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Abstract

We survey results on paths, trees and cycles in tournaments. The main
subjects are hamiltonian paths and cycles, vertex and arc disjoint paths with
prescribed endvertices, arc-pancyclicity, oriented paths, trees and cycles in tour-
naments. Several unsolved problems are included.

1 Introduction

Tournaments constitute without any doubt the most well-studied class of directed
graphs. There are more than 300 research papers dealing explicitly with tournaments
and many more in which tournaments are mentioned in some part of the context. One
of the main reasons for this huge interest in the theory of tournaments is no doubt
the excellent book of J.W. Moon [81]. In 1968, when Moon wrote his monograph,
it was still possible to cover most of the results on tournaments in one short book.
Now that task seems very difficult, even in a relatively long book, and it is certainly
impossible to cover all major results in one survey paper. Thus we have chosen to
concentrate on the theory on paths, trees and cycles in tournaments. This theory
was only just starting to develop when Moon wrote his monograph. Many significant
results have been proved since the late seventies. We list only some of them: A.
Thomason’s proof (for tournaments with a large number of vertices) of M. Rosenfeld’s
conjectures on the presence of every orientation of a Hamiltonian path and every non-
strong orientation of a Hamiltonian cycle, respectively, in every tournament [113];
R. Häggkvist’s proof (for tournaments with a large number of vertices) of Kelly’s
conjecture (personal communication, see also [37, 122]); C. Thomassen’s proof that
every 4-strong tournament is Hamiltonian-connected [115], a theorem which has led
to several important results; F. Tian, Z.-C. Wu and C.-Q. Zhang’s characterization
of arc-pancyclic tournaments [125] and K.-M. Zhang’s characterization of completely
strong path-connected tournaments [137]; and N. Alon’s solution of an old conjecture
of T. Szele on the maximum number of Hamiltonian paths in tournaments [2].
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There have been other surveys dealing with tournaments [22, 25, 26, 33, 59, 66,
139], but none of these covers more than a small fraction of the results we are going
to mention here. As the reader will see, even though we have narrowed the topic to
paths, trees, and cycles, we still cannot provide a complete list of all the results in the
space that a survey allows. Inevitably, our choice of material is affected by personal
tastes. We hope, however, that we have succeeded in covering almost all significant
progress within the area. We shall allow ourselves to step away from the main topic
a few times and provide the reader with a few results on other kinds of subgraphs of
tournaments. This is done to show that the results treated in the paper are closely
related to other topics on tournaments.

Several of the results in this paper deal with semicomplete digraphs, a slight
generalization of tournaments in which we allow arcs in both directions between some
of the vertices. There are two reasons for doing this. The first is that many of the
results for tournaments hold for semicomplete digraphs also, without any change in
the proof. The second and more important reason is that in some proofs it has turned
out to be an advantage to prove the result for semicomplete digraphs. One example
of this is Thomassen’s proof [115] that every 4-strong tournament is Hamiltonian-
connected.

There are several other generalizations of tournaments : semicomplete multipar-
tite digraphs [59], locally semicomplete digraphs [6, 8, 69], locally in-semicomplete
digraphs [15, 17], quasi-transitive digraphs [13, 16, 60], path-mergeable digraphs [7]
and several others. The main idea in considering these generalizations is to study
which of the results for tournaments can be extended to the class in question. In
doing so we learn something about the structure of tournaments, namely we see that
some of the properties of tournaments are really not just tournament properties. We
mention a few examples: every connected locally semicomplete digraph has a Hamilto-
nian path, every strongly connected locally semicomplete digraph has a Hamiltonian
cycle [6], there are polynomial algorithms to decide if a quasi-transitive digraph has
a Hamiltonian path and Hamiltonian cycle respectively [13, 60]. Recently, it was
shown [14] how to use a result on semicomplete multipartite digraphs to strengthen a
theorem on Hamiltonian cycles avoiding prescribed arcs in tournaments (see Section
4).

Many of the results mentioned in this survey have been extended to some of the
classes mentioned above, see for example [6, 8, 12, 38, 57, 59]. We do not want to
get into a discussion of the definitions or the generalizations of all of these results.
Except for semicomplete multipartite digraphs, for which we refer the reader to the
survey paper [59], these topics will all be covered in a forthcoming survey paper on
generalizations of tournaments.

2 Terminology, notation and preliminaries

The terminology is fairly standard, generally following [27, 39]. The digraphs consid-
ered here are finite and have no loops or multiple arcs. V (D) and A(D) denote the
vertex set and the arc set of a digraph D. The number of vertices in a digraph is its
order. For a subset B of V (D), D 〈B〉 denotes the subgraph of D induced by B.
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We shall denote the arc from a vertex x to a vertex y by (x, y) or, simply, xy. If
xy ∈ A(D), we shall say that x dominates y and y is dominated by x and write x→y.
For disjoint sets of vertices X, Y of a digraph D we shall write X⇒Y if every vertex
of X dominates every vertex of Y and no vertex of Y dominates a vertex of X. An
arc xy ∈ A(D) is single if yx /∈ A(D).

A digraph T is semicomplete if every pair of vertices of T is joined by at least
one arc. A semicomplete digraph T is a tournament if all arcs of T are single. A
semicomplete digraph having no single arc is called complete. We denote by TTn the
transitive tournament on n vertices, i.e. the tournament with vertex set {1, 2, ..., n}
and arc set {(i, j) : 1 ≤ i < j ≤ n}. The almost transitive tournament on n vertices
is obtained from TTn by reversing the arc (1, n). We define the rotational tournament
R(q1, ..., qk) to be the tournament with vertex set V = {0, 1, ..., 2k} where i dominates
i + j (modulo 2k + 1) if and only if j ∈ {q1, ..., qk}, where {q1, ..., qk} is a k-element
subset of V such that qi 6= 0 and qi + qj 6= 0 (modulo 2k + 1) for all i 6= j ∈ {1, ..., k}.

The out-neighbourhood N+(x) of a vertex x in a digraph D is the set of all vertices
of D dominated by x. The in-neighbourhood N−(x) of a vertex x is the set of all
vertices of D which dominate x. The number of vertices in the out-neighbourhood
(in-neighbourhood) of x is the out-degree d+(x) (in-degree d−(x)) of x. A digraph
D is called k-diregular (or, just, diregular) if d+(x) = d−(x) = k for every vertex
x in D. A digraph D is m-irregular if there exists a natural number k such that
max{|k − d+(x)|, |k − d−(x)|} ≤ m for every vertex x ∈ V (D). So, a diregular
digraph is 0-irregular.

If the arcs of a directed walk W are distinct, we call W a trail. A trail is closed
it it contains at least one arc and its first and last vertices are the same. By a cycle
(path) we mean a directed simple cycle (path). An (x, y)-path is a path from x to y.
The length of a path or cycle is the number of arcs in it. A k-cycle (k-path) is a cycle
(path) of length k. A path or cycle of a digraph D is called Hamiltonian if it contains
all the vertices of D. A digraph D is weakly (strongly) Hamiltonian connected if, for
every ordered pair (x, y) of distinct vertices of D there is a Hamiltonian path between
them (from x to y, respectively).

A digraph D is strongly connected (or just strong), if there exists an (x, y)-path
and a (y, x)-path for every choice of distinct vertices x, y of D. If D is not strong,
then we can order its strong components D1, . . . , Ds so that there is no arc from Dj

to Di for i < j. In general this ordering is not unique but it is so for semicomplete
digraphs (see Proposition 2.1). An initial (terminal) component of a digraph D is a
strong component with no incoming (outgoing) arcs.

A digraph D is k−strong (or k-strongly connected), if for every S ⊂ V (D) of at
most k − 1 vertices, D − S is strong. A set S of vertices of a digraph D is called
an (x, y)-separator of size k if D − S has no (x, y)-paths and |S| = k. S is called
trivial if either x has out-degree zero or y has in-degree zero in D − S. A digraph D
is k-arc-strong if for every subset Q of A(D) of at most k − 1 arcs, D −Q is strong.
The following simple formula for finding asc(T ), the maximum k such that a given
tournament T of order n is k-arc-strong, is obtained in [23]:

asc(T ) = min
1≤m≤n−1

{sm −m(m− 1)/2},

where sm is the sum of the m smallest out-degrees in T .
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An out-branching (in-branching) rooted at a vertex v in a digraph D is a spanning
oriented tree T of D such that the in-degree (out-degree) of v is zero and the in-degree
(out-degree) of every other vertex of T is one.

The following two easy observations will be helpful in understanding some of the
remarks in later sections.

Proposition 2.1 If a semicomplete digraph T is not strong, then there exists a
unique ordering T1, . . . , Tk of its strong components such that V (Ti)⇒V (Tj) when-
ever i < j. In particular, non-strong semicomplete digraphs have unique initial and
terminal components.

Proposition 2.2 Let T be a semicomplete digraph with two distinct vertices x, y,
such that there are two internally disjoint (x, y)−paths P1, P2 in T . P1, P2 can be
merged into one (x, y)−path P such that V (P ) = V (P1) ∪ V (P2). P can be found in
linear time.

We conclude this section with two well-known results by L. Redei [92] and P.
Camion [41], respectively.

Theorem 2.3 Every semicomplete digraph has a Hamiltonian path.

Theorem 2.4 A semicomplete digraph D has a Hamiltonian cycle if and only if D
is strongly connected.

The algorithmic aspects of the Hamiltonian path and cycle problems for tourna-
ments are discussed in [59].

3 Arc-disjoint Hamiltonian paths and cycles and

Kelly’s conjecture

Kelly’s conjecture is probably one of the best known conjectures in tournament theory.

Conjecture 3.1 The arcs of a diregular tournament of order n can be partitioned
into (n− 1)/2 Hamiltonian cycles.

This conjecture was verified for n ≤ 9 by P. Seymour and C. Thomassen [103].
B. Jackson proved that every diregular tournament of order at least 5 contains a
Hamiltonian cycle and a Hamiltonian path that are arc-disjoint [70]. It was proved,
in [133] and [127], respectively, that there are two (three, respectively) arc-disjoint
Hamiltonian cycles for n ≥ 5 (n ≥ 15, respectively). C. Thomassen proved the
following:

Theorem 3.2 [117] Every diregular tournament of order n has at least b
√

n/1000c
arc-disjoint Hamiltonian cycles.

This result was improved by R. Häggkvist [62] to the following:
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Theorem 3.3 There is a positive constant c (in fact c ≥ 2−15) such that every di-
regular tournament of order n contains at least cn arc-disjoint Hamiltonian cycles.

A better lower bound for the constant c was obtained in [65], provided n is suffi-
ciently large. C. Thomassen [120] proved that the arcs of every diregular tourna-
ment can be covered by 12n Hamiltonian cycles. R. Häggkvist claims that he has
proved that Kelly’s conjecture is true for sufficiently large n (personal communica-
tions (1986,1994), see also [37, 122]). Häggkvist’s proof which has unfortunately never
been written up in full detail is based on so-called exact sorters (a concept defined by
Häggkvist and which we shall not define here; some information on applications of
sorters in cycle problems can be found in [64, 65]) and uses probabilistic arguments.

Let T be the tournament obtained from two diregular tournaments T1 and T2 each
on 2m+1 vertices, by adding all arcs from the vertices of T1 to T2 (i.e. V (T1)⇒V (T2)
in T ). Clearly T is not strong and so has no Hamiltonian cycle. The minimum in-
degree and minimum out-degree of T is m which is about 1

4
|V (T )|. B. Bollobás and

R. Häggkvist [37] showed that if we increase the minimum in-degree and out-degree
slightly, then, not only do we get many arc-disjoint Hamiltonian cycles, we also get a
very structured set of such cycles. The kth power of a cycle C is the digraph obtained
from C by adding an arc from x ∈ V (C) to y ∈ V (C) if and only if the length of the
(x, y)-path contained in C is less than or equal to k. Hence the 1st power of C is C
itself.

Theorem 3.4 [37] For every ε > 0 and every natural number k there is a natural
number n(ε, k) with the following property. Let T be a tournament of order n > n(ε, k)
such that min{d+(x), d−(x)} ≥ (1

4
+ ε)n for every vertex x ∈ V (T ). Then T contains

the kth power of a Hamiltonian cycle.

Note that, trivially, a tournament on n vertices with minimum in-degree and
out-degree at least 1

4
n is strongly connected.

We now turn our attention to other results concerning arc-disjoint Hamiltonian
paths and cycles in tournaments. In [117], C. Thomassen completely characterised
tournaments having at least two arc-disjoint paths.

Theorem 3.5 A tournament T fails to have two arc-disjoint Hamiltonian paths if
and only if T has a strong component which is an almost transitive tournament of
odd order or has two consecutive strong components of order 1.

He also considered the existence of a Hamiltonian path P and a Hamiltonian cycle C
which are arc-disjoint.

Theorem 3.6 [117] Let T be a tournament of order at least 3 such that each arc of
T is contained in a 3-cycle. Then T has a Hamiltonian path and a Hamiltonian cycle
which are arc-disjoint unless T is a 3-cycle or the tournament of order 5 obtained
from a 3-cycle by adding two vertices x, y and the arc xy and letting y (x) dominate
(be dominated by) the vertices of the 3-cycle.
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The last theorem generalized the result of B. Jackson mentioned in the beginning
of this section. However, Theorem 3.6 goes much further since almost all tournaments
satisfy the assumption of the theorem (see [81]). The following conjecture, in some
sense generalizing Kelly’s conjecture, was proposed by C. Thomassen.

Conjecture 3.7 [117] For every ε > 0 almost all tournaments of order n have b(0.5−
ε)nc arc-disjoint Hamiltonian cycles.

P. Erdös raised the following question (see [117]).

Question 3.8 Do almost all tournaments have δ(T ) arc-disjoint Hamiltonian cycles,
where δ(T ) is the minimum of all in-degrees and out-degrees of T?

C. Thomassen posed another conjecture.

Conjecture 3.9 [117] For each integer k ≥ 2 there exists an integer α(k) such that
every α(k)-strong tournament has k arc-disjoint Hamiltonian cycles.

He conjectured that α(2) = 3.

4 Hamiltonian cycles avoiding prescribed arcs

The following result was conjectured by C. Thomassen [117] and proved by P. Fraisse
and C. Thomassen [49]:

Theorem 4.1 If I is a set of k− 1 arcs in a k-strong tournament T , then T − I has
a Hamiltonian cycle.

This result is sharp since the deletion of a set I of k arcs from a k-strong tour-
nament may create a vertex of indegree or outdegree 0. However, the authors of [49]
realized that, for some sets I, their bound was far from being the best possible (see,
e.g., Section 5 in [117]).

In [14], the following stronger result was obtained:

Theorem 4.2 Let T = (V, A) be a k-strong tournament on n vertices. Suppose that
X1, X2,..., Xl be a partition of the vertex set V of T such that |X1| ≤ |X2| ≤ . . . ≤
|Xl| ≤ n/2. If k ≥ k′ =

∑l−1
i=1b|Xi|/2c+ |Xl|, then T − ∪l

i=1{xy ∈ A : x, y ∈ Xi} has
a Hamiltonian cycle.

It is easy to see that Theorem 4.1 follows from Theorem 4.2. Indeed, let I be a
set of arcs in a tournament T , let G be the undirected graph obtained by ignoring all
orientations of the arcs of T 〈I〉, the subgraph of T which has arc set I and no isolated
vertices, and let Y1, ..., Ym be the vertex sets of the connected components of G so
that |Y1| ≤ ... ≤ |Ym|. By Theorem 4.2, T has a Hamiltonian cycle avoiding the arcs
in I if T is k′-strong, where k′ =

∑m−1
i=1 b|Yi|/2c+ |Ym|. But k′ ≤ 1 +

∑m
i=1(|Yi| − 1) ≤

1 +
∑m

i=1 e(Yi) ≤ 1 + |I|, where e(Yi) is the number of edges in the component of G
induced by Yi.
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A simple analysis of the last calculation shows precisely when both theorems
provide the same value of strong connectivity of T – namely, when I consists of one
tree, plus maybe some independent arcs. In all other cases Theorem 4.2 gives a
better bound. In particular, if T 〈I〉 is a union of (vertex) disjoint subtournaments
of T of order n1, ..., nm (3 ≤ n1 ≤ ... ≤ nm), then, to guarantee that T − I has a

Hamiltonian cycle, we need T to be (
∑m

i=1

(
ni

2

)
+ 1)-strong by Theorem 4.1 and to be

(nm +
∑m−1

i=1 bni/2c)-strong by Theorem 4.2.

5 Hamiltonian paths with prescribed endvertices

and Hamiltonian cycles through given arcs

In this section we consider the following three problems regarding Hamiltonian paths
and cycles. Below we assume that we are given a digraph D and two distinct vertices
x, y.

(1) Weak Hamiltonian connectedness problem. Decide if there is a Hamiltonian path
with endvertices x, y (the order not specified) and find one (if it exists).

(2) Strong Hamiltonian connectedness problem. Decide if there is a Hamiltonian
(x, y)-path and find one (if it exists).

(3) Hamiltonian cycle through k arcs problem (the k-HCA problem). Decide if there
is a Hamiltonian cycle in D containing k specified arcs a1, ..., ak.

In the case k = 1 all these problems are equivalent for general digraphs, from
an algorithmic point of view, and, moreover, they are NP -complete [53]. We now
restrict ourselves to semicomplete digraphs, and, as we shall see, even though the first
two problems are polynomial time solvable, they are not quite trivial. Moreover, the
k-HCA problem is even NP -complete if k is not fixed [20].

From a theoretical point of view the complexities of the problems (as a measure
of difficulty) are rather different : there is a complete mathematical characterization
in the case of (1), but no such characterization has been found for (2) or (3).

The weak Hamiltonian connectedness problem for tournaments was completely
solved by C. Thomassen who proved the following:

Theorem 5.1 [115].
Let D be a tournament and let x, y be distinct vertices of D. Then D has a

Hamiltonian path connecting x and y (from x to y or from y to x), if and only if D
does not satisfy any of the conditions (1)− (4) below.

(1) D is not strong and either the initial or the terminal strong component of D (or
both) contains none of x and y;

(2) D is strong, D − x is not strong and either y belongs to neither the initial nor
the terminal strong component of D − x.

(3) D is strong, D − y is not strong and either x belongs to neither the initial nor
the terminal strong component of D − y.
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Figure 1: The two exceptional tournaments (the edge between x and y can be oriented
arbitrarily)

(4) D, D − x, and D − y are all strong and D is isomorphic to one of the two
tournaments shown in Figure 1.

The proof of Theorem 5.1 in [115] is based on the following interesting result.

Theorem 5.2 For every three vertices of a strong semicomplete digraph there is a
Hamiltonian path connecting two of them.

C. Thomassen pointed out in [115] that the characterization of Theorem 5.1 is valid
for semicomplete digraphs except for some more digraphs with four and six vertices. It
follows from Theorem 5.1 that the existence of a Hamiltonian path between specified
vertices x, y can be checked in polynomial time. Moreover, the proof of Theorem 5.1 in
[115] provides a polynomial algorithm for constructing a Hamiltonian path between x
and y (if one exists). Theorem 5.1 immediately implies the following characterization
of weakly Hamiltonian connected tournaments.

Theorem 5.3 A tournament T with at least three vertices is weakly Hamiltonian
connected, if and only if it satisfies (i),(ii), and (iii) below.

(i) T is strong.

(ii) For each vertex x of T , T − x has at most two strong components.

(iii) T is not isomorphic to either of the two tournaments shown in Fig. 1.

In [115] C. Thomassen considered not only the weak Hamiltonian connectedness
problem but also the strong Hamiltonian connectedness problem (for semicomplete
digraphs). This problem (for tournaments) was posed in the Russian edition (1968)
of [88] and in [108]. In particular, C. Thomassen proved the following useful lemma.

Lemma 5.4 [115] A tournament T has a Hamiltonian path from u to v if and only if
T has a spanning acyclic subgraph H such that for each vertex x ∈ V (T ), H contains
both (u, x)- and (x, v)-paths.
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Note that Lemma 5.4 is an easy consequence of Proposition 2.2.

C. Thomassen characterized those tournaments T which contain a Hamiltonian
(x, y)-path when x and y are specified vertices of maximum and minimum degree,
respectively.

Theorem 5.5 [117] Let T be a tournament with at least two vertices and let x (re-
spectively, y) be a vertex of T of maximum (respectively, minimum) out-degree in T .
Then T has a Hamiltonian (x, y)-path unless one of the statements below holds.

(i) The terminal strong component of T − x consists of one vertex z dominating
x, and the preceding strong component of T − x consists of y only and y is
dominated by x.

(ii) The initial strong component of T − y consists of one vertex z dominated by y,
and the second strong component of T − y consists of x only and x dominates
y.

(iii) T is isomorphic to the rotational tournament R(1, 2) or to one of the two
tournaments in Figure 1.

C. Thomassen also proved the following sufficient conditions for the existence of a
Hamiltonian (x, y)-path in a semicomplete digraph.

Theorem 5.6 [115] Let D be a 2-strong semicomplete digraph and let x, y ∈ V (D).
Then D contains a Hamiltonian (x, y)-path if either (i) or (ii) below is satisfied.

(i) D contains three internally disjoint (x, y)-paths each of length at least 2.

(ii) D contains a vertex z which is dominated by all vertices of D except possibly
x, and D contains two internally disjoint (x, y)-paths of length at least 2 and a
(z, y)-path having only y in common with the above mentioned (x, y)-paths.

Corollary 5.7 If a semicomplete digraph T is 3-strong and y dominates x, then there
is a Hamiltonian path from x to y.

Corollary 5.8 Every 4-strong semicomplete digraph is strongly Hamiltonian con-
nected.

Moreover, C. Thomassen [115] constructed infinitely many 2-strong tournaments con-
taining an arc which is not contained in any Hamiltonian cycle and infinitely many
3-strong non-strongly Hamiltonian connected tournaments. So far no characterization
of strongly Hamiltonian connected tournaments is known.

J. Bang-Jensen, Y. Manoussakis and C. Thomassen [19] considered algorithmic
aspects of the strong Hamiltonian connectedness problem for semicomplete digraphs.
They found a polynomial algorithm for solving the last problem based on a number of
structural results and, in particular, on the following theorem which is a generalization
of Theorem 5.6 (i).
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Theorem 5.9 Let T be a 2-strong semicomplete digraph on at least 10 vertices and
let x, y be vertices of T such that x does not dominate y. Suppose that T − x, T − y
are both 2-strong. If all (x, y)-separators of size 2 (if any) are trivial, then T has a
Hamiltonian (x, y)-path.

The main result in [19] is the following:

Theorem 5.10 There exists an O(n5) algorithm to check whether a given semicom-
plete digraph of order n with specified vertices x, y has a Hamiltonian (x, y)-path.

Theorem 5.10 implies:

Corollary 5.11 There exists an O(n7) algorithm to check whether a given semicom-
plete digraph of order n is strongly Hamiltonian connected.

Corollary 5.12 There is an O(n7) algorithm for constructing a Hamiltonian (x, y)-
path (if one exists) in a semicomplete digraph of order n with two distinguished vertices
x and y.

Another interesting lemma that played an important role in the development of
the algorithm in [19] is the following. If x, w, z are distinct vertices of a digraph D,
then we use the notation Qx,z, Q.,w to denote two disjoint paths such that the first
path has initial vertex x and terminal vertex z, the second path has terminal vertex
w, and V (Qx,z)∪V (Q.,w) = V (D). Similarly Qz,x and Qw,. denote two disjoint paths,
such that the first path has initial vertex z and terminal vertex x, and the second
path has initial vertex w, and V (Qz,x) ∪ V (Qw,.) = V (D).

Lemma 5.13 Let x, w, z be distinct vertices in a semicomplete digraph T on n ver-
tices, such that there exist internally disjoint (x, w)−, (x, z)−paths P1, P2 in T . Let
R = T − V (P1) ∪ V (P2).

1. There are either Qx,w, Q.,z or Qx,z, Q.,w in T , unless (V (P1)∪V (P2)\{x})⇒Rt,
where Rt is the terminal component of R.

2. In the case when there is an arc from Rt to V (P1) ∪ V (P2) \ {x} we can find a
pair of paths, such that the path with only one endvertex specified has length at
least one, unless V (T ) = {w, x, z}.

3. Moreover there is an O(n2) algorithm to find a pair of paths above if such a pair
exists.

Conjecture 5.14 There exists a polynomial algorithm to find the length of the longest
(x, y)-path in a semicomplete digraph with specified vertices x and y.

Note that the existence of such an algorithm does not seem to follow from Theorem
5.10. The algorithm in [19] cannot be easily modified to solve this problem as well.

Now we consider known results on the k-HCA problem. A k-path factor in a
digraph D is a collection of k vertex disjoint paths of D covering V (D). C. Thomassen
obtained the following theorem for tournaments with high strong connectivity (the
definition of the function f(k) is given in Theorem 4.1).
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Theorem 5.15 [119] If {x1, y1, ..., xk, yk} is a set of distinct vertices in an h(k)-
strong tournament T , where h(k) = f(5k) + 12k + 9, then T has a k-path factor
P1 ∪ P2 ∪ ... ∪ Pk such that Pi is an (xi, yi)-path for i = 1, ..., k.

The last theorem can be reformulated as follows:

Theorem 5.16 [119] If a1, ..., ak are pairwise independent arcs in an h(k)-strong
tournament T , then T has a Hamiltonian cycle containing a1, ..., ak in that cyclic
order.

Combining the ideas of avoiding and containing, C. Thomassen showed the following:

Theorem 5.17 [119] For every set A1 of at most k arcs in an h(k)-strong tourna-
ment T and for every set A2 of at most k independent arcs of T − A1, the digraph
T − A1 has a Hamiltonian cycle containing A2.

Based on the evidence from Theorem 5.10 the authors of [19] proposed the fol-
lowing conjecture (the truth of the case k = 1 follows from Theorem 5.10) :

Conjecture 5.18 For each fixed k, the k-HCA problem is polynomially solvable for
semicomplete digraphs.

In [20] J. Bang-Jensen and C. Thomassen proved that the k-HCA problem for
tournaments is NP -complete when k is not fixed. The proof of this result in [20] con-
tains an interesting idea which we generalize below. Consider a digraph D containing
a set W of k vertices such that D−W is a tournament. Construct a new tournament
DW as follows. First, split every vertex w ∈ W into two vertices w1, w2 such that all
arcs entering w (respectively, leaving w) now enter w1 (respectively, leave w2). Add
all possible arcs from vertices of index 1 to vertices of index 2 (whenever the arcs in
the opposite direction are not already present). Add all arcs between vertices of the
same index and orient them randomly. Finally, add all arcs of the kind w1z and zw2,
where w ∈ W and z ∈ V (D)−W and the corresponding opposite arc does not exist.

It is easy to see the following:

Proposition 5.19 Let W be a set of k vertices of a digraph D such that D − W
is a tournament. Then D has a cycle of length c ≥ k containing all vertices of
W , if and only if the tournament1 DW has a cycle of length c + k through the arcs
{w1w2 : w ∈ W}.

Proposition 5.19 allows us to study cycles through W , where |W | = k, in digraphs
D such that D−W is a tournament instead of studying cycles containing k fixed arcs
in tournaments.

Note that if k is not fixed, then it is an NP-complete problem to decide the
existence of a cycle through k given vertices in such a digraph. Simply take k =
|V (D)|; then this is the Hamiltonian cycle problem for general digraphs. This proves
that the k-HCA problem is NP-complete for tournaments.

Now we can formulate Conjecture 5.18 in the following way :
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Conjecture 5.20 Let k be a fixed natural number and let D denote a digraph obtained
from a semicomplete digraph by adding at most k new vertices and some arcs. There
exists a polynomial algorithm to decide if there is a Hamiltonian cycle in D.

The truth of the conjecture when k = 1 follows from Proposition 5.19 and Theorem
5.10.

We conclude this section with a nice conjecture due to Zs. Tuza [126].

Conjecture 5.21 [126] Let s be a positive integer and suppose that T is a semicom-
plete digraph such that for every Y ⊂ V (T ), |Y | < s, the subgraph T − Y is strong
and has at least one single arc. Then there exists a Hamiltonian cycle in T which has
at least s single arcs.

Zs. Tuza showed that it is enough to prove that there is a cycle of length at least
s + 1 containing s single arcs:

Proposition 5.22 [126] If a strong semicomplete digraph T has a cycle of length at
least s + 1 which contains at least s single arcs, then T has a Hamiltonian cycle with
at least s single arcs.

Zs. Tuza has proved the existence of such a cycle for s = 1, 2 [126]. It is easy to
see that s + 1 cannot be replaced by s in Proposition 5.22.

6 Paths with prescribed endvertices and cycles through

prescribed arcs

In this section, we consider the following three problems.

1) The k paths with fixed endvertices problem (the k-PV problem): Given distinct
vertices u1, ..., uk, v1, ..., vk in a digraph D; does D have k disjoint paths P1, ..., Pk

such that Pi is a (ui, vi)-path for i = 1, ..., k ?

2) (x, z)-path through k specified vertices (the k-(x, z)-PV problem): Given distinct
vertices x, z, y1, . . . , yk in a digraph D; does D have an (x, z)-path which contains
all the vertices y1, . . . , yk ?

3) The cycle through k fixed arcs problem (The k-CA problem): Given a set of k arcs
B in a digraph D; does D have a cycle of D containing all the arcs in B ?

For general digraphs, it is easy to see that the k-PV, (k − 1)-(x, z)-PV and k-CA
problems are polynomially equivalent. Each of the problems 2-PV, 1-(x, z)-PV and
2-CA is NP -complete for general digraphs [51].

Note also that the (k−1)-(x, z)-PV and the k-PV problems are even polynomially
equivalent inside the class of semicomplete digraphs (the idea given in [10] in the case
k = 2 can be easily generalized). Certainly, from a theoretical point of view, the three
problems above are absolutely different.

There is a polynomial algorithm for solving the 2-PV problem for acyclic digraphs
[51, 121]. J. Bang-Jensen and C. Thomassen considered this problem for semicomplete
digraphs. They proved:
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Theorem 6.1 [20] There exists an O(n5) algorithm for solving the 2-PV problem
(and, hence, the 2-CA problem) for a semicomplete digraph on n vertices.

The last theorem is based on the following two structural results which are of inde-
pendent interest.

Theorem 6.2 [9] Let T be a semicomplete digraph and let x1, x2, y1, y2 be distinct
vertices of T . If T − {xi, yi} has three internally disjoint (x3−i, y3−i)-paths and T −
{x3−i, y3−i} has two internally disjoint (xi, yi)-paths , for i = 1 and 2, then T has a
pair of disjoint (x1, y1)- and (x2, y2)-paths.

J. Bang-Jensen showed that Theorem 6.2 is the best possible in the sense that ”three”
cannot be replaced by ”two”, and ”two” cannot be replaced by ”one” [9].

Theorem 6.3 [20] Let T be a semicomplete digraph and let x1, x2, y1, y2 be distinct
vertices of T such that, for each i = 1, 2, there are two, but not three, internally
disjoint (xi, yi)-paths in T − {x3−i, y3−i}. Suppose that all (xi, yi)-separators of size
2 in T − {x3−i, y3−i} are trivial, for i = 1, 2. Then T has a pair of disjoint (x1, y1)-
,(x2, y2)-paths.

Because the 2-PV and 1-(x, z)-PV problems are polynomially equivalent inside
the class of semicomplete digraphs, Theorem 6.1 implies the following:

Corollary 6.4 The 1-(x, z)-PV problem is polynomially solvable for semicomplete
digraphs.

In [10] a simpler O(n4) algorithm is described for the 1-(x, z)-PV problem. This
algorithm is based on the following structural characterization of those semicomplete
digraphs which do not have an (x, z)-path through a specified vertex y.

Definition 6.5 Let (T, x, y, z) denote a semicomplete digraph with special vertices
x, y and z and at least 4 vertices. We say that the tuple (T, x, y, z) is of type 1
if T − z has an (x, y)-path, T − x contains a (y, z)-path and there exists a vertex
u ∈ V (D)− {x, y, z} such that there is no (x, y)−path in D − {u, z} and there is no
(y, z)−path in D − {u, x}.

The semicomplete digraphs of type 1 constitute the simple class that forms the
basis of our construction. We call them simple, because there is a very simple reason
why a semicomplete digraph (T, x, y, z) of type 1 has no (x, z)−path through y.

Define two operations as follows:
Operation 1: Let (T, x, y, z) be given. Let T ′ denote a semicomplete digraph

with V (T ) ∩ V (T ′) = ∅, containing a vertex x′ that can reach all other vertices in T ′

by paths. Let (T ∗, x′, y, z) denote the semicomplete digraph obtained from T and T ′

by adding arcs as follows:

• (V (T ) \ {x, z})⇒V (T ′)

• at least one vertex in T ′ dominates x,
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• z⇒(V (T ′) \ x′),

• there can be either two arcs or one arc in any direction between x′ and z.

Operation 2: Let (T, x, y, z) be given. Let T ′′ denote a semicomplete digraph
with V (T ) ∩ V (T ′′) = ∅, containing a vertex z′′ that can be reached by all other
vertices in T ′′ by directed paths. Let (T ∗, x, y, z′′) denote the semicomplete digraph
obtained from T and T ′′ by adding arcs as follows:

• V (T ′′)⇒(V (T ) \ {x, z}),

• at least one vertex in T ′′ is dominated by z,

• (V (T ′′) \ z′′)⇒x,

• there can be either two arcs or one arc in any direction between x and z′′.

Call a semicomplete digraph (T, x, y, z) (T̂ , x̂, ŷ, ẑ)-obtainable if (T, x, y, z) can be
constructed from (T̂ , x̂, ŷ, ẑ) by zero or more applications of operations 1 and 2 in any
order.

Theorem 6.6 [10] The semicomplete digraph (T, x, y, z) with at least 4 vertices has
an (x, z)−path through y if and only if it is not (T̂ , x̂, ŷ, ẑ)-obtainable from any
(T̂ , x̂, ŷ, ẑ) of type 1.

No similar structural characterization is known for the 2-PV problem for semi-
complete digraphs.

In Section 5, we mentioned the result by J. Bang-Jensen and C. Thomassen [20]
claiming that the k-HCA problem is NP -complete for tournaments when k is not
fixed. This result follows from the original proof of the following theorem.

Theorem 6.7 [20] The k-CA problem (and thus the k-PV problem) is NP -complete
for tournaments when k is not fixed.

We now consider structural aspects of the k-CA and k-PV problems. In [119], C.
Thomassen studied the k-PV problem and proved the following:

Theorem 6.8 For every natural number k, there exists a smallest natural number
f(k) such that the following holds: If x1, y1, ..., xk, yk are distinct vertices in an f(k)-
strong tournament T , then T has k disjoint paths P1, ..., Pk such that Pi is an (xi, yi)-
path for each i = 1, ..., k.

He showed that f(k) ≤ 2k−1(k − 1)! and asked if in fact f(k) = ck, where c is a
natural number.

C.Thomassen [124] proved that the last theorem cannot be generalized to the class
of all digraphs. He showed that for every natural number r there exists an r-strong
digraph D with specified vertices x1, x2, y1, y2 such that D has no pair of disjoint
(x1, y1)- and (x2, y2)-paths. Thus the generalization of the last theorem for general
digraphs is not even true for k = 2. Note also the following interesting generalization
of Corollary 5.8:
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Theorem 6.9 [119] Let x and y be any vertices in a 4(s + t)-strong tournament
(where s and t are non-negative integers not both zero). Then T contains a collection
of s+ t internally disjoint paths, s of which are (x, y)-paths and t of which are (y, x)-
paths and whose union contains all vertices of T .

A digraph D is called k-arc cyclic if, for every set B of at most k arcs, D contains
a cycle through B. Sufficient conditions for semicomplete digraphs and tournaments
to be 2-arc cyclic are studied in [9] where the following theorem is proved.

Theorem 6.10 Every 5-strong semicomplete digraph is 2-arc cyclic; every 3-strong
tournament is 2-arc cyclic.

In [9] it is noted that both results are the best possible in terms of the required
connectivity.

7 Arc-disjoint paths with prescribed endvertices

The problems in Section 6 can also be formulated in terms of arc-disjoint, rather than
vertex-disjoint paths. We call these analogous problems for arc-disjoint paths the k-
APV, k-(x, z)-TV and k-CTA problems (T stands for trail and CT for closed trail).
Here we are asking for a trail and a closed trail in the analogues of the problems (2)
and (3) of Section 6.

As mentioned in Section 6, there is no degree of strong connectivity which will
guarantee the existence of two disjoint paths with prescribed endvertices in a general
digraph [124]. In the case of arc-disjoint paths, there is a nice and simple proof, due
to Y. Shiloach [105], that k-arc-strong connectedness will guarantee the existence of
k arc-disjoint paths with prescribed endvertices : Let D be a k-arc-strong digraph
and (x1, y1), . . . , (xk, yk) be the pairs to be connected by arc-disjoint paths. Add a
new vertex z and arcs zxi, i = 1, . . . , k and let all other vertices have arcs to z. This
new digraph is k-arc-strong and by J. Edmonds’ branching Theorem [48] it has k
arc-disjoint out-branchings F1, . . . , Fk rooted at z. We may assume that Fi contains
the arc zxi. Taking a path from xi to yi in Fi, i = 1, . . . , k we obtain the desired
paths.

So the arc-disjoint version seems simpler. In particular every 2-arc-strong digraph
has two arc-disjoint paths with prescribed endvertices. However, this problem is still
NP-complete as shown in [51].

In [11] J. Bang-Jensen considered the 1-(x, z)-TV problem for semicomplete di-
graphs. He proved that an obvious necessary condition is also sufficient :

Theorem 7.1 Let T be a semicomplete digraph and x, y, z distinct vertices of T .
Suppose that T has an (x, y)-path and a (y, z)-path. Then T has an (x, z)-trail through
y if and only if there is no arc e ∈ A(T ) such that T − e has no (x, y)-path and no
(y, z)-path.

The proof of Theorem 7.1 in [11] implies:
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Corollary 7.2 The 1-(x, z)-TV problem is solvable in time O(n3) for semicomplete
digraphs. Furthermore, given three distinct vertices x, y, z, there is an O(n3) algorithm
which finds an (x, z)-trail through y if one exists.

In [11] the 2-APV problem was also solved in terms of a complete characterization
and an algorithm. We need some notation before we can state the result.

Definition 7.3 Let T be a strong semicomplete digraph and let x1, x2, y1, y2 be dis-
tinct vertices of T . The 5-tuple (T, x1, x2, y1, y2) is said to be of

Type 1a, if there exists a partitioning S1, S2 of V (T ) such that x1, x2 ∈ S2, y1, y2 ∈ S1

and there is exactly one arc from S2 to S1;

Type 1b, if it is not of Type 1a and there exists a partitioning S1, S2, S3 of V (T )
such that the following holds for i = 1 or 2: yi ∈ S1, xi, y3−i ∈ S2, x3−i ∈ S3,
S1⇒S2⇒S3 and there is exactly one arc from S3 to S1, namely one from the
terminal component of T 〈S3〉 to the initial component of T 〈S1〉;

Type 2r (for some r ≥ 1), if there exists a partitioning S1, S2, . . . , S2r+2 of V (T )
such that the following holds for i = 1 or 2 : yi ∈ S1, y3−i ∈ S2, x3−i ∈ S2r+1,
xi ∈ S2r+2, Sj⇒Sk for all j < k with the following exceptions: there is precisely
one arc from Sq to Sq−2 for q = 3, . . . , 2r + 2 and it goes from the terminal
component of T 〈Sq〉 to the initial component of T 〈Sq−2〉;

Type 2r+1 (for some r ≥ 1), if there exists a partitioning S1, S2, . . . , S2r+3 of V (T )
such that the following holds for i = 1 or 2 : yi ∈ S1, y3−i ∈ S2, xi ∈ S2r+2,
x3−i ∈ S2r+3, Sj⇒Sk for all j < k with the following exceptions: there is
precisely one arc from Sq to Sq−2 for q = 3, . . . , 2r + 3 and it goes from the
terminal component of T 〈Sq〉 to the initial component of T 〈Sq−2〉.

Theorem 7.4 Let T be a strong semicomplete digraph and let x1, x2, y1, y2 be distinct
vertices of T . Suppose that T has an (xi, yi)-path for i = 1, 2. Then T has a pair of
arc-disjoint (x1, y1)-, (x2, y2)-paths if and only if T is not strong, or T is strong, but
(T, x1, x2, y1, y2) is not of type 1a, 1b, 2r, or 2r+1 for any r ≥ 1.

The proof of Theorem 7.4 in [11] implies the following:

Corollary 7.5 The 2-APV problem is solvable in time O(n4) for semicomplete di-
graphs. Furthermore, given distinct vertices x1, x2, y1, y2, there is an O(n4) algorithm
to find a pair of arc-disjoint (x1, y1)-, (x2, y2)-paths, if such exist.

8 Pancyclicity and path-connectivity

A digraph D of order n is pancyclic if it has k-cycles for all k such that 3 ≤ k ≤ n.
D is vertex pancyclic (arc pancyclic) if D has a k-cycle containing v (a) for every
v ∈ V (D) (a ∈ A(D)) and every k ∈ {3, ..., n}. D is called arc-k-cyclic if each arc
of D is contained in a k-cycle. An arc of a digraph D is said to be pancyclic if it is
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contained cycles of all lengths k = 3, ..., |V (D)|. D is called arc-k-anticyclic if there is
an (x, y)-path of length k in D for each arc (x, y) ∈ A(D). A digraph D is completely
strong path-connected if there is an (x, y)− and a (y, x)-path in D, both of length k,
for every pair x and y vertices of D and each k ∈ {2, ..., |V (D)| − 1}.

The following well known theorem is due to L. Moser.

Theorem 8.1 [66]. Every strong tournament is pancyclic.

J. Moon obtained a stronger result.

Theorem 8.2 [81] Every strong tournament is vertex pancyclic.

M. Goldberg and J.W. Moon found the following generalization of the last result.

Theorem 8.3 [54] In every r-arc-strong tournament of order n, each vertex lies on
r different cycles of length k, for k = 3, ..., n.

B. Alspach [3] showed that every diregular tournament is arc pancyclic. O.S.
Jacobsen [71] proved that every arc of an 1-irregular tournament on n ≥ 8 vertices is
contained in cycles of all lengths k such that 4 ≤ k ≤ n. C. Thomassen generalized
these results as follows:

Theorem 8.4 [115] Let T be an m-irregular tournament on n vertices. Let k be any
integer such that 4 ≤ k ≤ n. If n ≥ 5m+9, then the tournament T has an (x, y)-path
with k vertices for every pair of vertices x and y. If n ≥ 5m + 3, then every arc of T
is contained in a cycle of length k.

T1

T2

Figure 2: T6-type and T8-type tournaments. Here T1 and T2 are disjoint arc-3-cyclic
tournaments and the edges that are not oriented can be oriented arbitrarily.
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F. Tian, Z.-C. Wu and C.-Q. Zhang found a further generalization.

Theorem 8.5 [125] Except for T6-type tournaments and T8-type tournaments (see
Fig. 2), every arc-3-cyclic tournament is arc-pancyclic.

In the proof of the last theorem, the authors of [125] extensively used Lemma 5.4.
Theorem 8.5 implies the following results:

Corollary 8.6 [125] At most one arc of an arc-3-cyclic tournament is not pancyclic.

Corollary 8.7 [130] If T is a tournament of order n which is arc-k-pancyclic for
k = 3 and k = n then T is arc pancyclic.

Corollary 8.8 [132] Let T be an arc-3-cyclic tournament of order n such that the
in-degree and the out-degree of each vertex are at least k, where n ≤ 4k − 3; then T
is arc-pancyclic.

Corollary 8.9 [115] There are infinitely many 2-strong tournaments containing an
arc which is not in any Hamiltonian cycle.

To see the last result, note that each T6-type digraph is 2-strong, arc-3-cyclic and
contains an arc which is not in any Hamiltonian cycle.

M. Darrah, Y.-P. Liu and C.-Q. Zhang recently found a generalization of Corollary
8.7:

Theorem 8.10 [44] Let D be an arc-3-cyclic semicomplete digraph and let a = uv ∈
A(D). If the arc a is contained in a cycle of length r and vu 6∈ A(D), then a is
contained in cycles of lengths h, for all h = 3, 4, ..., r.

We formulate another result from [44].

Theorem 8.11 Let D be an arc-3-cyclic semicomplete digraph and let a = uv ∈
A(D). If the arc a is contained in a cycle of length r and the minimum in-degree and
out-degree of the vertices u and v is at least three, then a is contained in cycles of
lengths h, for all h = 6, 7, ..., r.

Y. Zhu and F. Tian considered sufficient conditions for arc-3-cyclicity of a tour-
nament.

Theorem 8.12 [140] If T is a tournament of order n such that d+(v)+d−(u) ≥ n−2
for every arc uv, then T is arc-pancyclic.

Note that if we replace n− 2 by n− 1 above then this is trivial.
K.-M. Zhang characterized completely strong path-connected tournaments using

Theorem 8.5.

Theorem 8.13 [137] Let T be a tournament. The following statements are equiva-
lent:
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(1) T is completely strong path-connected;

(2) T is arc-3-cyclic and arc-3-anticyclic, and T is not isomorphic to a T0-type
tournament (i.e. a tournament with partition V (T ) = X ∪Y ∪{z} of the vertex
set so that T 〈X〉⇒T 〈Y 〉⇒z⇒T 〈X〉);

(3) T is 2-strong and T is arc-3-cyclic and arc-3-anticyclic;

(4) T is arc-3-cyclic and arc-3-anticyclic, and for every arc (v, w) ∈ A(T ) there is
a (v, w)-path of length at least n/2.

Theorem 8.13 immediately implies the following result conjectured in [138]:

Corollary 8.14 A tournament T is completely strong path-connected if and only if
T is arc-3-cyclic, arc-3-anticyclic and arc-(n− 1)-anticyclic.

K.-M. Zhang and Z.-S. Wu [138] conjectured that the following weaker form of
the last result is true:

A tournament T is completely strong path-connected if and only if T is arc-3-
anticyclic and arc-(n− 1)-anticyclic.

In 1987, C.-G. Yang [131] constructed counterexamples to this conjecture (the
minimum number of vertices is 91). Recently, Y. Guo [56] managed to obtain smaller
counterexamples of order 23.

Some further results on the topic can be found in the recent papers [58, 87].

9 Complementary cycles

B. Bollobás (see [95]) posed the following problem.

Problem 9.1 Let k be a positive integer. What is the least integer g(k) so that all but
a finite number of g(k)-strong tournaments contain a spanning subgraph consisting of
k vertex-disjoint cycles?

Clearly, g(1) = 1. K.B. Reid [94] proved the following:

Theorem 9.2 Let T be a 2-strong tournament of order n ≥ 6. Then T contains two
vertex-disjoint cycles of lengths 3 and n− 3, unless T is isomorphic to the rotational
tournament R(1, 2, 4).

Therefore, g(2) = 2. For k ≥ 3, the problem remains open. K.B. Reid [95] proved
that k ≤ g(k) ≤ 3k − 4. The last theorem also provides a partial solution to the
following problem by C. Thomassen (see [94]).

Problem 9.3 Let r and q be two positive integers. Does there exist a positive integer
s = s(r, q) so that all but a finite number of s-strong tournaments can be partitioned
into an r-strong and a q-strong subtournament?

From Theorem 9.2 we have s(1, 1) = 2. For all other r and q, the problem is still
open. Z.M. Song raised a further problem.

19



Problem 9.4 [107] Let k be a positive integer. What is the least integer f(k) so that,
for every sequence of k integers n1, ..., nk, satisfying the following conditions

ni ≥ 3, i = 1, ..., k, and
k∑

i=1

ni = n,

all but a finite number of f(k)-strong tournaments contain k vertex-disjoint cycles of
lengths n1, ..., nk?

The main result of [107] gives a partial solution to the last problem.

Theorem 9.5 [107] Let T be a 2-strong tournament of order n ≥ 6. Suppose that T
is not isomorphic to the rotational tournament R(1, 2, 4). Then, for all m such that
m = 3, 4, ..., n − 3, T contains an m-cycle and an (n − m)-cycle which are vertex-
disjoint.

Hence, we obtain that f(2) = g(2) = 2. The following conjecture was made by Z.M.
Song.

Conjecture 9.6 [107] For all k ≥ 2, f(k) = g(k).

10 Oriented paths and cycles

An oriented path in a tournament T is a sequence of distinct vertices Q = v0, v1..., vk.
The type of Q is ek = e1e2...ek, where ei = +1 if vi−1→vi and ei = −1 if vi→vi−1

(see [97]). A type ek (k < n) is realizable in a tournament T of order n if T has
an oriented path of type ek. An oriented cycle and its type are defined similarly.
Clearly the type of a spanning oriented cycle contains n elements +1 or -1. A type
en is realizable in a tournament T if T contains a spanning oriented cycle of type
en. An oriented path (or cycle) is called antidirected if, for each i, ei = −ei+1.
Note that an antidirected cycle always has even number of vertices. The notion
of an antidirected path was introduced by B. Grünbaum in [55] who characterized
tournaments containing a spanning antidirected path.

Theorem 10.1 Every tournament has a spanning antidirected path except for the
three rotational tournaments R(1), R(1, 2) and R(1, 2, 4).

Grünbaum conjectured that all tournaments of even order n (n ≥ 10) have an an-
tidirected cycle. M. Rosenfeld [97] gave another proof of the previous theorem and
conjectured the following:

Conjecture 10.2 (Rosenfeld’s path conjecture) There exists an integer n0 such that
every type en−1 is realizable in every tournament T of order n provided n ≥ n0.

C. Thomassen [114] established Grünbaum’s conjecture for n ≥ 50. This bound was
later improved to 28 by M. Rosenfeld [98].

Attacking Rosenfeld’s path conjecture, B. Alspach and M. Rosenfeld [4] and H.J.
Straight [109] established the conjecture for oriented paths with two blocks (a block
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being a maximal directed subpath). B. Alspach and M. Rosenfeld [4] also considered
the case when the i′th block has length at least i + 1. R. Forcade [50] proved that
Rosenfeld’s path conjecture is true if n is a power of 2. K.B. Reid and N.C. Wormald
[96] showed that every oriented path of order p is contained in every tournament of
order 3p/2. Improving this bound, C.-Q. Zhang [135] proved the following weakening
of Rosenfeld’s path conjecture:

Theorem 10.3 Every type en−2 is realizable in every tournament T of order n.

Since only strong tournaments have Hamiltonian cycles, the types en = 11...1 and
en = −1 − 1... − 1 when n ≥ 3 are not realizable in non-strong tournaments. The
next conjecture is also due to M. Rosenfeld [98].

Conjecture 10.4 (Rosenfeld’s cycle conjecture) There is an integer n0 such that
every type en containing at least one 1 and at least one -1 is realizable in each tour-
nament T of order n ≥ n0.

B. Grünbaum (see [98]) verified the last conjecture for types 11...1− 1 and −1−
1...− 1 + 1. C. Thomassen [114] and M. Rosenfeld [98] established the conjecture for
antidirected cycles, A. Benhocine and A.P. Wojda [29] showed that the conjecture
is true for oriented cycles with just two blocks. Finally, A. Thomason [113] proved
both conjectures of M. Rosenfeld for tournaments where the number of vertices is
sufficiently high. The main result of [113] is the following:

Theorem 10.5 Let C be a non-strongly oriented cycle of order n and let T be a
tournament of order n. If T contains a transitive subtournament of order 129 (in
particular if n ≥ 2128), then T contains C.

Hence, A. Thomason obtained n0 = 2128. However, he conjectured [113] that n0 =
8 for Rosenfeld’s path conjecture and n0 = 9 for Rosenfeld’s cycle conjecture. Proving
Theorem 10.5, A. Thomason also established the following theorems of independent
interest concerning the existence of oriented paths with specified end vertices.

Theorem 10.6 Let P be an oriented path of order n−1 and first block length k. Let
T be a tournament of order n ≥ 2 and let K be a set of at least k + 1 vertices of T .
Then there is a copy of P in T with initial vertex in K.

Theorem 10.7 Let P be an oriented path of order n−2 with first block length k and
last block length q, where k + q ≤ n − 5. Let T be a tournament of order n ≥ 3 and
let K, Q be disjoint subsets of T of orders at least k + 1 and q + 1 respectively. Then
there is a copy of P in T with initial vertex in K and end vertex in Q.

The last two theorems are true for all n ≥ 3 and best possible in the sense that the
values for |K| and |Q| can not be reduced.
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11 Claws and Hamiltonian paths with additional

arcs

In our paper, a claw is an out-branching B such that each vertex of B except the
root has out-degree 0 or 1. The degree of a claw B is the out-degree of the root of
B. Let C(n, d) denote the set of all claws of order n and degree d. Note that Redei’s
Theorem implies that every tournament on n vertices contains the unique element of
C(n, 1). M. Saks and V. Sós [101] conjectured that a tournament of order n contains
all elements of C(n, d) for 1 ≤ d ≤ n/2. X. Lu [76] showed that the assertion of
the conjecture is not true. He also proved that every tournament of order n has all
claws from C(n, d) for d ≤ n/4. X. Lu strengthened the last result in [77] proving
the following:

Theorem 11.1 Every tournament of order n contains all claws from C(n, d) for
1 ≤ d ≤ 3n/8.

X. Lu raises the following problem:

Problem 11.2 [77] Find

c0 = sup{c : every tournament of order n has all claws from C(n, cn)}.

Lu [78] proved that 3/8 ≤ c0 ≤ 25/52.
Let H(n, i) denote the digraph on n vertices v1, ..., vn with the arc set {(vk, vk+1) :

1 ≤ k ≤ n−1}∪{(v1, vi)} and let T ∗ denote the tournament on five vertices 1,2,3,4,5
and ten arcs 12,14,31,51,23,42,52,34,35,45. V. Sós conjectured (see [90]) that every
tournament on n vertices contains H(n, i) for each n and i, 4 ≤ i ≤ n−1. V. Petrović
[90] has verified this conjecture. He obtained the following result.

Theorem 11.3 [90] Every tournament T on n vertices contains H(n, i) for each n
and i, 3 ≤ i ≤ n unless either

(a) i = 3 and T = R(1) or any non-strong tournament with initial strong component
R(1), or

(b) i = 5 and T is the strong tournament T ∗ on 5 vertices or any non-strong tour-
nament with initial strong component T ∗.

12 Oriented trees

We first consider arc-disjoint branchings and then a conjecture by D. Sumner and
related results.

By J. Edmonds’ well known branching theorem [48], a digraph D has k arc-disjoint
out-branchings rooted at some fixed vertex s if and only if there are k arc-disjoint
paths from s to every other vertex of D. By applying the same method as in Shiloach’s
proof, mentioned in Section 7, this characterization can easily be extended to cover
the case when the out-branchings have specified roots s1, . . . , sk, some of which may
be identical. Hence that problem is polynomially solvable for general digraphs.
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In contrast, if we ask for an out-branching F+
u and and in-branching F−

v which are
arc-disjoint and have roots u and v, respectively, then the problem is NP-complete,
even in the case when u = v. The proof, due to C. Thomassen, is given in [11]. C.
Thomassen [118] (see also [11]) made the following conjecture :

Conjecture 12.1 There exists a natural number k such that every k-arc-strong di-
graph D with specified vertices u and v contains arc-disjoint branchings F+

u , F−
v , where

F+
u is an out-branching rooted at u and F−

v is an in-branching rooted at v.

In [11] J. Bang-Jensen proved this conjecture for tournaments. As we shall see,
the case when u = v is significantly easier than the case when u 6= v.

We first look at the case when u = v. At first glance, one might think that the
following, obviously necessary, condition is also sufficient: for every x ∈ V (T ) − v
there exists a closed trail through x and v. A 3-cycle shows that this is not sufficient.
Examples in [11] show that when n > 3 this condition is not sufficient either.

Theorem 12.2 Let T be a strong semicomplete digraph and v an arbitrary vertex of
V (T ). There exist arc-disjoint branchings F−

v , F+
v rooted at v if and only if there is

no arc e such that T − e has neither an in-branching nor an out-branching rooted at
v.

Theorem 12.2 and its proof in [11] implies the following:

Corollary 12.3 There exists an O(n3) algorithm to decide if a given semicomplete
digraph T with a specified vertex v has a pair of arc-disjoint branchings F−

v , F+
v rooted

at v. Furthermore we can find such branchings in time O(n3) if they exist.

Theorem 12.2 and Corollary 12.3 have been generalized in [16] :

Theorem 12.4 Let D be a strong digraph and v a vertex of D such that V (D) =
{v} ∪ N−(v) ∪ N+(v). Let A = {A1, A2, . . . , Ak} (B = {B1, B2, . . . , Br}) denote
the set of terminal (initial) strong components in D 〈N+(v)〉 (D 〈N−(v)〉). Then D
contains a pair of arc-disjoint branchings F+

v , F−
v such that F+

v is an out-branching
rooted at v and F−

v is an in-branching rooted at v if and only if there exist two disjoint
arc sets EA, EB ⊂ A(D) such that all arcs in EA ∪EB go from N+(v) to N−(v) and
every strong component Ai ∈ A ( Bj ∈ B) is incident with an arc from EA (EB).

Corollary 12.5 [16] Let D be a strong digraph and v a vertex of D such that V (D) =
{v}∪N−(v)∪N+(v). There exists an O(n3) algorithm to decide if D has arc-disjoint
branchings F−

v , F+
v rooted at v.

These results show that it is enough to insist that the special vertex is adjacent
to all other vertices to guarantee that the problem is polynomially solvable.

Now we turn our attention to the case u 6= v.
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Theorem 12.6 [11] Let T be a tournament and u, v distinct vertices of V (T ). Let

A = {x ∈ V (T )|ux, vx ∈ A(T )}, B = {x ∈ V (T )|ux, xv ∈ A(T )}

C = {x ∈ V (T )|xu, vx ∈ A(T )}, D = {x ∈ V (T )|xu, xv ∈ A(T )}

There exist arc-disjoint branchings F+
u , F−

v if and only if T satisfies none of the
following six conditions:

1. |V (T )| ≤ 3 or (|V (T )| = 4 and v dominates u);

2. T is not strong and either u is not in the initial component, or v is not in the
terminal component of T ;

3. T is strong and there exists and arc e ∈ A(T ) such that T − e has no out-
branching from u and no in-branching at v;

4. T is strong, u dominates v, B = ∅, A, D 6= ∅ and

(∗)


there is exactly one arc e going out of Al,
the terminal component of T 〈A〉, and there is exactly one
arc e′ entering D1, the initial component of T 〈D〉, and e 6= e′

and finally every path from a vertex of A to a vertex of D in T −{u, v} contains
e and e′;

5. T is strong, v dominates u, B = {b}, A, D 6= ∅, (T, u, v) satisfies (*), there is
no trail from A to D in T − {u, v} which contains b and every path from A to
D in T − {u, v} contains e and e′;

6. T is strong, v dominates u, B = ∅ , A, D 6= ∅, (T, u, v) satisfies (*), there exist
arc-disjoint (u, v)-paths P, P ′ and for every pair of such paths, either e, e′ ∈
A(P ) or e, e′ ∈ A(P ′).

It is not obvious from this characterization that there exists a polynomial algo-
rithm to check the existence of the desired branchings. The proof in [11] that such
an algorithm exist is based on Corollaries 7.2,7.5:

Corollary 12.7 [11] There exists an O(n4) algorithm which given a tournament T
and distinct vertices u and v decides whether T has a pair of arc-disjoint branchings
F+

u , F−
v and finds such a pair if one exists.

The last part of the corollary is not explicitly stated in [11], but the details are
implicit in the proofs.

Theorems 12.2 and 12.6 imply the truth of Conjecture 12.1 for tournaments.

Corollary 12.8 Every 2-arc-connected tournament T contains arc-disjoint branch-
ings F+

u , F−
v for any choice of vertices u and v in V (T ).
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Based on the evidence from Corollary 12.5, we make the following conjecture:

Conjecture 12.9 There exists a polynomial algorithm which given any digraph D
and distinct vertices u and v of V (D) such that both u and v are adjacent to all other
vertices of D, decides whether D has a pair of arc-disjoint branchings F+

u , F−
v .

A caterpillar is an undirected tree such that when its vertices of degree 1 are
removed the graph remaining is an undirected path, called the spine. Consider the
next conjecture due to D. Sumner (see [96].

Conjecture 12.10 Let t = t(n) denote the the least number such that every tourna-
ment on t vertices contains every oriented tree of order n. For every n, t(n) = 2n−2.

In support of that conjecture, K.B. Reid and N.C. Wormald [96] proved that every
tournament on 2n − 2 vertices contains each orientation of a caterpillar of order n
with diameter at most 4 as well as each orientation of a caterpillar of order n whose
spine is a (directed) path.

N.C. Wormald [128] showed that t(n) ≤ (1 + o(1))n log2 n. R. Häggkvist and A.
Thomason [63] proved the following:

Theorem 12.11 Every oriented tree of order n is contained in every tournament of
order 12n.

Moreover, for large n they improved this result and showed that t(n) ≤ (4+o(1))n
[63].

N.C. Wormald [129] raises the following question: for n large enough, what ori-
ented trees are contained in all tournaments on n vertices. In [28] E.A. Bender and
N.C. Wormald proved the following:

Theorem 12.12 [28] There is a set τ ∗ containing almost all oriented labeled trees,
such that a random labeled tournament of order n almost surely contains at least one
isomorphic copy of all oriented trees of order n in τ ∗.

They ask the following:

Question 12.13 [28] Is there a set τ ∗ containing almost all oriented labeled trees,
such that every tournament on n vertices contains at least one isomorphic copy of all
oriented trees of order n in τ ∗?

13 Monochromatic paths in arc-coloured tourna-

ments

We call the tournament T r-arc-coloured if the arcs of T are coloured with r colours
1, ..., r. Let Ti denote a spanning subgraph of T formed by all arcs of colour i, i =
1, ..., r. We say that a tournament T has finite monochromatic radius if T contains
a vertex v such that, for every other vertex w in T , there is a (v, w)-path in at least
one of the digraphs T1, T2, ..., Tr. Let TR3 and ST3, respectively, denote the transitive
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tournament of order 3 and the strong tournament of order 3, both of whose arcs are
coloured with three distinct colours.

In [102] B. Sands, N. Sauer and R. Woodrow studied monochromatic paths in
r-arc-coloured digraphs. They proved the following (for a direct proof, see [93]):

Theorem 13.1 Every 2-arc-coloured tournament has finite monochromatic radius.

As pointed out by B. Sands, N. Sauer and R. Woodrow [102], the monochromatic
radius of a 3-arc-coloured tournament might be infinite. Moreover, they stated the
following conjecture (according to [102], P. Erdös also conjectured this).

Conjecture 13.2 [102] For each r, there is a least positive integer f(r) such that
every r-arc-coloured tournament contains a set S of f(r) vertices with the property
that for every vertex v not in S there is a path from a vertex in S to v in at least one
of the digraphs T1, T2, ..., Tr. In particular, does f(3) equal 3 ?

A. Bialostocki [34] proved that if there is a counterexample to Conjecture 13.2, then
the tournament has to have at least 19 vertices. A. Bialostocki and N. Sauer [36] intro-
duced the following interesting notion. Let T be a tournament and c : A(T )→{1, ..., r}
be an r-colouring of the arcs of T . The reachability graph is a (semicomplete) digraph
R = R(T, c) such that V (R) = V (T ) and v→u in R if and only if there is a monochro-
matic path from v to u in T . The set Rr(s) is defined as the set of all tournaments
having the property that for every r-coloring c of A(T ), the reachability graph R(T, c)
contains K∗

s , the complete digraph of order s, as a subgraph. A tournament T is said
to satisfy property M(k) if, for every transitive subtournament T1 of order less than
k, there exists a vertex x ∈ V (T ) which is dominated by every vertex of T1.

Theorem 13.3 [36] If a tournament T satisfies M(k), then T ∈ R2(k).

The authors of [36] also introduced a so-called continuous colouring of the arcs of a
tournament, settled some its properties and raised several problems.

B. Sands, N. Sauer and R. Woodrow raised the following problem:

Problem 13.4 [102] Let T be a 3-arc-coloured tournament which does not contain
TR3. Must T have finite monochromatic radius?

In support to the positive answer to this question, M.G. Shen proved:

Theorem 13.5 [104] Every r-arc-coloured tournament which does not contain TR3

or SR3 has finite monochromatic radius.

Obviously, Theorem 13.5 implies Theorem 13.1 as well as the following result.

Theorem 13.6 [104] Let T be an r-arc-coloured tournament whose vertices can be
partitioned into disjoint blocks B1, ..., Bh, h ≥ 1, such that

(i) no block contains a 3-arc-coloured triangle (i.e. TR3 or ST3);

(ii) for every pair 1 ≤ i < j ≤ h all arcs between Bi and Bj have the same colour
cij;
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(iii) the transitive tournament TTh whose arc (i, j) has the colour cij does not
contain TR3.

Then T has finite monochromatic radius.

Ramsey and anti-Ramsey type problems for tournaments are considered in [21,
32, 35, 42, 61, 79].

14 The number of paths and cycles in tournaments

We first consider results on the numbers of Hamiltonian paths and cycles in tourna-
ments.

Solving a conjecture of T. Szele [110], N. Alon [2] showed:

Theorem 14.1 The maximum number, P (n), of Hamiltonian paths in a tournament
on n vertices satisfies

P (n) ≤ cn1.5n!/2n−1

where c is independent of n.

Szele [110] proved that
P (n) ≥ n!/2n−1

and hence the gap between the upper and lower bounds for P (n) is only O(n1.5). It
would be interesting to close this gap and determine P (n) up to a constant factor.

J.W. Moon [83] dealt with the minimum number of Hamiltonian paths in strong
tournaments of order n.

Theorem 14.2 If p(n) denotes the minimum number of Hamiltonian paths in a
strong tournament of order n, then

6(n−1)/4 ≤ p(n) ≤


3.5(n−3)/3, if n = 0 (mod 3),
5(n−1)/3, if n = 1 (mod 3),
9.5(n−5)/3, if n = 2 (mod 3).

C. Thomassen [116] considered the problem of finding the minimum number of
Hamiltonian cycles in sets of tournaments with some restrictions. He showed that
there is a constant α > 1 such that each 2-strong tournament of order n has at least
αn Hamiltonian cycles. This result is best possible in the sense that we must have
α < 2 [116]. Using Corollary 5.8 C. Thomassen [120] proved the following:

Theorem 14.3 Every strong tournament with minimum out-degree at least 3k + 3
has at least 4kk! Hamiltonian cycles.

A tournament T is called domination orientable if there is a labeling of V (T ), v1, ..., vn,
so that vi dominates vi+j, j = 1, 2, ..., d+(vi), for every i = 1, 2, ..., n. C.-Q. Zhang
[136] considered the number of Hamiltonian cycles in domination orientable tourna-
ments. In particular, he proved the following:
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Theorem 14.4 Let δ(T ) be the minimum of both the minimum out-degree and in-
degree of T . The number of Hamiltonian cycles in a domination orientable tourna-
ment T of order n is at least 3× 2n−6 when δ(T ) ≥ 2 and n ≥ 6, 17× 2n−8 − 5 when
δ(T ) ≥ 3 and n ≥ 8, and 140× 2n−11 − 9 when δ ≥ 4 and n ≥ 11.

Let c(T, k) denote the number of k-cycles in a tournament T . J.W. Moon [80]
showed that if Tn is a non-trivial strong tournament of order n, then c(Tn, k) ≥
n − k + 1. M. Burzio and D.C. Demaria [40] characterized all tournaments of order
n containing exactly n − 2 3-cycles. M. Burzio and D.C. Demaria [40] used the last
result to show that there are 2n−4 strong tournaments of order n with only n − 2
3-cycles. Another proof of this result is obtain in [85]. M. Las Vergnas [75] showed
An (obtained from TTn by reversing the arcs of the unique Hamiltonian path) is the
only strong tournament with exactly n− k + 1 k-cycles, for each k, 4 ≤ k ≤ n− 1.

The problem of finding the number of tournaments having a unique Hamilto-
nian cycle has attracted several researches. R. J. Douglas [46] gave a structural
characterization of tournaments having a unique Hamiltonian cycle. This result im-
plies a formula for the number sn of non-isomorphic tournaments of order n with a
unique Hamiltonian cycle. This characterization as well as the formula are rather
complicated. G.P. Egorychev [47] obtained a simplification by considering a gener-
ating function for the number of tournaments with unique Hamiltonian cycle. M. R.
Garey [52] showed that sn could be expressed as a Fibonacci number (sn = f2n−6); his
derivation was based on Douglas’s characterization. J. W. Moon [84] obtained a direct
proof of Garey’s formula that is essentially independent of Douglas’s characterization.
Another proof of Garey’s formula is provided in [45].

Simple formulae for the number c(T, 3) and the maximum numbers of 3-cycles
and 4-cycles in a tournament of order n are well-known (cf. [24, 43, 72, 81]). J.W.
Moon [86] introduced u(Tn), the number of vertices x in a tournament Tn of order n
such that each arc oriented towards x belongs to at least one 3-cycle. He determines
the minimum value of c(Tn, 3) when u(Tn) = n and the maximum value of c(Tn, 3)
when u(Tn) = 3. He discusses some applications of these results.

In [73], A. Kotzig determined a formula for the number of 4-cycles in a tournament
T in terms of the out-degrees of T and the cardinalities of the pairwise intersections
of distinct out-neighbourhoods (see [25]). B. Alspach and C. Tabib [5] found a lower
and an upper bound for the number c(T, 4) in terms of the out-degrees of T only.
They also proved the following:

Theorem 14.5 Let d+
1 , ..., d+

n be the out-degrees of the vertices in a domination ori-
entable tournament T . The maximum number of 4-cycles contained in any tourna-
ment with the same list of the out-degrees is(

n
4

)
−

n∑
i=1

(
d+

i

3

)

and this bound can be attained.

A k-homogeneous tournament T is a tournament with at least one k-cycle such
that every arc lies on the same number t of k-cycles. J. Plesnik [91] proved that every
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arc of a 3-homogeneous tournament of order 4k− 1 lies on exactly 2k(k− 1) 4-cycles.
A tournament of order 4k + 1 (k ≥ 1) is called 3-near-homogeneous if every arc lies
on k or k + 1 3-cycles [111].

Theorem 14.6 [5, 111] Let T be a diregular tournament on 2n + 1 vertices. Then

c(T, 4) ≥
{

(2n + 1)(n3 − n)/8, if n is odd,
(2n + 1)n3/8, if n is even.

Moreover, these bounds are attained if and only if T is 3-homogeneous when n is odd
and T is 3-near-homogeneous when n is even.

D.M. Berman [30] obtained an upper bound for the number of 5-cycles in a domination
orientable tournament of order n. A tournament T is called doubly diregular if,
for every v ∈ V (T ), T 〈N+(v)〉 is diregular. It is easy to check that every doubly
diregular tournament is diregular. The connection between doubly diregular and
k-homogeneous tournaments is considered in the following two theorems.

Theorem 14.7 [74] A non-trivial tournament is doubly diregular if and only if it is
3-homogeneous.

Theorem 14.8 [100] A non-trivial tournament is doubly diregular if and only if it
is 4- and 5-homogeneous.

The method of the proof of the last theorem in [100] is algebraic and serves also
to show that a diregular tournament is doubly diregular if and only if the minimal
polynomial of its adjacency matrix has degree 3.

We conclude by the restriction to tournaments of the well-known conjecture of A.
Adám [1] on cycles in digraphs.

Conjecture 14.9 Every non-transitive tournament contains an arc whose reversal
reduces the total number of cycles.

C. Thomassen [123] disproved this conjecture in its most general setting, i.e. for
general directed multigraphs. Conjecture 14.9 was first stated in [25].
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