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Abstract

A digraph obtained by replacing each edge of a complete m-partite graph by an
arc or a pair of mutually opposite arcs with the same end vertices is called a semicom-
plete m-partite digraph. We describe results (theorems and algorithms) on directed
walks in semicomplete m- partite digraphs including some recent results concerning
tournaments.

1 Introduction

A digraph obtained by replacing each edge of a (simple) graph G by an arc (by an arc or a pair
of mutually opposite arcs) with the same end vertices is called an orientation (biorientation,
respectively) of G. Therefore, orientations of graphs have no opposite arcs, and biorientations
may have. The investigation of paths and cycles in tournaments, orientations of complete
graphs, was initiated by Redei’s Theorem [63] derived in 1934: each tournament contains
a Hamiltonian path. In 1959, P. Camion [25] obtained necessary and sufficient conditions
for the existence of a Hamiltonian cycle in a tournament. He proved that every strongly
connected tournament has a Hamiltonian cycle. There are several survey articles [20, 21, 47]
(the second one contains results on general digraphs too) and a book by J. Moon [58] where
the properties of tournaments are considered.

J. Moon [58] and J. A. Bondy [22] were the first to consider cycles in the entire class
of multipartite tournaments (orientations of complete multipartite graphs). Since the 80s,
mathematicians began studying extensively cycles and paths in bipartite tournaments. The
first results were described in the survey by L. W. Beineke [18]. In this period a number of
results on the cycle and path structure of m-partite tournaments for m ≥ 3 were obtained.
A survey describing these results as well as recent results on cycles and paths in bipartite
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tournaments is absent and seems to be needed. The aim of the present article is to fill in this
gap and also to describe some theorems and algorithms on paths and cycles in tournaments
which have been obtained recently.

Note that part of the results given in the paper are formulated not for orientations of
complete multipartite graphs (usually called multipartite tournaments) but for biorientations
of them (called semicomplete multipartite digraphs). In particular, we give some theorems
for semicomplete digraphs (biorientations of complete graphs) instead of the more restricted
class of tournaments. The motivation for considering semicomplete multipartite digraphs
rather than multipartite tournaments is the following. From a theoretical point of view there
is no good reason to restrict investigation to digraphs having no opposite arcs when more
general results may be available. Digraphs with opposite arcs are sometimes used in order
to obtain results for digraphs without opposite arcs (see [34, 72]). Moreover, total exclusion
of opposite arcs from the consideration does not allow to study adequately some practical
digraph models (models in social choice theory, interconnections networks, etc. [73]). That
is why there are numerous papers where properties of semicomplete digraphs, semicomplete
bipartite and m-partite (m ≥ 3) digraphs (see, for example, [16, 17, 30, 35, 40, 42, 73]) were
investigated.

We hope that this survey will be as successful as [18] in stimulating further research on
the subject.

2 Notation and Terminology

We consider finite directed graphs without loops and multiple arcs [23]. A digraph D on m
disjoint vertex classes (called partite sets) is called a semicomplete m-partite or multipartite
digraph (abbreviated to SMD, and for m = 2 - to SBD) if for any two vertices u, v in different
partite sets either (u, v) or (v, u) (or both) is an arc of D and there are no arcs between
vertices which belong to the same partite set. Such a digraph D is called ordinary if for any
pair X, Y of its partite sets, the set of arcs with both end vertices in X ∪ Y coincides with
X × Y = {(x, y) : x ∈ Y, y ∈ Y } or Y ×X or (X × Y ) ∪ (Y ×X). A semicomplete digraph
is a SMD, each part of which consists of a single vertex. A semicomplete m-partite digraph
is called an m-partite or multipartite tournament (abbreviated to MT, and for m = 2 - to
BT) if it has no mutually opposite arcs. A tournament is a MT, each part of which consists
of a single vertex.

By a cycle (path) we mean a simple directed cycle (path, respectively). An m-cycle
(m-path) is a cycle (path) which has m arcs. A (x, y)-path is a path from x to y (x, y are
vertices). A cycle (path) of a digraph D is called Hamiltonian if it includes all the vertices
of D. A digraph is called Hamiltonian if it contains a Hamiltonian cycle. A digraph H is
pancyclic if it contains a cycle of length i (i-cycle) for any 3 ≤ i ≤ n, where n is the order of
H; H is vertex (arc) pancyclic if it has an i-cycle containing x for any vertex (arc) x of H,
3 ≤ i ≤ n. Even pancyclicity , vertex even pancyclicity and arc even pancyclicity are defined
analogously: in this case we only require cycles of all lengths i ≡ 0 (mod 2).
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A digraph D is said to be strongly connected or just strong if for every pair x, y vertices
of D there is a (x, y)-path and a (y, x)-path. A strong component of D is a maximal induced
subgraph of D. A digraph D is called k-strongly connected (k ≥ 1) if for any set X of at
most k−1 vertices of D the subgraph obtained by removing X from D is strongly connected.
We call a digraph D k-vertex (k-arc, respectively) cyclic if it contains a cycle through any
subset of k vertices (any set of k independent arcs, respectively) of D.

The sets V (D), A(D) are the sets of vertices and arcs of a digraph D. Let k be an
integer. A digraph D is called k-diregular (or, simply, diregular) if d+(x) = d−(x) = k for
any x ∈ V (D). A digraph D is called almost k-diregular (or, simply, almost diregular) if
there exist vertices x, y (possibly x = y) such that d+(x) = d−(y) = k − 1, and d+(z) = k
for z ∈ V (D)\x, d−(v) = k for v ∈ V (D)\y. It is easy to see that a 1-diregular digraph F
represents a collection of vertex disjoint cycles C1, C2, ..., Ct (t ≥ 1), i.e. F = C1∪C2∪· · ·∪Ct.
Similarly, an almost 1-diregular digraph S = C0 ∪ C1 ∪ C2 ∪ · · · ∪ Cq, where C0 is a path,
(which may have only one vertex), C1, C2, ..., Cq are cycles, V (Ci) ∩ V (Cj) = ∅ for 0 ≤
i 6= j ≤ q, q ≥ 0. Let D be a digraph. A 1-diregular spanning subgraph of D is called a
1-difactor.

The eccentricity of the vertex v (denoted by ecc(v)) is the maximum of the lengths of the
shortest paths from v to u, where the maximum is taken over all vertices u of D. The radius
(diameter , respectively) of D is min ecc(v) (max ecc(v), respectively), where v ranges over
all vertices of D. A vertex w is called a center of D if ecc(w) is equal to the radius of D.

Let D be a digraph, and let x be a vertex of D, then

Γ+(x) = {y ∈ V (D) : (x, y) ∈ A(D)} , Γ−(x) = {z ∈ V (D) : (z, x) ∈ A(D)} .

The underlying graph of a digraph D is the graph obtained from D by disregarding the
orientations of all arcs of D. A digraph D is called an arc-local tournament digraph [10] if
for each edge xy of its underlying graph every vertex of Γ+(x) is adjacent to every vertex
of Γ+(y) and Γ−(x) is adjacent to every vertex of Γ−(y). It is easy to see that arc-local
tournament digraphs are common generalization of bipartite tournaments and tournaments.

Let B = B(r1, r2, r3, r4) be the following BT, which will be useful several times later. Let
R1, ..., R4 be pairwise disjoint independent sets of vertices, |Ri| = ri (i = 1, 2, 3, 4). Define
V (B) = R1 ∪ · · · ∪R4 and let A(B) consist of all the arcs from Ri to Ri+2, i = 1, 2, from R3

to R2 and from R4 to R1.
For a real number a, denote by [a], as usual, the integer part of a. Throughout this paper,

n denotes the number of vertices of the digraph or graph considered.

3 Paths in SMDs

The following result is proved in [40].

Theorem 3.1 Let D be a SMD. Then
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1) for any almost 1-diregular subgraph F of D there is a path P of D satisfying V (P ) =
V (F ) (if F is a maximum almost 1-diregular subgraph each such path is a longest path
of D);

2) there exists an O(n3) algorithm for finding a longest path in D.

The first half of Theorem 3.1 follows from the following:

Lemma 3.2 Let D be a SMD and P , C a path and a cycle having no common vertices; then
the subgraph of D induced by V (P ) ∪ V (C) contains a Hamiltonian path.

In order to describe the algorithm mentioned in Theorem 3.1 we first consider a con-
struction by N. Alon (cf. [40]) which allows one to find efficiently a 1-diregular subgraph
with maximum order of a given digraph D. Let B = B(D) be a bipartite weighted graph,
such that (X, X ′) is the partition of B, where X = V (D), X ′ = {x′ : x ∈ X}; xy′ ∈ E(B), if
and only if either (x, y) ∈ A(D) or x = y . The weight of an edge xy′ of B equals 1 if x 6= y
and equals 2, otherwise. It is easy to see that solving the assignment problem for B (in time
O(n3), cf. [61]) and, then, removing all the edges with weight 2 from the solution, we obtain
a set of edges of B corresponding to some 1-diregular subgraph F of D of maximum order.

For a cycle C and a vertex x on it, denote by Cx the path obtained from C by deleting
the arc ending at x.

Now we are ready to describe the algorithm.

Algorithm 3.3 for finding a longest path in a SMD.

Input. A semicomplete multipartite digraph D.

Output. A longest path H of D.

Step 1. Construct the digraph D′ with

V (D′) = {x} ∪ V (D) (x 6∈ V (D)), A(D′) = A(D) ∪ {(x, y), (y, x) : y ∈ V (D)}

Find a 1-diregular subgraph F ′ of D′ of maximum order. Let C0, C1, ..., Ct(t ≥ 0)
be the cycles of F ′, and suppose x ∈ V (C0) (it is easy to see that x ∈ F ′). Find
P = C0 − x, and put

F := P ∪ C1 ∪ · · · ∪ Ct .

Note that F is almost a 1-diregular subgraph of D of maximum order. We shall
construct a path on all the vertices of F – this will clearly be a longest path.

Step 2. If t = 0, then H := P , and we have finished. Otherwise put C := Ct, t := t− 1.
Let

P = (x1, x2, ..., xm), C = (y1, y2, ..., yk, y1).
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Step 3. If Γ−(x1)∩V (C) 6= ∅, then pick any z ∈ Γ−(x1)∩V (C), put P := (Cz+ , P ), where
z+ is the vertex following z in C, and go back to Step 2. Analogously, if there exists
y ∈ Γ+(xm) ∩ V (C) put P := (P, Cy), and go back to Step 2.

Step 4. For i = 1, 2, ...,m− 1; j = 1, 2, ..., k if (yj, xi+1), (xi, yj+1) ∈ A(D), then let P be
the path containing the fragment of P from x1 to xi, the path Cyj+1

, and the fragment
of P from xi+1 to xm. Go to Step 2. If none of Steps 2,3,4 can be applied, we go to
Step 5 below .

Step 5. For j = 1, 2, ..., k; i = 1, 2, ...,m− 1 if i is minimal such that there exists j = j(i)
for which

(yj, xi+1), (yj+1, xi) ∈ A(D)

then let P be the path containing the fragment of P from x1 to xi−1, the vertices
yj+1, xi, the fragment of C from yj+2 to yj, and the fragment of P from xi+1 to xm in
the given order (the direct proof of Lemma 3.2 [40] consists of showing the existence
of the above mentioned i, j = j(i) as well as the arcs (xi−1, yj+1), (xi, yj+2)). Go to
Step 2.

Lemma 3.2 can also be proved as a rather simple consequence of a sufficient condition
for a SMD to be Hamiltonian, shown in [11] (see Theorem 4.8 bellow). This proof of Lemma
3.2 provides a more complicated algorithm than Algorithm 3.3.

Step 1 of Algorithm 3.3 can be executed in time O(n3). All the other steps can be
performed in time O(n2). Using the maximum matching algorithm for bipartite graphs [3],
one can test whether a digraph D contains a 1-diregular spanning subgraph F ′ and find some
F ′ in case one exists in time O(n2.5/

√
log n). This implies

Corollary 3.4 1) A SMD D has a Hamiltonian path, if and only if it has an almost 1-
diregular spanning subgraph. 2) Testing whether D has a Hamiltonian path (and finding one
of them in case it exists) can be done in time O(n2.5/

√
log n).

Corollary 3.4 was derived in [35] as a generalization of the same theorem obtained for
semicomplete bipartite digraphs in [33]. Using a different approach, R. Häggkvist and Y.
Manoussakis gave in [46] analogous characterization of bipartite tournaments having a Hamil-
tonian path. Y. Manoussakis and Z. Tuza constructed in [55] an O(n2.5/

√
log n) algorithm

for finding a Hamiltonian path in a bipartite tournament B (if B has a Hamiltonian path).
Corollary 3.4 implies that any almost diregular or diregular multipartite tournament has

a Hamiltonian path. This last result was also proved in [80] as a corollary of Theorem 4.13
(see below).

Recently J. Bang-Jensen [10] proved that Corollary 3.4 is also valid for arc-local tourna-
ment digraphs.

The problem of deciding whether a tournament with two given vertices x and y, contains a
Hamiltonian path with endvertices x, y (the order not specified) was solved by C. Thomassen
[71]. It follows from his characterization that the existence of such a path for specified vertices
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Figure 1: The exceptional tournaments where the edge between x and y can be oriented
arbitrarily

x, y can be checked in polynomial time. Considering ordinary MTs, J. Bang-Jensen, G. Gutin
and J. Huang [12] obtained a generalizations of the above characterization. They proved the
following:

Theorem 3.5 Let D be an ordinary multipartite tournament and let x, y be distinct vertices
of D. Then D has a Hamiltonian path connecting x and y (from x to y or from y to x), if
and only if D has a path P connecting x and y such that D−P has a 1-difactor and D does
not satisfy any of the conditions (1)− (4) below.

(1) D is not strong and either the initial or the terminal strong component of D (or both)
contains none of x and y;

(2) D is strong, D−x is not strong and either y belongs to neither the initial nor the terminal
strong component of D − x, or y belongs to the initial (terminal) strong component of
D − x and there is no path P ′ from y to x (path from x to y, respectively) such that
D − P ′ has a 1-difactor.

(3) D is strong, D−y is not strong and either x belongs to neither the initial nor the terminal
strong component of D − y, or x belongs to the initial (terminal) strong component of
D − y and there is no path P ′ from x to y (path from y to x, respectively ) such that
D − P ′ has a 1-difactor.

(4) D, D − x, and D − y are all strong and D is isomorphic to one of the tournaments
shown in Figure 1.

An analogous characterization of all bipartite tournaments that have a Hamiltonian path
between two prescribed vertices x, y was derived by J. Bang-Jensen and Y. Manoussakis in
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[14]. The only difference between these two characterizations is in Condition 4: in Bang-
Jensen’s and Manoussakis’ theorem the set of forbidden digraphs is absolutely different
from that of Theorem 3.5 and moreover infinite (see [14]). Both characterizations imply
polynomial algorithms to decide the existence of a Hamiltonian path connecting two given
vertices and find one (if it exists). In [71] C. Thomassen considered not only the problem of
deciding if for a pair x, y of vertices there is a Hamiltonian path either from x to y or from
y to x but also the stronger problem of deciding if there exists a Hamiltonian (x, y)-path.
He proved that for every pair x, y of vertices of a 4-strongly connected tournament there is
a Hamiltonian path starting at x and ending at y. In [12, 14], the following conjecture was
formulated.

Conjecture 3.6 Let D be a 4-strongly connected ordinary MT (or bipartite tournament).
The digraph D has a Hamiltonian path from x to y for any pair of vertices x, y of D if and
only if D contains an (x, y)-path P such that D − P has a factor.

The radius and diameter are important invariants of a digraph. H. Landau [51] observed
that the radius of any tournament is at most two and each vertex of maximum outdegree
in it is a center. Obviously, any MT containing at least two vertices of indegree zero has an
infinite radius. However, in case there are no such two vertices, the radius can be bounded,
as shown in the following statement, proved in [34] and, independently, in [62].

Theorem 3.7 Any MT with at most one vertex of indegree zero has radius r ≤ 4.

B. Sands, N. Sauer and R. Woodrow [65] studied monochromatic paths in arc-coloured
digraphs. In particular, they proved that every tournament whose arcs are coloured with two
colours contains a vertex v such that for every other vertex w there exists a monochromatic
(v, w)-path. They also showed the following:

Theorem 3.8 Let T be a tournament whose arcs are coloured with three colours, and whose
vertices can be partitioned into disjoint blocks such that

(i) two vertices in different blocks are always connected by a red arc;

(ii) two vertices in the same block are always connected by a blue or a green arc.

Then there is a vertex v of T such that for every other vertex x of T there is a monochromatic
path from v to x.

It is easy to see that the last theorem follows from Theorem 3.7 and the first mentioned
result of B. Sands, N. Sauer and R. Woodrow.

It is easy to check that Theorem 3.7 holds for the entire class of SMD. V. Petrovic and C.
Thomassen [62] pointed out that Theorem 3.7 can be extended to a larger class of oriented
graphs (at the cost of modifying the constant 4).
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Theorem 3.9 Let G be a graph whose complement is a disjoint union of complete graphs,
cycles and paths. Then every orientation of G with at most one vertex of indegree zero has
radius at most 6.

Unlike tournaments, a vertex of maximum outdegree in a MT is not necessarily a center
as proved in [27]:

Theorem 3.10 Let T be a strongly connected 3-partite tournament of order n ≥ 8. If v
is a vertex of maximum outdegree in T , then ecc(v) is at most [n/2] and this bound is best
possible.

In the case of bipartite tournaments, it is possible to obtain more detailed results. In
[37] characterizations of vertices with eccentricity 1, 2, 3 or 4 were derived. Using these
characterizations all bipartite tournaments with radius 1, 2, 3 or 4 were characterized.

It is easy to see [41], that if a graph G has an orientation with a finite diameter (i. e., if G
has no bridges [64]), then the maximum diameter of such an orientation is equal to the length
of the longest path in G. The problem of finding the minimum possible diameter of such
an orientation is significantly more complicated. Denote by f(m1, m2, ...,mk) the minimum
possible diameter of a k-partite tournament with partite sets of sizes m1, m2, ...,mk. L. Soltes
[66] obtained the following result.

Theorem 3.11 If m1 ≥ m2 ≥ 2, then f(m1, m2) = 3 for m1 ≤
(

m2

[m2/2]

)
, and otherwise

f(m1, m2) = 4.

A shorter proof of this result using the well known theorem of Sperner (cf. [1]) is given
in [37]. In [41], the following result dealing with k ≥ 3 was proved.

Theorem 3.12 If k ≥ 3, then

1. f(m1, m2, ...,mk) ≤ 3 for all positive integers m1, m2, ...,mk,

2. for any positive integer m f(m,m, ..., m︸ ︷︷ ︸
k times

) = 2 except the case m=1, k=4 where

f(1, 1, 1, 1) = 3.

It is natural to pose the following:

Problem 3.13 Determine all k tuples of integers m1, ...,mk such that f(m1, ...,mk) = 2.
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4 Cycles in semicomplete multipartite digraphs

J. A. Bondy [22] extended the above mentioned Moser’s Theorem on k-partite (k ≥ 3)
tournaments in the following form (this result was obtained independently in [28] as well).

Theorem 4.1 Any strongly connected k-partite (k ≥ 3) tournament contains m-cycles for
all m ∈ {3, 4, , ..., k}.

J. A. Bondy also showed

Theorem 4.2 If a strongly connected k-partite (k ≥ 5) tournament has in each partite set
at least two vertices, then it has a m-cycle with m > k.

In connection with the last statement he asked [22] if the inequality m > k may be
replaced by the equality m = k + 1. A negative answer to this question was obtained in
[30](for details see [32]). The same counter-example (as in [30, 32]) was found independently
by R. Balakrishnan and P. Paulraja [8]. Consider the k-partite (k ≥ 3) tournament Dk with

the partite sets {x(1)
i , x

(2)
i }, 1 ≤ i ≤ k and the arc set

2⋃
j=1

({(x(j)
i , x

(j)
i+1) : 1 ≤ i ≤ k − 1} ∪ {(x(j)

m , x
(j)
i ) : 3 ≤ i + 2 ≤ m ≤ k}) ∪

{(x(1)
i , x(2)

m ) : 1 ≤ i 6= m ≤ k} ∪ {(x(2)
k , x

(1)
1 )}\{(x(1)

1 , x
(2)
k )}.

It is easy to see that Dk (k ≥ 3) has no (k + 1)-cycle.
In [32] it was also proved that the inequality m > k (in Theorem 4.2 ) may be replaced

by the inequality k + 1 ≤ m ≤ k + 2.
In connection with Theorem 4.1 J. A. Bondy [22] raised the question if some form of

the corresponding generalization of Moon’s Theorem [58] is also true. He further gave an
example showing that the last generalization is not true in general.

In [28], [39] and [29] the following three restricted generalizations of Moon’s theorem were
obtained.

Theorem 4.3 [28] Every vertex of a strongly connected k-partite tournament (k ≥ 3) lies
on a cycle that contains vertices from exactly m partite sets, for all 3 ≤ m ≤ k.

Theorem 4.4 [39] Let D be a strongly connected k-partite (k ≥ 3) tournament, one of the
partite sets of which consists of a single vertex, say v. Then, for each m ∈ {3, 4, , ..., k},
there is an m-cycle of D containing v.

Theorem 4.5 [29] Let D be a strongly connected k-partite (k ≥ 3) tournament with partite
sets V1, ..., Vk. Then, for every m ∈ {3, 4, , ..., k} and every i ∈ {1, ..., k}, there is an m-cycle
of D containing a vertex from Vi.
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Note that the last theorem implies the previous one.
W. Goddard, G. Kubicki, O. Oellermann and S. Tian [27] proved that every vertex of a

strongly connected k-partite tournament T (k ≥ 3) belongs to a 3-cycle or a 4-cycle of T .
Moreover, they obtained the following:

Theorem 4.6 Let T be a k-partite tournament, k ≥ 3. 1) If T has a cycle of length m ≥ 4
containing vertices from at least three distinct partite sets, then T contains a cycle of length
m− 1, m− 2 or m− 3. 2) If T has a cycle of length m ≥ 5 containing vertices from at least
three distinct partite sets, then T contains a cycle of length m− 2 or m− 3.

The second part of Theorem 4.6 is best possible in the following sense [27]. For every
m = 3s, for some integer s ≥ 1, there exists a MT having cycles of lengths m and m−3, but
no cycles of length m − 2. Further, for each odd integer m ≥ 9, there exists a MT having
cycles of lengths m and m− 2, but no cycles of length m− 3.

In [55] and [17], the problem of the existence of a cycle containing prescribed vertices in
MTs is studied. In [17], the following result is shown.

Theorem 4.7 There exist a polynomial algorithm for deciding if two vertices in a MT are
on a common cycle.

J. Bang-Jensen, G. Gutin and J. Huang [11] study the Hamiltonian cycle problem for
SMDs. To describe the main result of [11], we need the following definitions. Let C and Z be
two disjoint cycles in a digraph D. A vertex x ∈ C is called out-singular (in-singular)) with
respect to Z if Γ−(x) ∩ V (Z) (Γ+(x) ∩ V (Z), respectively) is empty. A vertex is singular if
it is out-singular or in-singular. A 1-difactor F = C1 ∪ · · · ∪Ct in a digraph D is called good
if there is no pair Ci, Cj (1 ≤ i 6= j ≤ t) such that Ci has singular vertices with respect to Cj

and they are all out-singular, and Cj contains singular vertices with respect to Ci and they
are all in-singular. The main result of [11] is the following sufficient condition for a SMD to
be Hamiltonian.

Theorem 4.8 Let D be a SMD having a good 1-difactor F . Then D contains a Hamiltonian
cycle and one can be found in time O(n2) given F.

The following lemma is used in the proof of Theorem 4.8 in [11]. It is useful in other proofs
as well (see Theorems 5.5, 5.6).

Lemma 4.9 Let F = C1 ∪ C2 ∪ · · · ∪ Ct be a 1-diregular subgraph of maximum cardinality
of a strongly connected SMD D , where Ci is a cycle in D (1 ≤ i ≤ t). Let, also, F satisfy
the following condition: for every pair 1 ≤ i < j ≤ t all arcs between Ci and Cj are oriented
either from Ci to Cj or from Cj to Ci. Then D has a (longest) cycle of length |V (F )| and
one can find such a cycle in time O(n2) for a given subgraph F .

In view of Theorem 4.8 the following statement seems to be true.

10



Conjecture 4.10 There is a polynomial algorithm for the Hamiltonian cycle problem in
SMDs.

Theorem 4.8 provides a short proof of Lemma 3.2 and hence of Theorem 3.1, Theorems
5.3, 5.7 as well as of the following result originally obtained in [43].

Theorem 4.11 Let p(D) be the number of vertices in a maximum 1-diregular subgraph of
D, t(D) the minimum number of cycles in a 1-diregular subgraph of D with p(D) vertices.
Then

1) If D is a strongly connected SMD then the length of a longest cycle in D is at least
p(D)− t(D) + 1.

2) For every integers c ≥ 2, t ≥ 1, there exists a strongly connected SMD D having a
maximum 1-diregular spanning subgraph F with t(D) = t cycles each of them of length
c such that a longest cycle of D has exactly p(D)− t(D) + 1 = t(c− 1) + 1 vertices.

3) Suppose D is a strongly connected SMD. Given a maximum 1-diregular subgraph in D
having t′ cycles (such a subgraph can be constructed in time O(n3)), a cycle with length
at least p(D)− t′ + 1 in D can be found in time O(n2).

The second part of Theorem 4.11 can be proved using the following m-partite (m ≥ 3)
tournament G(c, t), c ≥ 2, t ≥ 1 with partite sets W1, ...,Wm. G(c, t) contains the 1-difactor:
C1∪C2∪· · ·∪Ct, where Ci = (xi

1, x
i
2, ..., x

i
c, x

i
1), i = 1, 2, ..., t. In addition, for each i = 1, ..., t

the vertices xi
2, x

i
c are contained in W3, and if i is even then xi

1 ∈ W2, otherwise xi
1 ∈ W1.

For each i = 1, ..., t, A(Ci) ⊂ {(xi
k, x

i
s) : 1 ≤ k < s ≤ c} ∪ {(xi

c, x
i
1)}\{(xi

1, x
i
c)}. For every

1 ≤ i + 1 < j ≤ t, all arcs between Ci and Cj are oriented from Ci to Cj and for every
i = 1, ..., t − 1, all arcs between Ci and Ci+1 are oriented from Ci to Ci+1 except the arc
(xi

1, x
i+1
1 ) which has the opposite direction. It is easy to see that the longest cycle of G(c, t)

has exactly t(c− 1) + 1 vertices.
Theorem 4.11 implies immediately the following result by J. Ayel (cf. [49]).

Corollary 4.12 If C is a longest cycle of a strongly connected SMD D then D − C has no
cycles.

One of the interesting classes of MT is the set of diregular k-partite tournaments (k ≥ 2).
Theorem 5.3 implies that every diregular bipartite tournament is Hamiltonian. This result
was first obtained in [49], [78]. Moreover, C.-Q. Zhang [79, 80] proved the following:

Theorem 4.13 There is a cycle of length at least n− 1 in any diregular MT of order n.

C.-Q. Zhang [80] formulated the following conjecture.

Conjecture 4.14 Every diregular MT is Hamiltonian.

Obviously, the number of vertices s in each partite set of a diregular MT is the same.
Using Theorem 4.13, the author has verified the last conjecture for s=2.
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5 Cycles in SBDs and ordinary SMDs

In the survey by L. W. Beineke [18], the following sufficient conditions for a bipartite tour-
nament to have a cycle of length at least 2r due to B. Jackson [49] are given:

Theorem 5.1 Let T be a strongly connected BT with the property that for all vertices v and
w, either (v, w) ∈ A(T ) or d+(v) + d−(w) ≥ r. Then T has a cycle of length at least 2r.

This supplies a sufficient condition for a BT to be Hamiltonian by taking r = n/2. J. Z.
Wang [75, 76] showed the following result improving Theorem 5.1 in the Hamiltonian case.

Theorem 5.2 Let T be a strongly connected BT with m vertices in each partite set. If for
any pair vertices v and w of T , (v, w) ∈ A(T ) implies d+(v)+d−(w) ≥ m−1, then T is Hamil-
tonian, unless T is isomorphic to B(m+1

2
, m+1

2
, m−1

2
, m−1

2
) when m is odd or B(m

2
, m−2

2
, m

2
m+2

2
)

when m is even.

The following necessary and sufficient conditions for the existence of a Hamiltonian cycle
in a semicomplete bipartite digraph have appeared in [30, 31, 46, 53, 55].

Theorem 5.3 A semicomplete bipartite digraph D is Hamiltonian, if and only if D is
strongly connected and has a 1-diregular spanning subgraph. There exists an O(n2.5/

√
log n)

algorithm for finding a Hamiltonian cycle in a SBD D (if D is Hamiltonian).

The complexity of the algorithm mentioned in Theorem 5.3 is dominated by that of the
algorithm [3] for finding a maximum matching in a bipartite graph. The proofs of Theorem
5.3 in [30, 31, 55] are based on the following:

Lemma 5.4 If a strongly connected SBD D has a 1-difactor F = C ∪ Z containing two
cycles, then D is Hamiltonian. Given F one can find a Hamiltonian cycle in D in time
O(|V (C)||V (Z)|).

Lemma 5.4 can be proved in a rather simple way using Theorem 4.8 [11]. An algorithm for
checking whether a SBD D contains a Hamiltonian cycle and finding one if D is Hamiltonian
consists of the following steps.

1) Check whether D is strongly connected applying any O(n2)-time algorithm (e. g. the
one in [70]). If D is not strongly connected, then D is not Hamiltonian.

2) Find in D a maximum 1-diregular subgraph F (apply the construction described before
Algorithm 3.3). If F is not a 1-difactor of D, then D is not Hamiltonian.

3) Construct a semicomplete digraph T = T (F ) as follows. The vertices of T are the
cycles of F . A cycle C1 of F dominates another cycle C2 in T if and only if there is an arc
in D from C1 to C2. Find a Hamiltonian cycle H in T (F ) using the algorithm from [54].

4) Transform H into a Hamiltonian cycle of D using Lemma 5.4.
J. Bang-Jensen proved [10] that Theorem 5.3 remains true for arc-local tournament di-

graphs. Recently, J. Bang-Jensen, M. El Haddad, Y. Manoussakis and T. Przytycka [13]
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obtained a random parallel algorithm for checking whether a SBD D has a Hamiltonian cy-
cle and finding one (if there is) in time O(log4n) using a CRCW PRAM with O(n2) processors
(see, e. g., [50] for the definition of CRCW PRAM).

It follows from Theorem 4.11 that the first part of Theorem 5.3 cannot be extended to
the entire set of semicomplete t-partite digraphs (t ≥ 3).

M. Manoussakis and Y. Manoussakis [52] determined the number of non-isomorphic BTs
with 2m vertices containing a unique Hamiltonian cycle. Let hm be the number of such BTs.
It is shown in [52] that h2 = h3 = 1 and hm = 4hm−1 + hm−2 for m ≥ 4. R. J. Douglas [45]
gave a structural characterization of tournaments having a unique Hamiltonian cycle. This
result implies a formula for the number sn of non-isomorphic tournaments of order n with a
unique Hamiltonian cycle. This characterization as well as formula are rather complicated.
M. R. Garey [26] later showed that sn could be expressed as a Fibonacci number (sn = f2n−6);
his derivation was based on Douglas’s characterization. J. W. Moon [57] obtained a direct
proof of Garey’s formula that is essentially independent of Douglas’s characterization.

We make the following trivial but useful observation. The length of a longest cycle in
any digraph is equal to the maximum length of a longest cycle in its strongly connected
components. Hence, solving the longest cycle problem, one may consider only strongly
connected digraphs. In [38] the following result which gives a complete solution of the
longest cycle problem in the case SBDs was obtained.

Theorem 5.5 1) The length of a longest cycle in a strongly connected SBD D is equal to
the number of vertices of a 1-diregular subgraph of D of maximum cardinality. 2) There
exists an algorithm for finding a longest cycle in a strongly connected SBD D in time O(n3).

It easy to see that Theorem 5.5 follows from Lemmas 4.9, 5.4 and the construction de-
scribed before Algorithm 3.3. The algorithm mentioned in Theorem 5.5 is just a modification
of that described after Lemma 5.4.

Theorem 5.3 as well as Theorem 5.5 can be proved for the class of ordinary semicomplete
t-partite digraphs (t ≥ 3) with a little alteration. Indeed, the following two claims hold [38].

Theorem 5.6 1) Let D be a strongly connected ordinary SMD. Then for any 1-diregular
subgraph F of maximum cardinality of D, there is a cycle C of D satisfying V (C) = V (F )
(Clearly each such cycle is a longest cycle of D). 2) There exists an O(n3) algorithm for
constructing a longest cycle in any strongly connected ordinary SMD D.

Theorem 5.7 An ordinary SMD D is Hamiltonian if and only if D is strongly connected
and has a 1-diregular spanning subgraph. Finding a Hamiltonian cycle in a Hamiltonian
ordinary SMD D can be done in time O(n2.5/

√
log n).

Let T = T (x1, ..., xn) be a semicomplete digraph with V (T ) = {x1, ..., xn}, and let ki be
non-negative integers (1 ≤ i ≤ n). A closed (k1, k2, , ..., kn)-walk of T is a closed directed
walk of T visiting each vertex xj no more than kj times (the first and the last vertices of a
closed walk coincide and are considered as a single vertex).
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Let
DT = DT (xk1

1 , xk2
2 , ..., xkn

n )

denote the ordinary SMD with partite sets Vi (|Vi| = ki and if ki = 0, then Vi = ∅, i.e. Vi is
absent in T ), 1 ≤ i ≤ n, and

A(DT ) =
⋃

(Vi × Vj : kikj 6= 0 , (xi, xj) ∈ A(T ) , 1 ≤ i 6= j ≤ n) .

Theorem 5.6 implies

Corollary 5.8 The maximum length of a closed (k1, k2, ..., kn)-walk of a strongly connected
semicomplete digraph T (x1, x2, ..., xn) is equal to the number of vertices of a maximum 1-
diregular subgraph of the digraph DT (xk1

1 , xk2
2 , ..., xkn

n ).

L. Moser [47] and J. Moon [58] strengthened the theorem of Camion mentioned above
and proved, respectively, that a strongly connected tournament is pancyclic and, even, vertex
pancyclic.

The following characterizations of even pancyclic and vertex even pancyclic bipartite
tournaments were derived in [19] and [77], respectively. Note, that the last characterization
was obtained independently in [46] as well.

Theorem 5.9 A bipartite tournament is even pancyclic as well as vertex even pancyclic if
and only if it is Hamiltonian and is not isomorphic to the bipartite tournament B(r, r, r, r) (r =
2, 3, . . .).

Considering diregular bipartite tournaments, D. Amar and Y. Manoussakis [5] and, in-
dependently, J. Z. Wang [74] showed the following:

Theorem 5.10 An r-diregular BT is arc even pancyclic unless it is isomorphic to B(r, r, r, r).

The analogous result for diregular tournaments was obtained by B. Alspach in [4] (every
diregular tournament is arc pancyclic). Z. M. Song [67] studied complementary cycles in
BTs which are similar to diregular ones. He proved the following:

Theorem 5.11 Let R be a BT with 2k + 1 vertices in each partite set (k ≥ 4). If every
vertex of R has outdegree and indegree at least k then for any vertex x in R, R contains a
pair of disjoint cycles C, Q such that C includes x and the length of C is at most 6 unless R
is isomorphic to B(k + 1, k + 1, k, k).

Observe that a characterization of even pancyclic (and vertex even pancyclic) semicomplete
bipartite digraphs coincides with the above-mentioned one. Indeed, the result follows from
the fact that any bipartite tournament obtained by the reorientation of an arc of B(r, r, r, r)
is Hamiltonian, and so, vertex even pancyclic. Combining these results with the above
described necessary and sufficient conditions for the existence of a Hamiltonian cycle in a
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semicomplete bipartite digraph (Theorem 5.3) we obtain a polynomial characterization for
the above properties.

A characterization of pancyclic (and vertex pancyclic) ordinary m-partite (m ≥ 3) tourna-
ments was established in [36]. As opposed to the characterization of even pancyclic semicom-
plete bipartite graphs the last one does not imply immediately a characterization of pancyclic
(or vertex pancyclic) ordinary semicomplete m-partite digraphs. Indeed, there exist vertex
pancyclic ordinary SMDs which contain no Hamiltonian ordinary multipartite tournaments
as spanning subgraphs. Such examples are semicomplete m-partite digraphs Sm,r with r
vertices in each partite set but one and (m − 1)r vertices in the last one (r ≥ 1, m ≥ 3).
A semicomplete m-partite digraph is called a complete m-partite digraph if it has the arcs
(u, v), (v, u) for any pair u, v in distinct partite sets. Sm,r is vertex pancyclic by Theorem
5.12 (see below) and it has no Hamiltonian ordinary m-partite tournament as a spanning
subgraph since any Hamiltonian cycle of Sm,r must alternate between the largest partite set
and the other partite sets and hence it cannot be a subgraph of an ordinary multipartite
tournament.

An ordinary SMD D is called a zigzag digraph if it has more than four vertices and
k(≥ 3) partite sets V1, V2, V3, , ..., Vk such that A(V2, V1) = A(Vi, V2) = A(V1, Vi) = ∅ for any
i ∈ {3, 4, ..., k}, |V1| = |V2| = |V3|+ |V4|+ · · ·+ |Vk|.

Observe that any cycle in such a graph has the same number, say s, of vertices from V1

and V2 and at least s vertices from V3 ∪ · · · ∪ Vk. Therefore, H has no prehamiltonian cycle,
i.e. a cycle containing all vertices of H but one. Observe also that an ordinary 4-partite
tournament with more than four vertices is not a pancyclic digraph. Indeed, the single (up
to isomorphism) strongly connected tournament with four vertices has no closed directed
walk of length five.

The following characterization of pancyclic and vertex pancyclic ordinary SBD was ob-
tained in [42].

Theorem 5.12 1) An ordinary semicomplete k-partite digraph (k ≥ 3) D is pancyclic if
and only if

i) D is strongly connected;

ii) it has a 1-diregular spanning subgraph;

iii) it is neither a zigzag digraph nor a 4-partite tournament with at least five vertices.

2) A pancyclic ordinary semicomplete k-partite digraph D is vertex pancyclic if and only if
either

i) k > 3 or

ii) k = 3 and D contains two 2-cycles Z1, Z2 such that Z1 ∪Z2 has vertices in three partite
sets.
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3) There exists an O
(
n2.5/

√
log n

)
algorithm for determining whether an ordinary semi-

complete k-partite (k ≥ 3) digraph D is pancyclic (vertex pancyclic).

The following result conjectured in [46] was proved in [15].

Theorem 5.13 1) If D is a k-strongly connected bipartite tournament, k ≥ 1, then D is
k-vertex cyclic. 2)There exists a O(n3) algorithm to find a cycle through any set of k vertices
in a k-strongly connected bipartite tournament.

The (k− 1)-strongly connected BT B = B(p− k, q− k +1, k, k− 1) (p > q ≥ 2k− 2 ≥ 2)
considered in [46] shows that Theorem 5.13 is best possible in terms of connectivity (B is
non-k-vertex cyclic). J. Bang-Jensen and Y. Manoussakis [15] raised the following conjecture.

Conjecture 5.14 For every fixed k there exists a polynomial algorithm to decide the exis-
tence of a cycle through a given set of k vertices in a BT and to find one if it exists.

Y. Manoussakis and Z. Tuza [55] have already proved this conjecture for k = 2.
The situation with k-cyclic ordinary SMD is better. J. Bang-Jensen, G. Gutin and J.

Huang derived in [11] a complete characterization of k-cyclic ordinary SMDs. They showed
the following:

Theorem 5.15 An ordinary SMD D is k-cyclic if and only if for every set Z of k vertices,
there exists a 1-diregular subgraph of D containing all the vertices of Z. There exists an
O(n2.5/

√
log n) algorithm to decide if there is a cycle meeting a given set Z of k vertices and

find one if it exists.

J. Bang-Jensen and Y. Manoussakis [15] also described arc variants of Theorem 5.13 and
Conjecture 5.14.

Theorem 5.16 There exists a function f(k) such that any f(k)-strongly connected BT is
k-arc cyclic.

Conjecture 5.17 For any fixed natural number k there exists a polynomial algorithm to
decide the existence of a cycle through k given arcs in a BT and to find one if it exists.

B. Jackson [49] suggests that Kelly’s conjecture remains valid for diregular BTs, i. e. he
raises the following

Conjecture 5.18 Every diregular BT is decomposable into Hamiltonian cycles.

In support for this conjecture, D. Amar and Y. Manoussakis [5] proved the following:

Theorem 5.19 Let D be an r-diregular bipartite tournament with partite sets X and Y .
Colour all the arcs from X to Y red. Then D contains exactly r Hamiltonian cycles no two
of which share a red edge.
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6 Cycles and paths in semicomplete digraphs

What is the complexity of the Hamiltonian path and cycle problems in tournaments? The
inductive classical proof of Redei’s theorem gives at once a simple O(n2) algorithm for
the first problem. Since sorting corresponds to finding a Hamiltonian path in a transitive
tournament, we have an O(n log n)-time algorithm in this case. P. Hell and M. Rosenfeld [48]
obtained an algorithm with the same complexity solving the Hamiltonian path problem for
any tournament. The well known proof of Moon’s theorem provides an O(n3)-time algorithm
for the Hamiltonian cycle problem. Y. Manoussakis [54] constructed an O(n2)-time algorithm
for this problem.

A parallel algorithm A for a problem with size n is called an NC-algorithm if there are
constants k, l such that A can be performed in time O(logkn) on an O(nl) processors PRAM.
We refer the reader to [50] for a discussion of NC-algorithms. D. Soroker [68] studies the
parallel complexity of the above mentioned problems. He proved the following:

Theorem 6.1 There are NC-algorithms for the Hamiltonian path and Hamiltonian cycle
problems in tournaments.

Another NC -algorithm for the Hamiltonian path problem in tournaments has been obtained
by J. Naor [59]. As to the Hamiltonian path problem for tournaments, the most effective
parallel algorithm is due to A. Bar-Noy and J. Naor [7]. They constructed an algorithm
performed in time O(log n) on an O(n) processors CRCW PRAM for a tournament con-
taining n vertices. The most effective parallel algorithm for the Hamiltonian cycle problem
for tournaments is due to E. Bampis, M. El Haddad, Y. Manoussakis and M. Santha [6].
They found a fast parallel procedure which transforms the Hamiltonian cycle problem into
the Hamiltonian path one in the following sense: Given a Hamiltonian path in a tournament
as input, the procedure constructs a Hamiltonian cycle. The parallel running time of the
procedure is O(log n) using O(n2/ log n) processors in the CRCW model.

J. Bang-Jensen, Y. Manoussakis and C. Thomassen [16] obtained a polynomial algorithm
solving the problem (which appears in [60, 68]) of deciding the existence of a Hamiltonian
path with prescribed initial and terminal vertices in a tournament. Obviously, the last
problem is equivalent to the problem of existence of a Hamiltonian cycle containing a given
arc in a tournament. They raised the following:

Conjecture 6.2 For each fixed k, there exists a polynomial algorithm for deciding if there
exists a Hamiltonian cycle through k prescribed arcs in a tournament.

The k-arc cyclic problem is the following: Given k distinct arcs in a digraph D, decide
whether D has a cycle through all the arcs. Bang-Jensen and Thomassen [17] considered
this problem for semicomplete digraphs. They proved:

Theorem 6.3 There exists a polynomial algorithm for deciding if two independent arcs lie
on a common cycle in a semicomplete digraph.
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They also showed that if k is part of the input then the above problem is NP -complete.

Theorem 6.4 The k-arc cyclic problem is NP -complete even for semicomplete and semi-
complete bipartite digraphs.

Sufficient conditions for semicomplete digraphs and tournaments to be 2-arc cyclic are
studied in [9] where the following theorem is proved.

Theorem 6.5 Every 5-strongly connected semicomplete digraph is 2-arc cyclic; every 3-
connected tournament is 2-arc cyclic.

In [9] it is noted that both results are best possible in terms of the required connectivity.
A digraph D is said to be transitive if (x, y), (y, z) ∈ A(D) implies (x, z) ∈ A(D).

This notion has been generalized by F. Harary (cf. [73]) as follows: D is (m, k)-transitive
(m > k ≥ 1) if for every path P of length m there exists a path Q of length k with the
same endvertices, such that V (Q) ⊂ V (P ). A. Gyárfás, M.S. Jacobson and L.F. Kinch [44]
studied (m, k)-transitivity and obtained a characterization of (m, 1)-transitive tournaments
for m ≥ 2. Using another approach, Z. Tuza [73] characterized (m, 1)-transitive semicomplete
digraphs for every m ≥ 2 and k = 1.

Theorem 6.6 Let D be a semicomplete digraph, and let m be an integer, m ≥ 2. Then the
following statements are equivalent.

(a) D is (m,1)-transitive.

(b) No cycle of length greater than m contains any arc (x, y) of D such that (y, x) /∈ A(D).

(c) Every strong component of D with more than m vertices induces a semicomplete di-
graph.

Obviously, this characterization provides an O(n2)-time algorithm for finding the minimum
m such that a given semicomplete digraph D is (m,1)-transitive. Z. Tuza [73] also obtained
a characterization of (3,2)-transitive semicomplete digraphs.

7 The number of paths and cycles in MTs

The main problems in the topic of this section are the following:
1) Find the maximum possible number of s-cycles (s-paths) in a MT with a given number

of vertices in each partite set.
2) Find the minimum possible number of s-cycles in a strongly connected MT with a

given number of vertices in each partite set.
These problems were completely solved only in some special cases. The first problem (on

cycles) was solved for tournaments when s = 3, 4 and for BTs when m = 4 (cf. [18]).
Solving an old conjecture of T. Szele [69], N. Alon [2] showed:
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Theorem 7.1 The maximum number, P (n), of Hamiltonian paths in a tournament on n
vertices satisfies

P (n) ≤ cn1.5n!/2n−1

where c is independent of n.

The short proof of Theorem 7.1 is based on Minc’s Conjecture [56] on permanents of
(0,1)-matrices proved by Bregman [24].

Szele [69] proved that
P (n) ≥ n!/2n−1

and hence the gap between the upper and lower bounds for P (n) is only O(n1.5).
It would be interesting to close this gap and determine P (n) up to a constant factor.
The second problem was completely solved for tournaments for all s and for BTs when

s = 4 (cf. [18]). For MTs the following two results [28] were obtained.

Theorem 7.2 Let T be a strongly connected m-partite tournament , m ≥ 3. Then T con-
tains at least m− 2 3-cycles.

Theorem 7.3 Let G be a complete m-partite graph, m ≥ 3, which is not isomorphic to
K2,2,,...,2 for odd m. Then there exists a strong orientation of G with exactly m− 2 3-cycles.
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