
Seismic Vessel Problem

Gregory Gutin∗, Helmut Jakubowicz†, Shuki Ronen‡and Alexei Zverovitch§

November 14, 2003

Abstract

We introduce and study a new combinatorial optimization prob-
lem, the Seismic Vessel Problem (SVP), that arose in an industrial
application. SVP generalizes the Stacker Crane Problem. We sug-
gest a transformation from SVP to the Symmetric Traveling Salesman
Problem. We report our computational experience with solving SVP
instances drawn from industrial practice (geophysical seismic acquisi-
tions).

Keywords: Travelling Salesman, Stacker Crane Problem, Seismic
Acquisition.

1 Introduction

The Seismic Vessel Problem (SVP) is defined by a set of line segments
(survey lines), all of which need to be traversed (shot) exactly once; see
Fig. 1. Some lines can be shot in either direction, other have directional
constraints imposed on them. The objective is to minimize the travel time
between lines by choosing an optimal ordering of lines (and specifying in
which direction each line has to be shot). The function that defines the
travel time between lines can be of arbitrary complexity and in general is
defined as a matrix of ”line change” costs for all combinations of pairs of
lines and shooting directions.

∗Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, UK, gutin@cs.rhul.ac.uk. Corresponding author.

†Veritas DGC Ltd, Manor Royal Estate, Crawley, West Sussex, RG10 9QN, UK,
Helmut Jakubowicz@veritasdgc.com

‡Veritas DGC Ltd, 10300 Town Park Drive, Houston, TX 77072, USA,
Shuki Ronen@veritasdgc.com

§Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, UK, zvero@cs.rhul.ac.uk

1

Figure 1: Example of a seismic survey

2

We use the following graph model to represent the problem. Survey lines
are represented by a set of pairs of vertices. Each pair represents a survey
line to be shot (the two vertices represent the two line endpoints). The two
vertices in the pair {x, y} can be connected by either

(a) one arc, (u, v) or (v, u) meaning that the corresponding line is only
allowed to be shot in one direction; or

(b) by a pair of arcs, (u, v) and (v, u), meaning that the survey line can be
shot in either direction.

The cost of shooting a line is taken to be constant and invariant to the
direction in which the line is shot. Since every line has to be shot exactly
once, the overall cost of shooting the lines is constant and can therefore be
ignored. Hence, we take the cost of arcs connecting vertices in a pair to be
zero.

The cost of an arc (x, y) that connects two pairs represents the time
required to move the vessel from the final shooting position on the source
line to the starting position on the destination line. Various approximation
schemes can be used to estimate the amount of time required to change
lines. A very basic scheme can be based solely on Euclidean distances be-
tween points, whereas more elaborate techniques can take into account vessel
velocity, bearing and/or any potential obstacles.

There are two special vertices, s and t, that denote the starting and the
required final position of the vessel (the latter is optional). The cost of arc
(s, u) is taken to be the cost of moving the vessel from the initial position
to point u. The cost of arc (v, t) is taken to be the cost of moving the vessel
from point v to the final position. If no final position is specified, the cost
of (v, t) is set to zero for all v. Finally, to close the tour, the vertices s and
t are connected with the arc (t, s) of zero cost.

Given the above directed graph representation, the aim is to find a
Hamilton cycle of minimum cost that visits each pair of vertices, includ-
ing s and t exactly once. That is, once the cycle enters pair {u, v} at u (or
v), it must visit vertex v (or u) before leaving the pair.

A digraph H is complete if, for every pair x, y of distinct vertices, the
arcs (x, y) and (y, x) are in D. A digraph D = (V, A) is weighted if any arc
of D is assigned a non-negative weight (called cost in this paper). More
formally, SVP can be stated as follows: We are given a weighted complete
digraph D, whose vertices are partitioned into pairs P . Each pair {u, v} ∈ P
is assigned a set Fuv such that ∅ 6= Fuv ⊆ {(u, v), (v, u)}. Let F = {(u, v) ∈
A : (u, v) ∈ Fuv}. Every arc in F is assigned cost zero. We are required

3

to find a minimum cost Hamilton cycle that traverses one arc from Fuv for
every pair {u, v} ∈ P.

Notice that the case when some arcs in F has to be of non-zero cost can
be easily transformed into the case when all arcs in F are of cost zero by
adding the cost of every arc (u, v) ∈ F to the costs of all arcs of the form
(x, u).

The Stacker Crane Problem (SCP) studied in [4, 6, 7] is a special case
of SVP. In SCP, Fuv consists of one arc for every pair {u, v} ∈ P. To see
that SCP generalizes the Asymmetric Travelling Salesman Problem (TSP)
it suffices to contract all arcs of F .

2 Solving SVP

SVP is a new problem, which clearly generalizes the Asymmetric TSP and,
thus, the Symmetric TSP. As with other extensions of TSP, the most prac-
tical approach for obtaining near-optimal or optimal solutions in the case of
instances of moderate size seems to apply a transformation from the problem
in hand to TSP and to subsequently use already developed exact algorithms
or heuristics for TSP. This approach has proved to be successful for the
so-called Generalized TSP [2, 3, 9].

The Asymmetric Generalized TSP can be transformed into the Asym-
metric TSP [12]. In [2, 3], the resulting instances of the Asymmetric TSP
were subsequently transformed into instances of the Symmetric TSP. This al-
lows one to apply standard exact and heuristic methods to solving the trans-
formed problem. Transformation into the Symmetric TSP is a frequently-
used technique for tackling the Asymmetric variant of the problem [7, 8, 10].

Consider SVP. In order to enforce the requirement that a Hamilton cycle
has to traverse one arc in Fuv for each pair {u, v} ∈ P , we apply a trans-
formation which results in a weighted undirected complete graph. Solving
the Symmetric TSP on the transformed graph provides a solution to the
original problem.

The transformation replaces each pair {u, v} ∈ P with a graph. Depend-
ing on whether there is one, or two, arcs of F connecting the vertices in the
pair, two different transformations are used.

1. When the line {u, v} is directed, a single arc (u, v) of Fuv is replaced
with the edge {u, v}. A new vertex x is inserted into the edge. The
costs of the two new edges, {u, x} and {x, v}, are taken to be zero.

4

t

S

W E

N

u

v

w

Figure 2: Diamond graph

2. When the line {u, v} is undirected (that is, |Fuv| = 2), the two vertices
are replaced with the so-called diamond graph depicted in Figure 2.

The diamond graph can be traversed in two possible ways, N -S and
W -E (see Chapter 19 in [13]). These correspond to traversing the
original pair of vertices, {u, v} via arcs (u, v) and (v, u), respectively.
To make the cost of the tour consistent with the original graph:

• We set the cost of edges incident to W to be the same as the cost
of the corresponding original arcs entering vertex v;

• Cost of edges incident to E are taken to be the same as cost of
arcs leaving u;

• Cost of edges incident to N are taken to be the same as cost of
arcs entering u;

• Cost of edges incident to S are taken to be the same as cost of
arcs leaving v;

• Since arcs (u, v) and (v, u) have zero cost, all edges inside the
diamond graph have their costs set to 0.

5

Inst. Size concorde/opt concorde/lk neto/lk NN
1 56 495773.7 508628.9 519517.8 503119.4
2 56 345077.6 361656.7 414531.7 431499.2
3 64 549270.6 575649.7 603474.6 633979.2
4 64 389559.8 409760.2 424234.3 431809.2
5 22 447343.8 458339.9 477562.0 491964.3
6 22 306119.3 309956.8 308386.9 357591.0
7 132 858549.8 923923.0 972181.4 1202892.4
8 132 745390.0 849419.2 FAILED 1048438.6
9 70 236887.9 245084.6 254901.8 419049.9

Table 1: Absolute solution quality (weight of the solution)

Finally, we complement the graph to a complete graph by adding all
missing edges and setting their costs to a large constant, which ensures such
edges can never be chosen as part of an optimal tour.

3 Computational Experience

Our experiments were performed on nine real-world instances supplied by
Veritas DGC Ltd. Table 1 provides the sizes of the instances. In every
instance of Table 1 all lines but one are undirected.

We used a nearest neighbor algorithm (NN) adapted to SVP to find a
’good’ feasible solution for the instances. NN is of interest because this
approach is somewhat similar to what people with no knowledge of combi-
natorial optimization would likely do to approximately solve SVP.

CONCORDE [1] is the most developed and popular software package
devoted to solving instances of the Symmetric TSP. We applied the diamond
transformation to the nine instances of SVP and then used the branch-and-
cut solver of CONCORDE (concorde/opt), its chained Lin-Kernighan local
search algorithm (concorde/lk; see [7, 14]) as well as Neto’s Lin-Kernighan
algorithm implementation [11] (neto/lk). The results are shown in Table 1.
The data in this form are difficult to analyze.

Table 2 shows how each algorithm performed compared to NN. The
numbers show percentage improvement in solution quality compared to NN.
Negative numbers mean that the algorithm has performed worse than the
NN. It can be seen from Table 2 that concorde/opt and both implementa-
tions of Lin-Kernighan offer a substantial improvement in solution quality

6

Inst. Size concorde/opt concorde/lk neto/lk
1 56 1.46% -1.10% -3.26%
2 56 20.03% 16.19% 3.93%
3 64 13.36% 9.20% 4.81%
4 64 9.78% 5.11% 1.75%
5 22 9.07% 6.83% 2.93%
6 22 14.39% 13.32% 13.76%
7 132 28.63% 23.19% 19.18%
8 132 28.90% 18.98% FAILED
9 70 43.47% 41.51% 39.17%

Table 2: Solution quality relative to NN (% improvement over NN)

over NN. In some cases solution quality is improved by over 40%.
In one case neto/lk fails to find a feasible solution altogether (in Tables

1-4 this case is denoted by FAILED). This is due to the fact that unfortu-
nately neto/lk managed to produce only a tour of the Symmetric TSP that
contains edges of very large cost and, thus, does not correspond to any fea-
sible solution of SVP. The other heuristic algorithm, concorde/lk performed
more consistently in our experience, producing feasible solutions to all nine
instances.

It is interesting to note that on Instance 1 both implementations of Lin-
Kernighan performed somewhat worse than NN, by 1.1%-3.3%. One can
see that this is due to NN performing very well in this instance, rather than
Lin-Kernighan performing poorly. Notice that the heuristics of neto/lk and
concorde/lk that produce initial solutions are not NN (they are different
versions of the greedy algorithm).

Table 3 shows execution time of each solver on each of the test problems.
The times are in seconds and have been obtained on a PC equipped with
one Athlon XP 1900+ (1.6GHz) CPU and 512MB of RAM.

NN is the fastest algorithm. It found solutions to each of the test prob-
lems within few hundredths of a second (note that 0.016s is the smallest
measurable interval on the test platform). Both implementations of the Lin-
Kernighan algorithm require similar amounts of time, taking between 0.1s
and 1.6s. As expected, CONCORDE’s branch-and-cut solver, concorde/opt,
is much slower than all other algorithms on test. Being an exact algorithm,
it may require exponential execution time in the worst case. On the nine
instances tested in this study, the algorithm requires between 0.5s and four

7

Inst. Size concorde/opt concorde/lk neto/lk NN
1 56 1.372 0.388 0.388 <0.016
2 56 1.403 0.451 0.373 0.016
3 64 223.420 0.513 0.388 0.016
4 64 9.358 0.514 0.498 <0.016
5 22 0.561 0.170 0.108 <0.016
6 22 7.529 0.186 0.171 <0.016
7 132 204.622 1.358 1.311 0.016
8 132 99.639 1.529 FAILED 0.016
9 70 2.091 0.701 0.436 0.016

Table 3: Execution time (seconds)

minutes of execution time.

4 Conclusions

We have seen that the suggested transformation of SVP into the Symmetric
TSP allows one to solve some practical SVP instances of moderate size
without investing much effort on developing special SVP solvers.

Certainly, the use of CONCORDE’s exact solver appears to be the best
option for practical solution of SVP instances of moderate size. However,
for large size instances or when the data are not exact (as in many industrial
applications), a combination of CONCORDE’s LK algorithm and NN seems
to be a good option, too.

Acknowledgements We thank Sam Borman, Damian Hite and Larry Scott
from Veritas DGC Ltd for several discussions on the topic.

References

[1] D. Applegate, R.E. Bixby, V. Chvátal and W. Cook, On the Solution of
Traveling Salesman Problems, Doc. Math. J. DMV, Extra Vol. ICM Berlin
1998, III (1998) 645-656. The Concorde code is currently available from
http://www.math.princeton.edu/tsp/concorde.html

[2] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo and A. Zverovitch, Process planning
for rotational parts and the generalized Traveling Salesman Problem. Interna-
tional Journal of Production Research 41 (2003) 2581-2596.

8

[3] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo and A. Zverovitch, Transformations
of generalized ATSP into ATSP. Operations Research Letters 31 (2003) 357–
365.

[4] G.N. Frederickson, M.S. Hecht and C.E. Kim, Approximation algorithms for
some routing problems. SIAM J. Comp. 7 (1978), 178-193.

[5] G. Gutin, A. Yeo and A. Zverovich, Traveling salesman should not be greedy:
domination analysis of greedy-type heuristics for the TSP. Discrete Appl.
Math. 117 (2002) 81-86.

[6] R. Hassin and S. Khuller, z-Approximations. J. Algorithms 41 (2001), 429-442.

[7] D.S. Johnson, G. Gutin, L. McGeoch, A. Yeo, X. Zhang and A. Zverovitch,
Experimental Analysis of Heuristics for ATSP. in: The Traveling Salesman
Problem and its Variations (G. Gutin and A. Punnen, eds.), Kluwer, Dor-
drecht, 2002.

[8] D.S. Johnson and L. McGeoch, Experimental Analysis of Heuristics for STSP.
in: The Traveling Salesman Problem and its Variations (G. Gutin and A.
Punnen, eds.), Kluwer, Dordrecht, 2002.

[9] G. Laporte and F. Semet, Computational evaluation of a transformation pro-
cedure for the symmetric generalized traveling salesman problem. INFOR (37)
1999 114–120.

[10] D. Naddef, Polyhedral Theory and Branch-and-Cut Algorithms for the Sym-
metric TSP. in: The Traveling Salesman Problem and its Variations (G. Gutin
and A. Punnen, eds.), Kluwer, Dordrecht, 2002.

[11] D. Neto, http://www.cs.toronto.edu/̃neto/research/lk/

[12] C.E. Noon and J.C. Bean, An efficient transformation of the generalized trav-
eling salesman problem, INFOR 31 (1993) 39–44.

[13] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization. Dover
Publ., N.Y., 1998.

[14] C. Rego and F. Glover, Local Search and Metaheuristics. in: The Traveling
Salesman Problem and its Variations (G. Gutin and A. Punnen, eds.), Kluwer,
Dordrecht, 2002.

9

