycles and one path, covering all
the vertices of the digraph, is important. A Hamiltonian path is itself an almost factor, so
clearly the existence of an almost factor is required in any digraph with a Hamiltonian path.
The second author showed that this is also sufficient for multipartite tournaments [11].
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Thomassen [14] completely characterized those tournaments which are weakly Hamiltonian-
connected that is, for any two vertices x and y, there is a Hamiltonian path connecting x and
y. In the present paper, we give a complete characterization of weakly Hamiltonian-connected
ordinary multipartite tournaments. Our result generalizes Thomassen’s characterization for
tournaments. From our characterization, it follows that Hamiltonian-connected ordinary mul-
tipartite tournaments share the same ‘forbidden pattern’ with Hamiltonian-connected tourna-
ments, except for minor necessary differences, namely, the existence of an appropriate almost
factor.

A polynomial algorithm to decide the existence of a Hamiltonian path connecting two given
vertices and find one if there exists follows from our result.

Another recent result on weakly Hamiltonian-connectedness is [7] which gives a characteri-
zation of bipartite tournaments (a bipartite tournament is an orientation of a complete bipartite
graph, and hence a special case of multipartite tournaments) which have a Hamiltonian path
connecting two given vertices and gives a polynomial algorithm to find one if it exists.

2 Terminology and preliminaries

All digraphs in this paper are oriented, i.e., they contain no cycles of length 2. Let D be a
digraph. If there is an arc from a vertex x to a vertex y in D, then we say that x dominates y
and denote it by x→y. If A and B are two subsets of V (D) and every vertex of A dominates
each vertex of B, then we say that A dominates B and denote it by A→B. If x and y are two
vertices of D and P is a directed path from x to y, then we say that P is an (x, y)-path. An
(x, y)-Hamiltonian path is an (x, y)-path which contains all vertices of D. If u and v are two
vertices of a path P , we use P [u, v] denote the subpath of P from u to v. If C is a cycle and
u, v are two vertices of C, then we use C[u, v] to denote the subpath of C from u to v. If H is
a subgraph of a digraph D and x is a vertex of D then we denote by OH(x) (IH(x)) the set of
vertices of H dominated by (respectively dominates) the vertex x.

A digraph D is strong if there is an (x, y)-path and a (y, x)-path for any two distinct
vertices x and y of D. A factor of a digraph D is a spanning subgraph such that every vertex
has precisely one in-neighbour and precisely one out-neighbour, i.e., it consists of disjoint cycles
covering the vertices of D.

The following result was obtained by the second author, cf. [10, 11].

Theorem 2.1 An ordinary multipartite tournament D has a Hamiltonian path if and only
if D has a path P such that D − P has a factor. A strong ordinary multipartite tournament
has a Hamiltonian cycle if and only if it has a factor. 2

Lemma 2.2 Let x, y and z be three vertices of an ordinary multipartite tournament. If
x dominates (resp. is dominated by) y which is not is not adjacent to z, then x dominates z
(resp. is dominated by) z. 2
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So an ordinary multipartite tournament satisfies the following quasi-transitive property, cf.
[6, 8], i.e., x→y→z implies that x and z are adjacent. This fact will be frequently used in the
sequel.

Lemma 2.3 Let S and S′ be two strong components in an ordinary multipartite tournament
such that at least one of them is non-trivial. Then either S→S′ or S′→S.

Proof: Since one of S and S′ is non-trivial, there is at least one arc between S and S′.
Suppose that x→y is an arc where x ∈ S and y ∈ S′. For each vertex z ∈ S′, there is a (y, z)-
path in S′ and x must dominate each vertex on this (y, z)-path. In particular, x dominates z.
Hence x→S′. Similarly, S→y. Therefore S→S′. 2

Let D be an ordinary multipartite tournament. It is not difficult to see that if D contains an
almost factor, then the strong components of D can be uniquely ordered S1, S2, . . . , Sk so that
Si→Sj for any i < j. We shall call S1 the initial component and Sk the terminal component of
D. This fact will be frequently used in the sequel without further emphasis.

We shall use x+ (x−) to denote the successor (predecessor) of x on a path or a cycle.
Whenever we use this terminology it will be clear which is the relevant path (cycle).

Lemma 2.4 Let C and C ′ be two disjoint cycles in an ordinary multipartite tournament
D. If C and C ′ are not completely adjacent, then there is a cycle in D containing all vertices
of V (C) ∪ V (C ′).

Proof: If x ∈ V (C) is not adjacent to y ∈ V (C ′), then by Lemma 2.2 x→y+ and y→x+.
Hence xC ′[y+, y]C[x+, x] is a Hamiltonian cycle in V (C) ∪ V (C ′). 2

Let x be a vertex of the digraph D and C : u1→u2→ . . .→uk→u1 be a cycle in D − x. A
partner of x on C is an arc ui→ui+1 such that ui→x→ui+1. Note that a vertex which has a
partner can be inserted into C to obtain a longer cycle.

Lemma 2.5 Let D be a digraph which contains a cycle C and a path P in D−C such that
each vertex of P has a partner on C. Then D has a cycle containing all vertices of C and P .

Proof: Denote P by u1→u2→ . . .→ur and C by v1→v2→ . . .→vs→v1. Let vi→vi+1 be a
partner of u1, namely, vi→u1→vi+1. Let uj be the vertex of P with the greatest subscript j
such that uj→v2. Then we have a new cycle C ′ : viP [u1, uj ]C[vi+1, vi], which contains all arcs
of C except vi→vi+1. If j = r, then we are done; otherwise note that each vertex of P [ui+1, ur]
has a partner on C ′ and we can continue as above to insert vertices of P [ui+1, ur] into C ′. 2

Lemma 2.6 Suppose that a strong ordinary multipartite tournament D has an (x, y)-path
P such that D−P has a factor. Then D has a Hamiltonian path starting at x and a Hamiltonian
path ending at y.
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Figure 1: The exceptional tournaments where the edge between x and y can be oriented
arbitrarily

Proof: Choose a path P ′ starting at x as long as possible so that D−P ′ has a factor which
consists of minimal number of cycles C1, C2, . . . , Cq. Then by Theorem 2.1 and Lemma 2.4 we
may assume that Ci→Cj when i < j. Let x = u1→u2→ . . .→ur be the path P ′. If q 6= 0, then
ur is completely dominated by C1. Since D is strong, there is an arc from P ′ to C1. Let ui

be the vertex of P ′ with largest i such that there is an arc from ui to C1. Hence C1 can be
inserted between ui and ui+1, contradicting the choice of P ′. So q = 0 and P ′ is a Hamiltonian
path starting at x. A similar argument can be applied to show that D has a Hamiltonian path
ending at y. 2

In [14], Thomassen proved the following.

Lemma 2.7 Suppose that T is a tournament which contains two vertices x and y such that
T, T − x and T − y are strong. Then there is no Hamiltonian path connecting x and y if and
only if T is isomorphic to one of the tournaments shown in Figure 1. 2

Lemma 2.8 Suppose that D is a strong ordinary multipartite tournament containing two
adjacent vertices x and y such that D − {x, y} has a Hamiltonian cycle C but D has no
Hamiltonian path connecting x and y. Then C is an even cycle, OC(x) = IC(y), IC(x) =
OC(y), and x, y dominate alternating vertices along the cycle C.

Proof: Since x and y are adjacent, every vertex of C is adjacent to at least one of x and y.
If some u ∈ V (C) is adjacent to exactly one of x and y, say x, then u−→y→u+. There is an
(x, y)-Hamiltonian path xC[u, u−]y if x→u and there is a (y, x)-Hamiltonian path yC[u+, u]x if
u→x, contradicting our hypothesis. So each vertex is adjacent to both x and y. If some vertex
of C dominates both x and y, then there is a vertex v ∈ V (C) such that v dominates both x
and y and there is an arc from {x, y} to v+. It is easy to see that there is a Hamiltonian path
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connecting x and y, a contradiction. Similarly no vertex of C is dominated by both x and y. If
one of x and y, say x, dominates two consecutive vertices w and w+ of C, then y is dominated
by w and w+ and hence there is an (x, y)-Hamiltonian path, a contradiction. Therefore we
have proved the claims in the lemma. 2

We shall see from Theorem 3.1 in the next section that the only possible case when D may
fail to have a Hamiltonian path connecting x and y is when the length of C is four, in which
case D is isomorphic to one of the tournaments shown in Figure 1.

3 Weakly Hamiltonian-connected vertices

Here is the main result.

Theorem 3.1 Let D be an ordinary multipartite tournament and x, y be distinct vertices
of D. Then D has a Hamiltonian path connecting x and y (from x to y or from y to x), if
and only if D has a path P connecting x and y such that D − P has a factor and D does not
satisfy any of conditions (1)− (4) below.

(1) D is not strong and either the initial or the terminal component of D (or both) contains
none of x and y;

(2) D is strong, D−x is not strong and either y belongs to neither the initial nor the terminal
component of D− x, or y belongs to the initial (terminal) component of D− x and there
is no (y, x)-path ((x, y)-path) P ′ such that D − P ′ has a factor.

(3) D is strong, D−y is not strong and either x belongs to neither the initial nor the terminal
component of D− y, or x belongs to the initial (terminal) component of D− y and there
is no (x, y)-path ((y, x)-path) P ′ such that D − P ′ has a factor.

(4) D, D− x, and D− y are all strong and D is isomorphic to one of the tournaments shown
in Figure 1.

Proof: First observe that the existence of a path P connecting x and y such that D − P
has a factor is necessary, since any Hamiltonian path connecting x and y has that property.
Now, if one of conditions (1) − (4) holds, then it is easy to see that D has no Hamiltonian
path connecting x and y. We prove by induction on n, the number of vertices of D, that the
converse is true as well.

First we claim that if D has no Hamiltonian path connecting x and y and D, D − x, or
D − y is not strong, then (1), (2), or (3) must hold. Indeed, if D is not strong and if the
initial component S1 of D contains x and the terminal component St of D contains y, then it
is clear that our condition implies that there is an (x, y)-path P such that D−P has a factor.
Therefore, by Lemma 2.6 the initial component S1 contains a Hamiltonian path starting at
x, the terminal component St has a Hamiltonian path ending at y and any other component
Si (1 < i < t) of D contains an almost factor. By Theorem 2.1, any Si (1 < i < t) has a
Hamiltonian path. Hence, by Lemma 2.3 D has an (x, y)-Hamiltonian path, a contradiction.
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Now we consider what happens when D is strong and D − x is not strong. Suppose that
the initial component of D− x contains y and there is a (y, x)-path P ′ such that D−P ′ has a
factor. By Lemma 2.6 the initial component of D− x has a Hamiltonian path starting at y. If
the terminal component of D−x intersects P ′, then again by Lemma 2.6 it has a Hamiltonian
path ending at the predecessor of x on P ′. If the terminal component does not intersect P ′,
then it has a Hamiltonian cycle and hence it has a Hamiltonian path ending at a vertex which
has an arc to x. Hence it is clear that D has a (y, x)-Hamiltonian path, a contradiction. For
the case when D − y is not strong, we can show that condition (3) holds.

So we assume that D, D − x, and D − y are all strong and we shall prove that either D
has a Hamiltonian path connecting x and y or D is isomorphic to one of the tournaments in
Figure 1. By Lemma 2.8, n ≥ 6.

Suppose first that x is adjacent to y and that D−{x, y} has a Hamiltonian cycle u1→u2→ . . .
→ut→u1. By Lemma 2.8, either D has a Hamiltonian path connecting x and y or t is even,
say t = 2k for some k, and we may choose the labeling of the cycle such that, OC(x) = IC(y) =
{u1, u3, . . . , u2k−1}, and IC(x) = OC(y) = {u2, u4, . . . , u2k}. If k = 2, i.e., n = 6, then it is
clear that D is a tournament. By Lemma 2.7, either D has a Hamiltonian path connecting x
and y or D is isomorphic to one of the tournaments in Figure 1. So k ≥ 3.

Claim 1. Either D has a Hamiltonian path connecting x and y, or there exist different a, b
such that ua−1→ub+1 where ua, ub are in OC(x) = IC(y) or in IC(x) = OC(y). Furthermore
every Hamiltonian path of D− {x, y} connecting ua and ub can be extended to a Hamiltonian
path of D connecting x and y.

Proof of Claim 1: The second statement of Claim 1 follows from the fact that ua, ub

are in OC(x) = IC(y) or in IC(x) = OC(y). Note that, for every i, ui is adjacent to ui+2. If
uj+2→uj for some j, then let a = j + 3, b = j − 1 and the claim follows. So assume that
ui→ui+2 for every i. Then ui is adjacent to ui+4. In particular, u1 is adjacent to u5. If k = 3,
then D is a tournament which is not isomorphic to the one in Figure 1, and by Lemma 2.7
there is a Hamiltonian path connecting x and y. If k ≥ 4, then let a = 2, b = 4 if u1→u5 and
let a = 6, b = t if u5→u1, and the claim follows. 2

By Claim 1, we may assume, without loss of generality, that D−{x, y} has a (ua, ub)-path
P ′ : ua→ua+1→ . . .→ub and D−{x, y}−P ′ has a Hamiltonian cycle C ′ : ua−1→ub+1→ub+2→ . . .
→ua−1, and ua, ub are in OC(x) = IC(y) or in IC(x) = OC(y). According to the second state-
ment of Claim 1, we may assume that there is no Hamiltonian path connecting ua and ub in
D−{x, y}. By induction, D−{x, y} satisfies (2), (3) or (4) of Theorem 3.1, with D replaced by
D−{x, y}, x by ua, and y by ub. Suppose that condition (2) holds, namely, D−{x, y, ua} is not
strong. Note that, because of the existence of the path P ′, ub can not appear in the terminal
component T of D − {x, y, ua} and, since ua−1 ∈ T , T contains all the vertices of C ′. Hence
ub completely dominates all vertices of C ′. Therefore D has a Hamiltonian path connecting x
and y (note that C ′ contains in-neighbours of x and y). Similarly there is a Hamiltonian path
connecting x and y when D−{x, y, ub} is not strong. Finally suppose that condition (4) holds,
i.e., D−{x, y} is isomorphic to the tournament in Fig. 1. In this case, D is a tournament since
x and y are adjacent to all vertices of D − {x, y}. By Lemma 2.7, D has a Hamiltonian path
connecting x and y.
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So we assume, from now on, that x and y are not adjacent whenever D − {x, y} has a
Hamiltonian cycle.

Suppose that D has a path P : v1→v2→ . . .→vt connecting x and y and D−P has a factor
which consists of cycles C1, C2, . . . , Cq. Choose such P as long as possible and subject to that
q is minimal. Suppose first q ≥ 2. Without loss of generality assume that P is an (x, y)-path.
By Theorem 2.1 and Lemma 2.3, we may also assume that Ci→Cj when i < j. Since D − y
is strong, there is an arc from some vi to C1 where i ≤ t − 1. Then there must be arc from
vt−1 to C1 since otherwise all vertices of C1 can be inserted between two consecutive vertices
of P , contradicting the choice of P . Hence y→Cq. Applying a similar argument, we can show
that there is an arc from Cq to v2 and C1→x. This implies that the length of P is at least
two. Let u be a vertex of C1 dominated by vt−1 and u′ be a vertex of Cq which dominates v2.
Then yCq[u′+, u′]P [v2, vt−1]C1[u, u−]x is a (y, x)-path of length greater than the length of P ,
contradicting the choice of P . Hence q ≤ 1.

So D − P has a Hamiltonian cycle and we use C : u1→u2→ . . .→us→u1 to denote such a
cycle.

Claim 2. There exists an arc from v2 to C and an arc from C to vt−1, or D has a
Hamiltonian path connecting x and y.

Proof of Claim 2: Suppose that C→v2. Then C→x or we can insert all vertices of C
between x and v2 to obtain an (x, y)-Hamiltonian path. If there is an arc from vt−1 to C, then
D−{x, y} has a Hamiltonian cycle. Hence x and y are not adjacent. Then yP [v2, vt−1]C[u, u−]x
is a Hamiltonian path where u is a vertex of C dominated by vt−1. If there is no arc from vt−1

to C, i.e., C→vt−1, then all vertices of C can be inserted between two consecutive vertices of P
to obtain an (x, y)-Hamiltonian path, because D − y is strong. By a similar argument, it can
be shown that there is an arc from C to vt−1 or D has a Hamiltonian path connecting x and y. 2

Suppose D does not have a Hamiltonian path connecting x and y. By Claim 2, there is an
arc from v2 and an arc from C to vt−1. Since D has no Hamiltonian path connecting x and
y, each vi with 2 ≤ i ≤ t − 1 has arcs in both directions to C. Each of such vertices must
completely adjacent to C. Indeed, if vi is not adjacent to some uj , then vi→uj+1, uj→vi+1,
and hence there is (x, y)-Hamiltonian path P [x, vi]C[uj+1, uj ]P [vi+1, y]. So each vertex vi with
2 ≤ i ≤ t − 1 has a partner on C. Hence by Lemma 2.5 D − {x, y} has a Hamiltonian cycle.
Therefore x and y are not adjacent and we have vt−1→x and y→v2.

By a similar discussion as above, we can show that both x and y are completely adjacent to
C. Since D has no Hamiltonian path connecting x and y, there is at least one arc from C to x
and there is at least one arc from y to C. Since x and y are not adjacent, there is an arc from
x to C. Now there is a Hamiltonian cycle C ′ in D−y because each vertex vi with 1 ≤ i ≤ t−1
has a partner on C. Let x− denote the predecessor of x on C ′. Then x− dominates x which is
not adjacent to y. By Lemma 2.2, x− dominates y. Therefore there is an (x, y)-Hamiltonian
path C ′[x, x−]y, a contradiction. This completes the proof of Theorem 3.1. 2

The following immediate consequence of Theorem 3.1 characterizes weakly Hamiltonian-
connected ordinary multipartite tournaments.
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Corollary 3.2 An ordinary multipartite tournament D is weakly Hamiltonian-connected
if and only if it satisfies (1), (2), (3), and (4) below.

(1) D is strong.

(2) For every pair of distinct vertices x and y of D, there is a path P connecting x and y so
that D − P has a factor.

(3) For each vertex x of D, D − x has at most two components and, for each vertex y in the
initial (terminal) component, there is a (y, x) ((x, y))-path P ′ such that D − P ′ has a
factor.

(4) D is not isomorphic to the tournament in Fig. 1. 2

The proof [14] of Thomassen’s theorem, mentioned above, is based on the following result:
For any three distinct vertices of a strong tournament T , there is a Hamiltonian path connecting
two of them. This theorem has also an independent significance. We shall formulate and prove
an analogous result for strong ordinary multipartite tournaments.

Corollary 3.3 Let x, y and z be three vertices of a strong ordinary multipartite tournament
D. Suppose that, for each pair of x, y and z, there is a path P connecting them so that D − P
has a factor. Then there is a Hamiltonian path connecting two of them.

Proof: If both D−x and D−y are strong, then, by Theorem 3.1, either D has a Hamiltonian
path connecting x and y, or D is isomorphic to one of the tournaments in Figure 1, in which
case there is a Hamiltonian path connecting x and z. Similarly, if both D − x and D − z,
or D − y and D − z are strong. So without loss of generality assume that neither D − x nor
D − y is strong. Let P be a path connecting x and y in D such that D − P has a factor F .
Obviously, all the components of D− x, except possibly one, contain cycles of F and hence all
of them, except possibly one, are non-trivial. Let S1, S2, . . . , St be the strong components of
D − x where Si→Sj for all 1 ≤ i < j ≤ t. Note that St has an arc to x, since D is strong.

If neither S1 nor St contains y, then D − y is strong, contradicting our assumption. So
assume that the initial component contains y. (The discussion is similar in the other possible
case). In the connection with condition (2) of Theorem 3.1, we may also assume that there
is an (x, y)-path P ′ : x→v1→v2→ . . .→vr = y such that D − P ′ has a factor. Since P ′ − x is
contained in S1, each Si, i > 1, has a factor and hence contains a Hamiltonian cycle Ci, by
Theorem 2.1.

If r = 1 then, by Lemma 2.6, S1 contains a Hamiltonian path starting at y. This path can
easily be extended to a (y, x)-Hamiltonian path in D, since each Si, i > 1, is Hamiltonian.

Assume now that r ≥ 2. By Lemma 2.6, S1 has a Hamiltonian path P ′′ starting at v1.
If z ∈ Sj , 1 < j < t, then let v ∈ St be any vertex which dominates x and D has the
(y, z)-Hamiltonian path

P ′′[y, a]Cj+1[b, b−] . . . Ct[v+, v]xP ′′[v1, y
−]C2[c, c−] . . . . . . Cj [z+, z]
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where a is the last vertex of P ′′ and b, c are any vertices in Cj+1, C2 respectively. If z ∈ St,
then D has the (x, z)-Hamiltonian path

xP ′′C2[c, c−]...Ct[z+, z].

So assume that z ∈ S1.

If S1−y is strong, then D−y is strong contradicting our assumption above. Let T1, T2, . . . , Ts,
s ≥ 2, be the strong components of S1 − y where Ti→Tj for every i < j. Note that each Ti

either consists of some cycles from the factor of D − P ′ and hence has a Hamiltonian cycle,
or consists of a portion of P ′[v1, vr−1] and some cycles from the factor of D − P ′ and hence
has a Hamiltonian path. Note also that there is at least one arc from y to T1 and at least one
arc from Ts to y. If T1 consists of a portion of P ′[v1, vr−1] and some cycles from the factor of
D−P ′, then it is clear that T1 contains v1, hence D−y is strong, contradicting our hypothesis.
So T1 contains no vertices of P ′[v1, vr−1] and hence it has a Hamiltonian cycle to which there
is at least one arc from y. Therefore it is easy to see that D has a (y, x)-Hamiltonian path. 2

4 A polynomial algorithm

We show that there is a polynomial algorithm to decide the existence of a Hamiltonian path
connecting two given vertices of an ordinary multipartite tournament and to find one, if it
exists. Instead of giving the algorithm in detail, we shall argue that such an algorithm is
inherent in our proof. Let x and y be two vertices of an ordinary multipartite tournament D.
First, according to Theorem 3.1, we need to check whether there is an (x, y) ((y, x))-path P
such that D − P has a factor. Let D′ the digraph obtained from D by deleting all arcs from
y (x) and all arcs into x (y) and then adding the arc y→x (x→y). It is clear that there is an
(x, y) ((y, x))-path P in D such that D − P has a factor if and only if D′ has a factor. For
the purpose of deciding whether D′ has a factor, we construct a bipartite graph B from D′ as
follows: The vertex set of B consists of two copies v, v′ of every vertex v of D′. The edge set of
B consists of all edges vu′ where v→u in D′. Then it is easy to see that D′ has a factor if and
only if B has a perfect matching. The existence of a perfect matching in a bipartite graph can
be checked in time O(n1.5

√
m/ log n) [1]. So in time O(n1.5

√
m/ log n) we can decide whether

there is an (x, y) or a (y, x)-path P such that D − P has a factor.

It can be checked in time O(n1.5
√

m/ log n) whether D satisfies any of conditions (1)− (3)
of theorem 3.1. If D does not satisfy any of conditions (1)− (3) and either D or D−x or D−y
is not strong, then we know the desired path exists and it can be found by turning the proof
of Lemma 2.6 into an O(n2) time algorithm.

Suppose that D,D−x, and D−y are all strong. It can be checked in constant time whether
D is isomorphic to the tournament in Fig. 1. If not, then, according to Theorem 3.1, D has
the desired path. To find such a path, we follow the proof in section 3. Most of the steps
constructively find the desired path and rest of steps can also easily converted into an O(n2)
time algorithm.

Hence we have the following
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Theorem 4.1 There exists an O(n1.5
√

m/ log n) algorithm to decide if a given ordinary
multipartite tournament has a Hamiltonian path connecting two specified vertices x and y. Fur-
thermore, within the same time bound such a path can be found if it exists. 2

5 Concluding remarks

In this paper we have shown that ordinary multipartite tournaments have a structure which is
closely related to that of tournaments, when we consider weakly Hamiltonian-connectedness.
We point out that Theorem 3.1 does not extend to general multipartite tournaments. To see
this consider the multipartite tournament D obtained from a Hamiltonian bipartite tournament
B with classes X and Y , by adding two new vertices x and y along with the following arcs:
all arcs from x to X and from Y to x, respectively all arcs from y to Y and X to y and an
arc between x and y in any direction. It is easy to see that D satifies none of the conditions
(1) − (4) in Theorem 3.1, yet there can be no Hamiltonian path with endvertices x and y in
D, because any such path would contain a Hamiltonian path of B starting and ending in X or
starting and ending in Y . Such a path cannot exist for parity reasons. Note also that we can
choose B so that the resulting multipartite tournament is highly connected. However, it can
be shown that if D is a strong multipartite tournament containing an (x, y)-path P such that
D − P has a factor with t cycles and D − x, D − y are strong, then D contains a path with
endvertices x and y of length at least n− t− 2.

In [14] Thomassen went a lot further than just weakly Hamiltonian-connectedness. He
also showed that every 4-connected tournament is strongly Hamiltonian-connected (i.e. we
can specify the starting and the ending vertex of a Hamiltonian path). We conjecture that a
similar result holds for ordinary multipartite tournaments, namely, we conjecture that if D is
a 4-connected ordinary multipartite tournament with an (x, y)−path P such that D−P has a
factor, then D has an (x, y)−Hamiltonian path.

References

[1] H. Alt, N.Blum, K.Mehlhorn and M. Paul, Computing a maximum cardinality matching
in a bipartite graph in time O(n1.5

√
m/ log n), Information Proceesing Letters 37 (1991)

237-240.

[2] J. Bang-Jensen, Disjoint paths with prescribed ends and cycles through specified arcs in
quasi-transitive digraphs, to be submitted.

[3] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tournaments, J. Graph
Theory 14 (1990) 371-390.

[4] J. Bang-Jensen,On the structure of locally semicomplete digraphs, Discrete Mathematics
100 (1992), 1–23.

[5] J. Bang-Jensen, G. Gutin, and J. Huang, A sufficient condition for a complete multipartite
digraph to be Hamiltonian, to be submitted.

10



[6] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, to be submitted.

[7] J. Bang-Jensen and Y. Manoussakis, Weakly Hamiltonian-connected vertices in bipartite
tournaments, submitted.
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