
Finding cheapest cycles in vertex-weighted

quasi-transitive and extended semicomplete

digraphs

Jørgen Bang-Jensen
Department of Mathematics and Computer Science

University of Southern Denmark, Odense M
DK-5230, Denmark, jbj@imada.sdu.dk

Gregory Gutin
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK, gutin@cs.rhul.ac.uk

Anders Yeo
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK, anders@cs.rhul.ac.uk

Abstract

We consider the problem of finding a minimum cost cycle in a
digraph with real-valued costs on the vertices. This problem general-
izes the problem of finding a longest cycle and hence is NP-hard for
general digraphs. We prove that the problem is solvable in polyno-
mial time for extended semicomplete digraphs and for quasi-transitive
digraphs, thereby generalizing a number of previous results on these
classes. As a byproduct of our method we develop polynomial algo-
rithms for the following problem: Given a quasi-transitive digraph D
with real-valued vertex costs, find, for each j = 1, 2, . . . , |V (D)|, j
disjoint paths P1, P2, . . . , Pj such that the total cost of these paths is
minimum among all collections of j disjoint paths in D.

Keywords: vertex-weighted digraphs, quasi-transitive digraphs, min-
imum cost cycles.

1

1 Introduction, Terminology and Notation

For basic terminology and notation on digraphs, see [3]. We consider (non-
empty) finite digraphs with no loops or parallel arcs. For a compact intro-
duction to flows as well as applications of flows to find certain substructures
in digraphs, some of which are used extensively in this paper, see Chapter
3 in [3]. (For a more comprehensive account on flows in networks and their
applications, see [1].)

For a digraph D = (V, A), the order (size) of D is the cardinality of V
(A). We will denote the order (size) of a digraph under consideration by n
(m). If a digraph D = (V, A) has an arc from x to y, we will denote it by
xy ∈ A or x→y. We write R→S for disjoint subsets or digraphs R,S if r→s
for every choice of vertices r ∈ R, s ∈ S.

In this paper, by a cycle (path) we mean simple directed cycle (simple
directed path); we often call vertex-disjoint cycles (paths) disjoint cycles
(paths). A digraph D is strongly connected (or, shortly strong) if for every
pair x, y of its vertices, there are paths from x to y and from y to x in D.

For each x ∈ V (D), N+(x) (N−(x)) denotes the set of those vertices
y ∈ V (D) for which x→y (y→x). Two vertices x, y in a digraph D are
similar if N+(x) = N+(y) and N−(x) = N−(y), that is, they have the same
in- and out-neighbours. For a digraph D = (V, A) and a set X ⊆ V , D 〈X〉
is the subdigraph induced by X. When we are considering a vertex x on
some cycle C we denote by x− (x+) the predecessor (successor) of x on C.
Notice that we do not use the subscript C as it will always be clear from the
context which cycle we are considering. For a pair of distinct vertices x, y
on a cycle C, C[x, y] is a subpath of C from x to y.

For a digraph R with vertex set V (R) = {u1, u2, . . . , ur}, and digraphs
H1,H2, . . . ,Hr, let D = R[H1,H2, . . . ,Hr] be a digraph with vertex set
V (D) = V (H1) ∪ · · · ∪ V (Hr), in which xy ∈ A(D) if and only if x ∈
V (Hi), y ∈ V (Hj) and uiuj ∈ A(R), where i 6= j, or xy ∈ A(Hi) and
x, y ∈ V (Hi). In other words, D is obtained from R by substituting the
vertex ui with Hi for i = 1, 2, . . . , r.

A k-path-cycle subdigraph of a digraph D is a collection of k paths and
some cycles, all disjoint. A 0-path-cycle subdigraph is a cycle subdigraph.
A k-path-cycle subdigraph with no cycles is a k-path subdigraph. Let X ⊆
V (D) be non-empty. We say that a subdigraph D′ of D covers X if X ⊆
V (D′).

We will often assign real-valued costs to vertices of digraphs. These costs
will always be finite. The cost of a subset of vertices is the sum of the costs of
its vertices and the cost of a subdigraph is the sum of the costs of its vertices.

2

For i = 1, 2, . . . , n we define mpi(D) (mpci(D)) to be the minimum cost of
a i-path (i-path-cycle) subdigraph of D. By definition mp0(D) = 0 and
mpc0(D) is zero if D has no negative cycle and otherwise it is the minimum
cost of a cycle subdigraph in D. Note that these numbers always exist as we
may take single vertices as paths and we always have mpci(D) ≤ mpi(D).
For any digraph D with at least one cycle we denote by mc(D) the minimum
cost of a cycle in D.

Let D = (V, A) be a digraph and let X be a non-empty subset of V . We
say that a cycle C in D is an X-cycle if C contains all vertices of X. In this
paper we consider the following problems for a digraph D = (V,A) with n
vertices and real-valued costs on the vertices:

(P1) Determine mpi(D) for all i = 1, 2, . . . , n.

(P2) Find a cheapest cycle in D or determine that D has no cycle.

Clearly, problems (P1) and (P2) are NP-hard as determining the numbers
mp1(D) and mc(D) generalize the hamiltonian path and cycle problems
(assign cost −1 to each vertex of D). The problem (P2) can be solved in
time O(n3) when all costs are non-negative using an all pairs shortest path
calculation.

In this paper, we develop polynomial algorithms for both problems for
some special classes of digraphs, quasi-transitive digraphs and extended
semicomplete digraphs, defined below. These classes have been extensively
studied in the literature, see, e.g., [3] and references therein, and more recent
papers [5, 10]. Since the costs are arbitrary real numbers, we can also find
most expensive cycles and path subdigraphs for these classes of digraphs in
polynomial time.

Notice that (P1) and (P2) for the special case when all costs are non-
negative were solved in [4]. However, the approach of [4] cannot be used or
modified to work with negative costs. Through the use of a more efficient
minimum cost flow algorithm as a subroutine, we obtain a better complexity
(than in [4]) for the problem of finding a most expensive path in a quasi-
transitive digraph.

The maximization version of problem (P2) (which is equivalent to (P2)
itself) is of interest as a special case of the Prize Collecting Travelling Sales-
man Problem (PCTSP) [2]. In the PCTSP, a salesman wishes to visit a set
V of cities and he gets price pi if he visits city i. However, he pays penalty qi

if he fails to visit city i. Given distances dij between the cities, the salesman

3

wants to maximize ∑

i∈U

pi −
∑

i∈W

qi −
∑

(i,j)∈C

dij ,

where U is the set of visited cities, W = V −U and C is a cycle with vertex
set U. The problem is NP-hard.

In our special case we assume that the entries of matrix [dij] are 0 and
∞, corresponding to the case when the salesman pays for the travel in
some directions nothing or very little, but some other directions of travel
may be too expensive or forbidden. This means that we have a digraph D
with vertex set V and want to maximize −∑

i∈W qi +
∑

i∈U pi provided U
is the vertex set of a cycle in D. By adding the constant

∑
i∈V qi to the

last objective function, we see that we can reduce the last problem into the
maximum cost cycle problem by assigning new cost qi + pi to every city i.

A digraph D = (V,A) is semicomplete if there is an arc between any pair
of vertices of D. Notice that, for some x 6= y ∈ V , we may have both arcs
xy, yx ∈ A. Semicomplete digraphs generalize tournaments. A digraph D is
an extended semicomplete if there is a semicomplete digraph R and digraphs
En1 , . . . , Enr with no arcs such that D = R[En1 , . . . , Enr]. In other words,
an extended semicomplete digraph is obtained from a semicomplete digraph
by substituting vertices with sets of independent vertices. A digraph D
is transitive (quasi-transitive) if x→y and y→z, for distinct vertices x, y, z,
implies that x→z (either x→z or z→x or both). Notice that extended
semicomplete digraph with no cycles of length two form a special class of
quasi-transitive digraphs.

A digraph D = (V, A) is semicomplete multipartite if V can be parti-
tioned into V1 ∪ · · · ∪ Vp such that, for a pair x ∈ Vi, y ∈ Vj of distinct
vertices, there is an arc between x and y if and only if i 6= j. Clearly,
extended semicomplete digraphs form a special class of semicomplete multi-
partite digraphs. We call the sets V1, . . . , Vp the partite sets of D. Note that
if D is extended semicomplete and x, y belong to the same partite set of D,
then x and y are similar.

We finish this introduction by pointing out that for semicomplete mul-
tipartite digraphs D the problem (P1) can be readily solved in polynomial
time (the polynomial time complexity follows by combining Corollary 1.2
and Lemma 2.4(a)); see Theorem 3.1. The following result was proved by
the second author.

Theorem 1.1 [8] A semicomplete multipartite digraph D has a hamiltonian
path if and only if it has a spanning 1-path-cycle subdigraph F . Given a

4

spanning 1-path-cycle subdigraph F in D, a hamiltonian path of D can be
found in time O(n2).

By Theorem 1.1, in a semicomplete multipartite digraph D all cycles of
a k-path-cycle subdigraph with k ≥ 1 can be merged with one of the paths
to form a new path. This easily implies the following corollary which plays
an important role in our algorithms.

Corollary 1.2 Let D be a semicomplete multipartite digraph. Then for
every i = 1, 2, . . . , n we have mpi(D) = mpci(D).

2 Minimum cost k-path-cycle subdigraphs

In this section we recall some results from [3, Section 3.11] which will be
used later. We say that a flow f in a network N is integer-valued if the value
of f on any arc is an integer. Given a network N = (V, A, l, u) with lower
bound 0 and capacity u(a) ≥ 0 on each arc a ∈ A we say that a flow f is a
feasible flow in N if 0 ≤ f(a) ≤ u(a) holds for every a ∈ A. Below we will
always assume that the flows we consider are feasible. Let N be a network
with two designated vertices s and t (called the source and the sink). An
(s, t)-flow in N is a feasible flow f which satisfies the following for some k.
(The number k is called the value of the flow f .)

∑

w:vw∈A

f(vw)−
∑

w:wv∈A

f(wv) =

k if v = s
−k if v = t
0 otherwise

(1)

Below we also allow capacities and costs on the vertices in our networks.
This makes it easier to model certain problems for digraphs and it is easy
to transform such a network into one where all capacities and costs are on
the arcs (see [3, Section 3.2.4] for details). With these remarks in mind,
the following lemma follows directly from [3, Lemma 3.2.4 and Proposition
3.10.7].

Lemma 2.1 Let N = (V,A) be a network with source s and sink t, capaci-
ties on arcs and vertices and a real-valued cost c(v) for each vertex v ∈ V .
For all integer i such that there exists a feasible (s, t)-flow of value i in N ,
let fi be a minimum cost (s, t)-flow in N of value i and let c(fi) be the cost
of fi. Then, for all i where all of fi−1, fi, fi+1 exist, we have

c(fi+1)− c(fi) ≥ c(fi)− c(fi−1). (2)

5

The following lemma is a consequence of Lemma 3.3.2 in [3].

Lemma 2.2 Given an arbitrary feasible integer-valued (s, t)-flow f in a net-
work N of value k one can find in time O(nm) a collection of k (s, t)-paths,
P1, . . . , Pk, and zero or more cycles C1, . . . , Cr, r ≥ 0 such that the (s, t)-flow
one obtains by sending one unit of flow along each of P1, . . . , Pk, C1, . . . , Cr

is precisely 1 the flow f . Furthermore, if each arc (vertex, except for s and
t) of N has capacity one then the paths and cycles above are all arc-disjoint
(vertex-disjoint, except for s and t).

Lemma 2.3 Let D = (V, A) be a digraph with real-valued cost function c
on the vertices. In time O(n(m + n log n)) we can determine the number
mpc0(D) and find a cycle subdigraph of cost mpc0(D) if mpc0(D) < 0.

Proof: Let H(w) be the digraph on 4 vertices w1, w2, w3, w4 and the fol-
lowing arcs w1w2, w2w1, w2w3, w3w4, w4w3. Let D∗ = (V ∗, A∗) be obtained
from D as follows: replace every vertex v by the digraph H(v). Further-
more, for every original arc uv ∈ A, D∗ contains the arc u4v1 . There are
no costs on the vertices and all arcs have cost 0 except the arcs of the form
v2v3 which have cost c(v). Now it is easy to check that mpc0(D) is precisely
the minimum cost of a spanning cycle subdigraph in D∗. Using Johnson’s
algorithm (see [7], p. 640) to solve the corresponding assignment problem,
we can compute the minimum cost of a spanning cycle subdigraph F in D∗

in time O(n(m + n log n)). The construction above allows us to find F as
well within the same time. 2

Lemma 2.4 Let D = (V,A) be a digraph in which every vertex has a real-
valued cost.

(a) In total time O(n2m + n3) we can determine the numbers

{mpc1(D),mpc2(D), . . . ,mpcn(D)} and find j-path-cycle subdigraphs
Fj, j = 1, 2, . . . , n, where Fj has cost mpcj(D).

(b) The costs mpci(D) satisfy the following inequality for i = 1, 2, . . . , n−
1:

mpci+1(D)−mpci(D) ≥ mpci(D)−mpci−1(D) (3)
1That is, the sum of the flows on the arc a is f(a) for every arc a.

6

Proof: Form a network N(D) from D by adding a pair s, t of new
vertices along with arcs {(s, v), (v, t) : v ∈ V }. Let all vertices and all arcs
of V have lower bound 0 and capacity 1. Let c(s) = c(t) = 0, let each other
vertex of N(D) inherit its cost from D and let all arcs have cost 0.

Suppose Fj is a j-path-cycle subdigraph of D. Using Fj we can obtain
a feasible flow fj of value j in N(D) if we assign fj(a) = 1 to all arcs a in
Fj and those arcs a of N(D) that start (terminate) at s (t) and terminate
(start) at the initial (terminal) vertex of a path in Fj , and fj(a) = 0 for all
other arcs of N(D). Similarly, by Lemma 2.2, we can transform a feasible
integer-valued (s, t)-flow of value j in N(D) into a j-path-cycle subdigraph
of D.

Notice that N(D) has a feasible integer-valued (s, t)-flow of value k for
any integer k = 0, 1, . . . , n. Thus it follows from the observations above that
for every j = 0, 1, . . . , n the value mpcj(D) is exactly the minimum cost of
a flow of value j in N(D). Now (2) implies that the inequality (3) is valid.

It remains to prove (a). It follows from Lemma 2.3 that we can find
a minimum cost flow f of value 0 in time O(n3). Now we can use the
so-called Buildup algorithm (see e.g. [3, Section 3.10]) starting from f.
Using the Buildup algorithm we can find feasible integer-valued flows fj ,
j = 1, 2, . . . , n, such that fj is a minimum cost feasible (s, t)-flow of value j
in N(D), in total time O(n2m) (the complexity of obtaining fj+1 starting
from fj is O(nm)). This proves (a). 2

3 Minimum cost i-path subdigraphs and cycles in
semicomplete multipartite digraphs

By Corollary 1.2 to determine the value mpi(D) for some i > 0 in a semi-
complete multipartite digraph we just have to find the minimum cost of an
i-path cycle subdigraph in D. Now Lemma 2.4 implies the following:

Theorem 3.1 Let D be a semicomplete multipartite digraph with real-valued
costs on the vertices. In total time O(n2m + n3) we can determine the
numbers mpi(D), i = 1, 2, . . . , n and find corresponding cheapest path sub-
digraphs.

The following lemma was proved by the second author, see e.g. [3,
Section 5.7].

Lemma 3.2 Let D be an extended semicomplete digraph, and let F be a
cycle subdigraph in D. If D 〈V (F)〉 is strong, then there exists a cycle, C,

7

in D, with V (C) = V (F). In particular, if there is some partite set Vi in D,
such that every cycle in F contains a vertex from Vi, then there also exists
a cycle, C, in D, with V (C) = V (F).

Theorem 3.3 Let D = (V,A) be an extended semicomplete digraph with a
cycle and real-valued costs on V . We can find a cheapest cycle in D in time
O(n3m + n4 log n).

Proof: Running an all pairs shortest path algorithm in O(n3) time we
can either find a shortest cycle of D or determine that D has a cycle of
negative cost (see [3, Section 2.3.5]). So assume that there exists a negative
cost cycle in D, and let W ⊆ V (D) be the set of vertices in D with negative
cost. Let S1, S2, . . . , St be a partition of W , such that t is maximum (t ≥ 1)
and Si→Sj (recall that it means that every vertex of Si dominates every
vertex of Sj) for each j > i. It follows from the definition of an extended
semicomplete digraph that Si either induces a strong component in D 〈W 〉
or is a maximal set of independent vertices in D 〈W 〉 .

We consider the cases when t = 1 and t ≥ 2 separately.
Assume that t = 1, which implies that either D 〈W 〉 is strong or W is

independent. By Lemma 2.3 we can find a minimum cost cycle subdigraph,
F , in D in time O(n(m + n log n)). Since the cost of F is negative, we may
assume (by discarding cycles of cost zero if necessary) that every cycle of
F contains a vertex of negative weight. If W is independent, then Lemma
3.2 implies that we can obtain a cycle in D with the same cost as F , which
therefore is optimal. So assume that D 〈W 〉 is strong. By Lemma 3.2,
we may assume that we can order the cycles C1, C2, . . . , Cs of F such that
Ci→Cj , whenever i < j (otherwise we can merge some cycles). Assume
that s > 1. Since D 〈W 〉 is strong there must be some path totally within
D 〈W 〉, from a cycle Cj to Ci, with j > i, such that the path only has its
end-vertices in common with V (F). Clearly this path together with Ci and
Cj can be merged into one cycle of cost less than c(Ci)+c(Cj) (use the path
plus the appropriate arc from Ci to Cj). This contradicts the optimality of
F . Hence s = 1 and C1 is the desired minimum cost cycle.

Assume that t ≥ 2. For all 1 ≤ i ≤ j ≤ t we define Di,j as follows:

Di,j = D 〈V (D)− (S1 ∪ S2 ∪ . . . ∪ Si−1)− (Sj+1 ∪ Sj+2 ∪ . . . ∪ St)〉 .

We will now show how to find a cheapest cycle Ci,j in Di,j , which contains
both a vertex from Si and a vertex from Sj (possibly the same vertex when

8

i = j). By taking the cheapest cycle of all cycles Ci,j we can clearly get an
optimal cycle in D.

If i = j, then we proceed as above when t = 1, so assume that i < j. Let
M = Si+1∪Si+2∪· · ·∪Sj−1 (M = ∅ is possible), and define the new digraph
D′

i,j by adding a new vertex a and new arcs to Di,j such that Si→a→Sj .
Let Xi,j contain a minimum cost vertex from each partite set in M (i.e. Xi,j

contains exactly one vertex from each partite set in M , and it is a vertex of
minimum cost). Now let all costs in D′

i,j be the same as in Di,j except for
the vertices in Xi,j which are assigned cost zero and the cost of a which is
a negative number large enough to force a minimum cost cycle subdigraph
in D′

i,j to use it (if there is any cycle subdigraph using it). Let c denote the
costs in Di,j and let c′ denote the costs in D′

i,j . We now find a minimum
cost cycle subdigraph, F ′

i,j , in D′
i,j in time O(n(m + n log n)). If F ′

i,j does
not contain a, then there is no path from Sj to Si in Di,j , as such a path
together with a would produce a cycle and the cost assignment to a would
force F ′

i,j to contain a. So in this case Ci,j does not exist. Thus, we may
assume that a ∈ V (F ′

i,j). We will now show that the cost of Ci,j is exactly
c′(F ′

i,j − {a}) + c(Xi,j).
We first show how to transform an optimal cycle Ci,j into a cycle subdi-

graph containing a in D′
i,j .

Consider Ci,j and a pair of vertices si ∈ Si, sj ∈ Sj such that no vertex
from Si ∪ Sj , apart from si, sj themselves, is in the subpath Ci,j [si, sj].
Suppose that Ci,j [si, s

−
j] has a pair x, y of vertices from the same partite set

such that x appears earlier than y in Ci,j [si, s
−
j]. Then y→x+ and x→y+.

Hence, the arc from y to x+ together with Ci,j [x+, y] forms a cycle Q(1)

and the arc from x to y+ together with Ci,j [y+, x] forms a cycle C
(1)
i,j which

contains si, sj . Considering C
(1)
i,j instead of Ci,j and continuing in the manner

above, after a number k of steps, we will arrive to the situation when the
current substitute C

(k)
i,j of Ci,j will not have any pair of vertices from the

same partite set in C
(k)
i,j [si, s

−
j].

If there is a vertex x ∈ C
(k)
i,j [s+

i , s−j], such that c′(x) < 0, then by the
minimality of c(Ci,j), the minimum cost vertex (w.r.t. c), from the same
partite set as x, must belong to some cycle Q(p), p ≤ k. Now swap this
vertex (which belongs to Xi,j) and x, which can be done as they are similar.
Continuing like this we get c′(C(k)[s+

i , s−j]) ≥ 0. Remove from C(k)[s+
i , s−j]

all vertices of C(k)[s+
i , s−j], and add the path si→a→sj instead. This gives us

the cycle C
(k+1)
i,j . Let F ′ = Q(1)∪· · ·∪Q(k)∪C

(k+1)
i,j denote the resulting cycle

subdigraph, and note that c(Ci,j) ≥ c′(Ci,j)+c(Xi,j) ≥ c′(F ′−{a})+c(Xi,j).

9

We now show how to transform F ′
i,j into the desired cycle in Di,j . Delete

a from F ′
i,j , and note that this results in a path from Sj to Si, and a number

of cycles in Di,j . Assume that the path starts in sj ∈ Sj and ends in
si ∈ Si. If Xi,j ⊆ V (F ′

i,j), then add the arc from si to sj in order to obtain
a cycle subdigraph F ∗

i,j . If Xi,j 6⊆ V (F ′
i,j) then we obtain F ∗

i,j , by inserting

a hamiltonian path in D
〈
Xi,j − V (F ′

i,j)
〉

between si and sj (this is possible
since D 〈Xi,j〉 is a tournament, and si→Xi,j→sj). As we only insert vertices
from Xi,j , we note that c′(F ∗

i,j) = c′(F ′
i,j − a). Since F ′

i,j is a minimum cost
cycle subdigraph we may assume that every cycle of F ∗

i,j contains a vertex
from W . Now use Lemma 3.2 to merge cycles as long as we can, and let F ′′

i,j

be the resulting cycle subdigraph.
Suppose that F ′′

i,j is not a cycle. Let C1, C2, . . . , Cs be an ordering of
the cycles in F ′′

i,j such that Cu→Cw, for all u < w. Let Cr be the cycle
containing both si and sj . If Cq is some cycle different from Cr, then we
must have that W∩V (Cq) belongs to Si or Sj (but not both), since otherwise
D 〈V (Cr) ∪ V (Cq)〉 is strong and we could apply Lemma 3.2. Furthermore,
if W ∩ V (Cq) ⊆ Si, then Cq→Cr and if W ∩ V (Cq) ⊆ Sj , then Cr→Cq.

Thus, if r > 1, then V (Ck) ∩ Si 6= ∅ for every k = 1, 2, . . . , r − 1.
If Si were an independent set, then we could merge C1, C2, . . . , Cr−1 with
Cr, which is impossible. Hence, Si is a strong component in D 〈W 〉 . So if
r > 1, then we take a shortest path from Cr to C1 ∪ C2 ∪ . . . ∪ Cr−1 in Si,
which together with the two cycles it touches can be merged into one cycle,
contradicting the minimality of c′(F ′

i,j). If r < s, then we can also merge
some cycles (looking at Sj instead of Si). So F ′′

i,j is a cycle, and we see
that c(F ′′

i,j) = c′(F ′′
i,j) + c(Xi,j) = c′(F ∗

i,j) + c(Xi,j) = c′(F ′
i,j −{a}) + c(Xi,j).

So the cost of an optimal cycle Ci,j in Di,j must be less than or equal to
c′(F ′

i,j − {a}) + c(Xi,j).
We have now shown that c(Ci,j) = c′(F ′

i,j − {a}) + c(Xi,j), as desired.
And, furthermore, the argument above indicates how to obtain the cycle Ci,j ,
given the cycle subdigraph F ′

i,j . Therefore, as we construct O(n2) different
cycle subdigraphs F ′

i,j we can find the desired cycle in O(n3m + n4 log n)
time as stated in the theorem. 2

The third author [11] proved that, in time O(n5), one can verify whether
a semicomplete multipartite digraph has a cycle covering a prescribed vertex
set X and find one, if it exists. He conjectured that a longest cycle covering
a prescribed set of vertices in a semicomplete multipartite digraph can be
found in polynomial time. We conjecture the following generalization.

Conjecture 3.4 A cheapest cycle in a semicomplete multipartite digraph

10

with real-valued costs on the vertices can be found in polynomial time.

4 Cheapest i-path subdigraphs in quasi-transitive
digraphs

The following theorem which is a slight weakening of a result from [6] shows
that quasi-transitive digraphs have a recursive structure with semicomplete
digraphs and acyclic transitive digraphs as building blocks. We will make
extensive use of this decomposition theorem below.

Theorem 4.1 [6] Let Q be a quasi-transitive digraph.
If Q is strong, then there exists an integer t, a semicomplete digraph T on

t vertices, and digraphs Q1, Q1, . . . , Qt each of which is either a single vertex
or a non-strong quasi-transitive digraph, such that Q = T [Q1, Q2, . . . , Qt].

If Q is non-strong, then there exists an integer t, an acyclic graph T
on t vertices2, and strong quasi-transitive digraphs Q1, Q2, . . . , Qt, such that
Q = T [Q1, Q2, . . . , Qt].

Furthermore one can find the above decompositions in O(n2) time.

The next theorem shows that (P1) is polynomially solvable for quasi-
transitive digraphs.

Theorem 4.2 Let D = (V,A) be a quasi-transitive digraph, with real-valued
costs on its vertices. Then the following holds:

(a): In total time O(n2m + n3) we can find for every i = 1, 2, . . . , n, the
value of mpi(D) and an i-path subdigraph Fi of cost mpi(D).

(b) For all i = 1, 2, . . . , n− 1 we have

mpi+1(D)−mpi(D) ≥ mpi(D)−mpi−1(D) (4)

Proof: We prove (b) by induction on n. The statement vacuously
holds for n = 1 and is easy to verify for n = 2 (recall that, by definition,
mp0(D) = 0). This proves the basis of induction and we now assume that
n ≥ 3.

By Theorem 4.1, D has a decomposition D = T [Q1, . . . , Qt], t = |T | ≥ 2,
where T is an acyclic digraph or a semicomplete digraph. Assume that (b)

2In fact, T is transitive, but for our purposes in this paper it suffices to say that T is
acyclic.

11

holds for each Qk, k = 1, 2, . . . , t. Let D′ = T [En1 , . . . , Ent] be obtained
from D by deleting all arcs inside each Qi, i = 1, 2, . . . , t. Assign costs to
the vertices vk

1 , . . . , vk
nk

of Enk
, as follows:

c′(vk
j) = mpj(Qk)−mpj−1(Qk) (5)

By the induction hypothesis (b) holds for Qk implying that we have

c′(vk
j) ≤ c′(vk

j+1) for every j ≥ 1 (6)

Let F ′
i be an i-path-cycle subdigraph of D′. If T is acyclic then D′ is

acyclic and, thus, F ′
i is an i-path subdigraph of D′. If T is semicomplete,

then D′ is extended semicomplete and, thus, by Theorem 1.1 and Corollary
1.2, we may assume that F ′

i is an i-path subdigraph of D′. Hence, mpi(D′) =
mpci(D′) and it follows from Lemma 2.4(b) that (4) holds for D′. Thus it
suffices to prove that mpi(D) = mpi(D′).

Let F ′
i by an i-path subdigraph of D′ and let pk denote the number of

vertices from Enk
which are covered by F ′

i . Since all vertices of Enk
are

similar it follows from (6) that we may assume (by making the proper re-
placements if necessary) that F ′

i includes vk
1 , . . . , vk

pk
. For each k, replace

the vertices vk
1 , . . . , vk

pk
in F ′

i by a pk-path subdigraph of Qk with cost
mppk

(Qk) =
∑pk

i=1 c(vk
i). As a result, we obtain, from F ′

i , an i-path subdi-
graph Fi of D for which we have c′(F ′

i) =
∑t

k=1 mppk
(Qk) = c(Fi) and, thus,

c(Fi) = c′(F ′
i). Reversing the process above it is easy to get, from an i-path

subdigraph of D, an i-path subdigraph F ′
i of D′ such that c(Fi) = c′(F ′

i).
This shows that mpi(D) = mpi(D′) and hence (4) holds for D by the remark
above.

We prove the complexity by induction on n. Let m′ be the number of arcs
in D′ and recall that all these arcs are also in D. Clearly, when |V (H)| ≤ 2
we can chose a constant c1 so that we can determine the numbers mpi(H),
i = 1, 2, . . . , |V (H)| in time at most c1|V (H)|2(|A(H)| + |V (H)|). Now
assume by induction that for each Qi we can determine the desired numbers
inside Qi in time at most c1n

2
i (mi + ni). This means that we can find all

the numbers mpi(Qj), j = 1, 2, . . . , t, i = 1, 2, . . . , nj in total time

t∑

j=1

c1n
2
j (mj + nj) ≤ c1n

2
t∑

j=1

(mj + nj) = c1n
2(m−m′ + n).

By Lemma 2.4 (a), Theorem 1.1 and Corollary 1.2, there is a constant c2 such
that in total time at most c2n

2(m′+n) we can find, for every j = 1, 2, . . . , n,
a j-path-cycle subdigraph of cost mpj(D′) in D′. It follows from the way

12

we construct Fi above from F ′
i that if we are given for each k = 1, . . . , t and

each 1 ≤ j ≤ nk a j-path subdigraph in Qk of cost mpj(Qk), then we can
construct all the path subdigraphs Fr, 1 ≤ r ≤ n in time at most c3n

3 for
some constant c3. Hence the total time needed by the algorithm is at most

c1n
2(m−m′+n)+c2n

2(m′+n)+c3n
3 = c1n

2(m+n)+(c2−c1)n2m′+(c2+c3)n3,

which is at most c1n
2(m + n) for c1 sufficiently large. 2

The next theorem which is an easy consequence of Theorem 4.2 (give all
vertices cost −1) improves the complexity O(n5) of the algorithm from [4].

Theorem 4.3 One can find a longest path in any quasi-transitive digraph
in time O(n2m + n3).

Sometimes, one is interested in finding path subdigraphs that include
maximum number of vertices from a given set X or avoid as many vertices
of X as possible. We consider a minimum cost extension of this problem in
the next result.

Theorem 4.4 Let D = (V, A) be a quasi-transitive digraph with real-valued
costs on the vertices and let X ⊆ V be non-empty. Let pj be the maximum
possible number of vertices from X in a j-path subdigraph and let qj be
maximum possible number of vertices from X not in a j-path subdigraph.
In total time O(n2m + n3) we can find, for all j = 1, 2, . . . , n, a cheapest
j-path-subdigraph which includes pj (avoids qj, respectively) vertices of X.

Proof: Let C =
∑

v∈V |c(v)| and subtract C + 1 from the cost of every
vertex in X. Now, for each j = 1, 2, . . . , n, every cheapest j-path subdigraph
Fj must cover as many vertices from X as possible, i.e., pj vertices. Further-
more, since the new cost of Fj is exactly the original one minus pj(C + 1),
cheapest j-path subdigraphs covering pj vertices from X are preserved un-
der this transformation. Now the ’including’ part of the claim follows from
Theorem 4.2(a). The ’avoiding’ part can be proved similarly, by adding
C + 1 to every vertex of X. 2

5 Finding a cheapest cycle in a quasi-transitive
digraph

Using the solution of (P2) for extended semicomplete digraphs we can now
give a short proof that (P2) is polynomial for quasi-transitive digraphs.

13

Theorem 5.1 For quasi-transitive digraphs with real-valued costs on the
vertices the minimum cost cycle problem can be solved in time O(n5 log n).

Proof: Let D be a quasi-transitive digraph. If D is not strong then we
simply look at the strong components, so assume that D is strong. By
Theorem 4.1, D = T [Q1, . . . , Qt], where T is a strong semicomplete digraph,
and each Qi is either a single vertex or a non-strong quasi-transitive digraph.

Suppose we have found a minimum cost cycle Ci in each Qi which con-
tains a cycle. Then clearly the minimum cost of a cycle in D is the minimum
cost cycle among those cycles Ci that exist and the minimum cost of a cycle
C which intersects at least two Qi’s. Hence it follows that applying this
approach recursively we can find the minimum cost cycle in D. Now we
show how to compute a minimum cost cycle C as above.

Let D′ be defined as in the proof of Theorem 4.2 including the vertex-
costs. It is easy to show using the same approach as when we converted
between i-path subdigraphs of D′ and D in the proof of Theorem 4.2, that
the cost of C is precisely mc(D′). Now it follows from Theorem 3.3 that we
can find the cycle C in time O(n3m + n4 log n).

Since we can construct D′ including finding the costs for all the vertices
in time O(n2m + n3) by Theorem 4.2 and there are at most O(n) recursive
calls the approach above will lead to a minimum cost cycle of D in time
O(n4m + n5 log n). In fact, we can bound the first term as we did in the
proof of Theorem 4.2 and obtain O(n3m + n5 log n) = O(n5 log n) rather
than O(n4m + n5 log n). This completes the proof. 2

It is not difficult to formulate and prove a ’cycle’ analog of Theorem 4.4;
we leave it to the reader.

Acknowledgement Part of the work was carried out while the first and
the third author were visiting Department of Mathematics and Statistics,
University of Victoria, B.C, Canada. They thank the department for its hos-
pitality and NSERC for financial support. Part of the work was carried out
while the second author was visiting University of Haifa, Israel. He thanks
the HIACS Research Center, the Caesarea Edmond Benjamin de Rothschild
Foundation Institute for Interdisciplinary Applications of Computer Science
(Israel) and EPSRC (UK) for financial support. All three authors thank the
Danish Natural Science Research Council for financial support.

14

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice
Hall, Upper Saddle River, 1993.

[2] E. Balas, The price collecting traveling salesman problem and its ap-
plications. In The Traveling Salesman Problem and its Variations (G.
Gutin and A.P. Punnen, eds.), Kluwer, 2002.

[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Ap-
plications, Springer-Verlag, London, 2000.

[4] J. Bang-Jensen and G. Gutin, Vertex heaviest paths and cycles in quasi-
transitive digraphs. Discrete Math. 163 (1997) 217-223.

[5] J. Bang-Jensen, G. Gutin and A. Yeo, Steiner type problems for di-
graphs that are locally semicomplete or extended semicomplete. To ap-
pear in Discrete Appl. Math.

[6] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs. J. Graph The-
ory 20 (1995) 141-161.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction
to Algorithms. (2nd Ed.), MIT Press, Cambridge MA, 2001.

[8] G. Gutin, A characterization of complete n-partite digraphs that have
a Hamiltonian path. Kibernetika no. 1 (1988) 107-108. [In Russian]

[9] G. Gutin, Polynomial algorithms for finding hamiltonian paths and
cycles in quasi-transitive digraphs, Australasian J. Combinatorics 10
(1994) 231-236.

[10] G. Gutin and A. Yeo, Orientations of digraphs almost preserving diam-
eter. Discrete Appl. Math. 121 (2002) 129–138.

[11] A. Yeo, A polynomial algorithm for finding a cycle covering a given set
of vertices in a semicomplete multipartite digraph, J. Algorithms 33
(1999) 124-139.

15

