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Abstract. For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to
H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with
costs ci(u), i ∈ V (H), then the cost of the homomorphism f is

∑
u∈V (D)

cf(u)(u). For each fixed

digraph H, we have the minimum cost homomorphism problem for H. The problem is to decide,
for an input graph D with costs ci(u), u ∈ V (D), i ∈ V (H), whether there exists a homomorphism
of D to H and, if one exists, to find one of minimum cost. Minimum cost homomorphism problems
encompass (or are related to) many well studied optimization problems. We describe a dichotomy
of the minimum cost homomorphism problem for semicomplete bipartite digraphs H. This solves an
open problem from an earlier paper. To obtain the dichotomy of this paper, we introduce and study
a new notion, a k-Min-Max ordering of digraphs.

Key words. homomorphisms, minimum cost homomorphisms, semicomplete bipartite digraphs

1. Introduction. Motivation. We consider only directed (undirected) graphs
that have neither loops nor multiple arcs (edges). In this paper we solve a problem
raised in [6] to find a dichotomy for the computational complexity of minimum cost
homomorphism problem (MCH) for semicomplete bipartite digraphs (we define this
problem below). In fact, our result leads to a complete dichotomy for the computa-
tional complexity of MCH for semicomplete k-partite digraphs (k ≥ 2) as a (much
simpler) dichotomy for the case k ≥ 3 was obtained in [6] (see also Section 5). Our
result uses and significantly extends a dichotomy for the computational complexity of
MCH for bipartite undirected graphs obtained in [4].

In our previous papers we used properties of an important notion of Min-Max
ordering of digraphs. To obtain the dichotomy of this paper, we introduce and study
a new notion, a k-Min-Max ordering of digraphs. We believe that properties of this
notion and, in particular, Theorem 2.2 can be used to obtain further results on MCH
and its special cases. Recent results obtained in [3, 7] and other papers led us to
conjecture in [7] that, unless P=NP, MCH is polynomial time solvable only when H
admits either a Min-Max ordering or a k-Min-Max ordering for some k ≥ 2.

The minimum cost homomorphism problem was introduced in [8], where it was
motivated by a real-world problem in defence logistics. We believe it offers a practical
and natural model for optimization of weighted homomorphisms. MCH’s special cases
include the well-known list homomorphism problem [10, 12] and the general optimum
cost chromatic partition problem, which has been intensively studied [9, 13, 14], and
has a number of applications, [16, 17]. A problem more general than MCH was
considered in [2].
Minimum cost homomorphisms. For directed or undirected graphs G and H,
a mapping f : V (G)→V (H) is a homomorphism of G to H if uv ∈ E(G) implies
f(u)f(v) ∈ E(H). Recent treatments of homomorphisms in directed and undirected
graphs can be found in [10, 12]. Let H be a fixed directed or undirected graph. The
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Fig. 1.1. A bipartite claw (a), a bipartite net (b) and a bipartite tent (c).

homomorphism problem for H asks whether a directed or undirected input graph G
admits a homomorphism to H. The list homomorphism problem for H asks whether
a directed or undirected input graph G with lists (sets) Lu ⊆ V (H), u ∈ V (G) admits
a homomorphism f to H in which f(u) ∈ Lu for each u ∈ V (G).

Suppose G and H are directed (or undirected) graphs, and ci(u), u ∈ V (G),
i ∈ V (H) are nonnegative costs. The cost of a homomorphism f of G to H is∑

u∈V (G) cf(u)(u). If H is fixed, the minimum cost homomorphism problem for H,
MinHOM(H), is the following optimization problem. Given an input graph G, to-
gether with costs ci(u), u ∈ V (G), i ∈ V (H), we wish to find a minimum cost
homomorphism of G to H, or state that none exists.

A bipartite digraph is semicomplete if there is at least one arc between every two
vertices belonging to different partite sets. In this paper, we study the minimum
cost homomorphism problem for semicomplete bipartite digraphs, i.e., MinHOM(H)
when H is a semicomplete bipartite digraph. Observe that MCH for semicomplete
bipartite digraphs extends MCH for bipartite undirected graphs. Indeed, let B be a
semicomplete bipartite digraph with partite sets U, V and arc set A(B) = A1 ∪ A2,
where A1 = {uv : u ∈ U, v ∈ V } and A2 ⊆ {vu : v ∈ V, u ∈ U}. Let B′ be a
bipartite graph with partite sets U, V and edge set E(B′) = {uv : vu ∈ A2}. Notice
that MinHOMP(B) is equivalent to MinHOMP(B′).
Min-Max ordering. Let H be a digraph. We say that an ordering v1, v2, . . . , vp of
V (H) is a Min-Max ordering of H if vivr, vjvs ∈ A(H) implies vmin{i,j}vmin{s,r} ∈
A(H) and vmax{i,j}vmax{s,r} ∈ A(H). One can easily see that v1, v2, . . . , vp of V (H)
is a Min-Max ordering of H if i < j, s < r and vivr, vjvs ∈ A(H), then vivs ∈ A(H)
and vjvr ∈ A(H). We can define a Min-Max ordering for a bipartite undirected graph
G with partite sets V and U as follows: We orient all edges from V to U and apply
the above definition for digraphs. Importance of Min-Max ordering for MinHOM(H)
is indicated in the following two theorems.

Theorem 1.1. [5] Let a digraph H have a Min-Max ordering. Then MinHOM(H)
is polynomial-time solvable.

A bipartite graph H with vertices x1, x2, x3, x4, y1, y2, y3 is called
a bipartite claw if its edge set E(H) = {x4y1, y1x1, x4y2, y2x2, x4y3, y3x3};
a bipartite net if its edge set E(H) = {x1y1, y1x3, y1x4, x3y2, x4y2, y2x2, y3x4};
a bipartite tent if its edge set E(H) = {x1y1, x1y2, x1y3, x2y1, x2y3, x3y1, x4y1, x4y2}.

See Figure 1.
Theorem 1.2. [4] Let H be an undirected bipartite graph. If H contains a cycle

C2k, k ≥ 3 or a bipartite claw or a bipartite net or a bipartite tent as an induced
subgraph, then MinHOM(H) is NP-hard.
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Fig. 1.2. The digraphs C′4, C′′4 and H∗

Assume that P 6=NP. Then the following three assertions are equivalent:
(i) H has a Min-Max ordering;
(ii) MinHOM(H) is polynomial time solvable;
(iii) H does not contain a cycle C2k, k ≥ 3, a bipartite claw, a bipartite net, or a

bipartite tent as an induced subgraph.
Additional terminology and notation. For a graph H, V (H) and E(H) denote
its vertex and edge sets, respectively. For a digraph H, V (H) and A(H) denote its
vertex and arc sets, respectively. For a pair X, Y of vertex sets of a digraph H,
(X,Y )H denotes the set of all arcs of the form xy, where x ∈ X, y ∈ Y. We omit the
subscript when it is clear from the context. Also, X × Y = {xy : x ∈ X, y ∈ Y }. For
a set X ⊆ V (H), let N+(X) = {y : ∃x ∈ X with xy ∈ A(H)} and N−(X) = {y :
∃x ∈ X with yx ∈ A(H)}.

If xy is an arc of a digraph H, we will say that y is an out-neighbor of x, and x is
an in-neighbor of y. We also denote it by x→y. For disjoint sets X, Y ⊆ V (H), X→Y
means that x→y for each x ∈ X and y ∈ Y .

An extension of a digraph G is a digraph D obtained from G by replacing each
vertex u of G by a set of independent vertices u1, u2, . . . , un(u) such that for a pair
u, v of vertices in G, ui→vj in D if and only if u→v in G.

For a bipartite digraph H = (V,U ; A), where V and U are its partite sets, H→
is the subdigraph induced by all arcs directed from V to U , H← is the subdigraph
induced by all arcs directed from U to V , and H↔ is the subdigraph induced by all
2-cycles of H, i.e., by the set {xy : xy ∈ A, yx ∈ A}. A digraph H is an oriented
graph if it does not contain a 2-cycle, i.e., if H↔ is empty. The converse of H is the
digraph obtained from H by replacing every arc xy with the arc yx.

We denote a directed cycle with p vertices by ~Cp. For a set X of vertices of a
digraph H, D[X] denotes the subdigraph of H induced by X. For a digraph H,
UN(H) denotes the underlying graph of H, i.e., an undirected graph obtained from
H by disregarding all orientations and deleting multiple edges.

A digraph D is strong (or, strongly connected) if there is a directed path from x
to y and a directed path from y to x for every pair x, y of vertices of D. A strong
component of a digraph D is a strong maximal induced subdigraph of D.
Forbidden family. Let us introduced five special digraphs for which, as we will see
later, the minimum homomorphism problem is NP-hard. The digraphs are depicted
in Figures 1.2 and 1.3.

The digraph C ′4 has vertices {x1, x2, y1, y2} and arcs {x1y1, y1x2, x2y2, y2x1, y1x1}.
The digraph C ′′4 has the same vertex set, but its arc set is A(C ′4)∪{x2y1}. The digraph
H∗ has vertex set {x1, x2, y1, y2, y3} and arc set {x1y1, y1x2, x2y2, y2x1, x1y3, x2y3}.
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Fig. 1.3. The digraphs N1 and N2

Let N1 be a digraph with V (N1) = {x1, x2, x3, y1, y2, y3} and

A(N1) = {x1y1, y1x1, x2y2, y2x2, x3y3, y3x3, y1x2, y1x3, x1y2, x1y3, x3y2, x2y3}.
Let N2 be a digraph with V (N2) = {x1, x2, x3, y1, y2, y3} and

A(N2) = {x1y1, x2y2, y2x2, x3y3, y3x3, y1x2, y1x3, x1y2, x1y3, x3y2, x2y3}.
A digraph H belongs to the family HFORB if H or its converse is isomorphic to

one of the five digraphs above or UN(Hs) is isomorphic to bipartite claw, bipartite
net, bipartite tent or even cycle with at least 6 vertices, where s ∈ {→,←,↔}.
k-Min-Max ordering. A collection V1, V2, . . . , Vk of subsets of a set V is called a
k-partition of V if V = V1 ∪ V2 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅ provided i 6= j.

Definition 1.3. Let H = (V, A) be a digraph and let k ≥ 2 be an integer.
We say that H has a k-Min-Max ordering if there is a k-partition of V into subsets
V1, V2, . . . , Vk and there is an ordering vi

1, v
i
2, . . . , v

i
`(i) of Vi for each i such that

(i) Every arc of H is an (Vi, Vi+1)-arc for some i ∈ {1, 2, . . . , k},
(ii) vi

1, v
i
2, . . . , v

i
`(i), v

i+1
1 , vi+1

2 , . . . , vi+1
`(i+1) is a Min-Max ordering of the subdigraph

H[Vi ∪ Vi+1] for all i ∈ {1, 2, . . . , k},
where all indices i + 1 are taken modulo k. We call the ordering

v1
1 , v1

2 , . . . , v1
`(1), v

2
1 , v2

2 , . . . , v2
`(2), . . . , v

k
1 , vk

2 , . . . , vk
`(k)

a k-Min-Max ordering of H.
Note that if H is a strong digraph in which the greatest common divisor of all

cycle lengths is k, then V (H) has a k-partition, k ≥ 2, satisfying (i) (see Theorem
10.5.1 in [1]). A simple example of a digraph having a k-Min-Max ordering is an
extension of ~Ck.
Dichotomy and paper organization. The main result of this paper is the follow-
ing:

Theorem 1.4. Let H be an semicomplete bipartite digraph. If H contains a
digraph from HFORB as an induced subdigraph, then MinHOM(H) is NP-hard.

Assume that P 6=NP. Then the following three assertions are equivalent:
(i) MinHOM(H) is polynomial time solvable;
(ii) H does not contain a digraph from HFORB as an induced subdigraph;
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(iii) Each component of H has a k-Min-Max ordering for k = 2 or 4.
Theorem 1.4 follows from Corollaries 3.5 and 4.6.
The rest of the paper is organized as follows. In Section 2, we study properties of

k-Min-Max orderings. In Section 3, we prove polynomial cases of MinHOM(H) when
H is a semicomplete bipartite digraph. In Section 4, we establish NP-hard cases of
the problem. In Section 5 we formulate a dichotomy for the computational complexity
of MinHOM(H) when H is a semicomplete multipartite digraph. Section 6 provides
a short discussion of further research.

2. Properties of k-Min-Max Orderings. Digraphs having k-Min-Max order-
ing have a very special structure as described in the following lemma.

Lemma 2.1. If a digraph H = (V,A) has a k-Min-Max ordering as described
in Definition 1.3 and I = {x ∈ V : d−(x) = 0}, then we can define 0 ≤ L(i, j) <
R(i, j) ≤ `(j) + 1 for all i and j such that the following holds.
(a): We have N+(vj

i ) = {vj+1
L(i,j)+1, v

j+1
L(i,j)+2, . . . , v

j+1
R(i,j)−1} \ I for each vj

i ∈ V with
positive out-degree, where all superscripts are taken modulo k;

(b): For all j and i < i′ we have R(i, j) ≤ R(i′, j) and L(i, j) ≤ L(i′, j).
Proof. If d+

H(vj
i ) > 0, then let L(i, j) be the maximum number such that

N+(vj
i ) ∩ {vj+1

1 , vj+1
2 , . . . , vj+1

L(i,j)} = ∅ and let R(i, j) be the minimum number such

that N+(vj
i ) ∩ {vj+1

R(i,j), v
j+1
R(i,j)+1, . . . , v

j+1
l(j) } = ∅. If d+

H(vj
i ) = 0, then if i = 1 we let

L(i, j) = 1 = R(i, j)−1 and if i > 1 we let L(i, j) = L(i−1, j) and R(i, j) = R(i−1, j).
Suppose that for some m and p ≥ 2 we have vj

i v
j+1
m , vj

i v
j+1
m+p ∈ A, but vj

i v
j+1
m+1, . . . ,

vj
i v

j+1
m+p−1 6∈ A and vj+1

m+s 6∈ I, where 1 ≤ s ≤ p − 1. Since vj+s
m 6∈ I, there is an arc

vj
t v

j+s
m in H. By the definition of a k-Min-Max ordering, vj

i v
j+1
m ∈ A, a contradiction

that proves (a).
We now prove (b). If d+(vj

i ) > 0 and d+(vj
i′) > 0 then this follows from the

k-Min-Max ordering using an analogous argument as above. If i = 1 and d+(vj
i ) = 0,

then we also see that (b) holds. We now prove the remaining cases by induction on
i + i′. If d+(vj

i ) = 0 consider i− 1 instead of i and if d+(vj
i′) = 0 then consider i′ − 1

instead of i′. If the new i and i′ are equal than (b) holds and otherwise we are done
by induction.

The construction used in the following theorem was inspired by somewhat similar
constructions in [15] and [2].

Theorem 2.2. If a digraph H has a k-Min-Max ordering, then MinHOM(H) is
polynomial-time solvable.

Proof. Let H have a k-Min-Max ordering. Let V1, V2, . . . , Vk be defined as in
Definition 1.3. If there is a homomorphism h of D to H, then each h−1(Vi), i =
1, 2, . . . , k is an independent set. Thus, we may say that the vertices of h−1(Vi)
are of color i. We may assume that UN(D) is connected as otherwise we consider a
minimum cost homomorphism of each component of D (corresponding to a component
of UN(D)) separately.

Let z ∈ V (D) be an arbitrary vertex. We will show how to decide whether there
is a homomorphism f of D to H, such that f(z) ∈ Vi, for each i ∈ {1, 2, 3, . . . , k}. If
such a homomorphism exists for a given i, then we will furthermore show how to find
a minimum cost homomorphism of D to H, such that f(z) ∈ Vi. We may assume
without loss of generality that i = 1.

Now assign color 1 to z. Assign every out-neighbor of z color 2 and each in-
neighbor of z color k. For every vertex z′ with color i, we assign every out-neighbor
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of z′ color i + 1 modulo k and every in-neighbor of z′ color i − 1 modulo k. If some
vertex of D is assigned different colors, then clearly there is no homomorphism of D
to H, so assume that this is not the case.

Consider the k-partition G1, G2, . . . , Gk of V (D) such that all vertices of Gj were
assigned color j for each j ∈ {1, 2, . . . , k}. Clearly, all arcs in D are (Gj , Gj+1)-arcs,
where all indices are taken modulo k and j ∈ {1, 2, 3, . . . , k}. Note that if f is a
homomorphism of D to H such that f(z) ∈ V1, then for all yj ∈ Gj we must have
f(yj) ∈ Vj .

We will build a weighted digraph (network) L with vertex set ∪k
j=1(Gj × Vj)

together with two other vertices, denoted by s and t. We will also denote t by
(x, vj

`(j)+1) for every j ∈ {1, 2, . . . , k}. The weighted arcs of L are as follows, where
M is any constant greater than the cost of a minimum cost homomorphism of D to
H.

• An arc from s to (x, vj
1), of weight ∞, for each x ∈ Gj .

• An arc, ex
i,j , from (x, vj

i ) to (x, vj
i+1), for each x ∈ Gj and i ∈ {1, 2, . . . , `(j)}.

Recall that when i = `(j) the arc enters t. We define the weight of ex
i,j as

follows. If d−D(x) > 0 and d−H(vj
i ) = 0 then the weight is ∞. If d+

D(x) > 0 and
d+

H(vj
i ) = 0 then the weight is ∞. Otherwise the weight is cvi

(x) + M .
• an arc from (x, vj

i ) to (y, vj+1
L(i,j)+1) and an arc from (y, vj+1

R(i,j)) to (x, vj
i+1) for

every xy ∈ A(D) with x ∈ Gj and every i = 1, 2, . . . , `(j). Furthermore the
weight of these arcs are ∞.

A cut in L is a partition of the vertices into two sets S and T such that s ∈ S and
t ∈ T and the weight of a cut is the sum of weights of all arcs going from a vertex of
S to a vertex of T . We will show that a minimum weight cut in L has weight equal
to the minimum cost homomorphism f of D to H such that f(z) ∈ V1 plus |V (D)|M ,
if such a homomorphism exists. Otherwise, a minimum weight cut in L is of weight
at least |V (D)|M + M .

Assume f is a minimum cost homomorphism of D to H such that f(z) ∈ V1, and
assume that f(x) = vj

a(x) for each x ∈ Gj and for all j = 1, 2, . . . , k. Define a cut in

L as follows: S = {(x, vj
i ) : i ≤ a(x), j = 1, 2, . . . , k} ∪ {s} and T = V (L)− S. Since

f is a homomorphism of D to H, we note that if d−D(x) > 0 then d−H(vj
a(x)) > 0 and

if d+
D(x) > 0 then d+

H(vj
a(x)) > 0. Therefore the arcs from (x, vj

a(x)) to (x, vj
a(x)+1)

belong to the cut and contribute cf(x)(x) + M to the weight of the cut (and not ∞).
We will now show that there are no arcs of infinite weight in the cut, which would
imply that the weight of S is exactly the cost of a minimum cost homomorphism from
D to H plus |V (D)|M .

Clearly no arc out of s belongs to the cut S. Assume for the sake of contradiction
that the arc (x, vj

i ) to (y, vj+1
L(i,j)+1) belongs to the cut S for some xy ∈ A(D) with

x ∈ Gj . This implies that a(x) ≥ i (as (x, vj
i ) ∈ S) and a(y) < L(i, j) + 1 (as

(y, vj+1
L(i,j)+1) 6∈ S). By Lemma 2.1 (b), this implies that a(y) ≤ L(i, j) ≤ L(a(x), j).

Thus, there is no arc from vj
a(x) to vj+1

a(y) in H, by the definition of L(i, j). This is a
contradiction to f being a homomorphism.

Now assume for the sake of contradiction that the arc (y, vj+1
R(i,j)) to (x, vj

i+1)
belongs to the cut S for some xy ∈ A(D) with x ∈ Gj . This implies that a(x) < i + 1
(as (x, vj

i+1) 6∈ S) and a(y) ≥ R(i, j) (as (y, vj+1
R(i,j)) ∈ S). By Lemma 2.1 (b), this

implies that a(y) ≥ R(i, j) ≥ R(a(x), j). Thus, there is no arc from vj
a(x) to vj+1

a(y) in H,
6



by the definition of R(i, j). This is a contradiction to f being a homomorphism. We
have now proved that the cut S has the stated weight when there is a homomorphism
of D to H with f(z) ∈ V1.

Assume that S′ is a cut of weight less than M + |V (D)|M and note that the cut
S′ contains exactly one arc of the form (x, vj

i )(x, vj
i+1) for each x ∈ V (D). Therefore

we may define a mapping, f ′, from V (D) to V (H) by letting f ′(x) = vj
i if and only

if (x, vj
i ) ∈ S′ and (x, vj

i+1) 6∈ S′. We will now show that f ′ is a homomorphism of D
to H of cost equal to the weight of the cut S′ minus |V (D)|M .

Let xy be any arc in D, and assume without loss of generality that x ∈ Gj . Let
ix and iy be defined such that (x, vj

ix
) ∈ S′ and (x, vj

ix+1) 6∈ S′ (i.e., f ′(x) = vj
ix

) and
(y, vj+1

iy
) ∈ S′ and (y, vj+1

iy+1) 6∈ S′ (i.e., f ′(y) = vj+1
iy

). As the arc (x, vj
ix

)(y, vj+1
L(ix,j)+1)

is not in the cut, we must have (y, vj+1
L(ix,j)+1) ∈ S, which implies that iy ≥ L(ix, j) +

1. Furthermore as the arc (y, vj+1
R(ix,j))(x, vj

ix+1) is not in the cut, we must have

(y, vj+1
R(ix,j)) 6∈ S, which implies that iy < R(ix, j). We have now shown that L(ix, j)+

1 ≤ iy < R(ix, j). Since xy ∈ A(D) and the arc (x, vj
ix

)(x, vj
ix+1) has finite weight we

observe that d+
H(vj

ix
) > 0 and vj+1

iy
6∈ I, where I is defined in Lemma 2.1. Lemma

2.1 now implies that vj
ix

vj+1
iy

is an arc in H. Therefore f ′ is a homomorphism. It is
not difficult to see that the cost of f ′ is indeed equal to weight of the cut S′ minus
|V (D)|M .

It remains to recall that a minimum weight cut in a network can be found in
polynomial time [1].

3. Polynomial Cases. We start from a special case which is of importance
when H contains no induced ~C4.

Lemma 3.1. Let H = (V, U ;A) be a semicomplete bipartite digraph, which does
not contain an induced subdigraph belonging to HFORB. Suppose for every v, v′ ∈ V
we have N+(v) ⊆ N+(v′) or N+(v′) ⊆ N+(v). Then H has a 2-Min-Max ordering.

Proof. We say that vertices vi, vj ∈ V are similar if N+(vi) = N+(vj). Consider
similarity classes V1, V2, . . . , Vs of V . Moreover assume that N+(Vi) ⊂ N+(Vj) for
i < j. Set U1 = N+(V1) and Ui = N+(Vi) − ∪i−1

j=1Uj for each i > 1. If s = 1
then UN(H→) is a complete bipartite graph. By Theorem 1.2, H← has a Min-Max
ordering π. Observe that the orderings of vertices in V and U given by the relative
order of vertices in π generate a 2-Min-Max ordering of H. Assume s > 1. We prove
the following two claims:
(1) Let ui ∈ Ui, vj ∈ Vj , j > i, and uivj ∈ A. Then Ur→vj for each r > i and

ui→Vt for each t < j.

Proof of (1): By the definition of Ui and Vi, if r > j then Ur→vj . Now suppose
that i < r ≤ j and urvj 6∈ A for some ur ∈ Ur. Let vi ∈ Vi be arbitrary, and
note that H[{ui, vi, ur, vj}] is isomorphic to C ′4 or C ′′4 , a contradiction. So
urvj ∈ A.
By the definition of Ui and Vi, if t < i then ui→Vt. Now suppose that
i ≤ t < j and that uivt 6∈ A, for some vt ∈ Vt. Let uj ∈ Uj be arbitrary, and
note that H[{ui, vt, uj , vj}] is isomorphic to C ′4 or C ′′4 , a contradiction.

(2) If u, u′ ∈ U then N+(u) ⊆ N+(u′) or N+(u′) ⊆ N+(u).

Proof of (2): Assume that this is not the case, and there exist v ∈ N+(u)−
N+(u′) and v′ ∈ N+(u′)−N+(u). This implies that u 6= u′, v 6= v′, uv, u′v′ ∈
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A and uv′, u′v 6∈ A. If u ∈ Ui and u′ ∈ Uj and i < j, then by (1) we note
that u′v ∈ A, a contradiction. So for some i we must have {u, u′} ⊆ Ui.
Analogously, if v ∈ Va and v′ ∈ Vb and a < b, then by (1) we note that
u′v ∈ A, a contradiction. So for some j we must have {v, v′} ⊆ Vj . If i > j
then Ui→Vj , which is a contradiction, so we must have i ≤ j.
If i < j then let u′′ ∈ Uj and v′′ ∈ Vi be arbitrary. Note that by (1) we
must have the arcs u′′v, u′′v′, uv′′, u′v′′ in H. By the construction of the sets
Ui, Uj , Vi, Vj we now note that the underlying graph of H[{u, u′, u′′, v, v′, v′′}]↔
is the 6-cycle v′′uvu′′v′u′v′′, a contradiction.
Therefore we must have i = j. First assume that i < s. Now consider
vs ∈ Vs and us ∈ Us. By (1) there is no arc from {u, u′} to vs. However
H[{u, u′, v, v′, vs, us}] is either N1 or N2, a contradiction.
Similarly for the case i = s we derive a contradiction.

Now consider an ordering u1, u2, . . . , ua of the vertices in U and an ordering
v1, v2, . . . , vb of the vertices in V , defined as follows. If i < j then d+(vi) ≤ d+(vj)
and if d+(vi) = d+(vj) then d−(vi) ≥ d−(vj). Furthermore when i < j then
d+(ui) ≤ d+(uj) and if d+(ui) = d+(uj) then d−(ui) ≥ d−(uj). Note that the
ordering v1, v2, . . . , vb first contains vertices from V1 then from V2, etc.

We will now show that for every i ∈ {1, 2, . . . , b} there exists an integer αi such
that N+(ui) = {v1, v2, . . . , vαi}. Suppose this is not the case. Then there exists an arc
uivj in H, such that uivj−1 is not an arc in H. Thus, both vj and vj−1 belong to some
Vk, as otherwise we have a contradiction to (1). This implies that d+(vj) = d+(vj−1)
and d−(vj−1) ≥ d−(vj). Note that every vertex u ∈ N−(vj−1) has N+(ui) ⊆ N+(u),
by (2). Therefore u→vj . However this implies that d−(vj−1) < d−(vj) (as ui→vj but
uivj−1 6∈ A(H)), a contradiction.

Using the fact that N+(ui) = {v1, v2, . . . , vαi} for each i ∈ {1, 2, . . . , b} and that
αi ≥ αi−1 for each i ∈ {2, 3, . . . , b} (as d+(ui) ≥ d+(ui−1)) and the similar relations
for the vertices of V , we can readily conclude that H has a 2-Min-Max ordering.

The distance dist(x, y) between a pair x, y of vertices in an undirected graph G is
the length of the shortest path between x and y. The diameter of G is the maximal
distance between a pair of vertices in G.

The following theorem shows when MinHOM(H) is polynomial time solvable if
H is strong and does not contain ~C4 as an induced subdigraph.

Theorem 3.2. Let H be a strongly connected semicomplete bipartite digraph.
Assume that H does not contain a digraph from HFORB or ~C4 as an induced sub-
digraph. Then H has a 2-Min-Max ordering and MinHOM(H) is polynomial time
solvable.

Furthermore, either UN(H→) or UN(H←) are complete bipartite graphs, or the
following holds. For every pair u, u′ of distinct vertices of U we have N+(u) ⊆ N+(u′)
or N+(u′) ⊆ N+(u) and for every pair v, v′ of distinct vertices of V we have N+(v) ⊆
N+(v′) or N+(v′) ⊆ N+(v).

Proof. By Theorem 2.2, to prove the first part part of this theorem (before
‘Furthermore’), it suffices to show that H has a 2-Min-Max ordering. Let V and U
be partite sets of H. Denote H1 = H→ and H2 = H←. It follows from Theorem 1.2
that UN(H1) and UN(H2) have Min-Max orderings and so do H1 and H2.

Let di be the diameter of UN(Hi), i = 1, 2. Observe that if UN(H1) (UN(H2)) is a
complete bipartite graph, then, as in the proof of Lemma 3.1, a Min-Max ordering of
H2 (H1) generates a 2-Min-Max ordering of H. Therefore, MinHOM(H) is polynomial
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time solvable by Theorem 2.2. Notice that UN(Hi) is complete bipartite if and only
if di = 2. Thus, we may assume that both d1 ≥ 3 and d2 ≥ 3.

We consider the following cases for the value of d1 ≥ 3.

Case 1: d1 > 4.
We will show that UN(H2) is a complete bipartite graph or, equivalently, d2 = 2.

Assume that d1 is odd, as the case of d1 even can be considered similarly. Let
P = v1u1v2u2 . . . vk−1uk−1vkuk be a shortest path of length d1 between v1 and uk

in UN(H1). Let Û = {u1, u2, . . . , uk} and V̂ = {v1, v2, . . . , vk}. We will first prove
that Û→V̂ . Since P is a shortest path, we have ui→vj for each ui ∈ Û and vj ∈ V̂
provided j 6∈ {i, i + 1}. Thus, it sufficient to prove

ui→vi (i = 1, 2, . . . , k) and ui→vi+1 (i = 1, 2, . . . , k − 1)(3.1)

Consider the subdigraph H ′ of H induced by four vertices vi, ui, vi+2, ui+1, where
i ∈ {1, 2, . . . , k − 2}. By the definition of P (including the fact that P is a shortest
path), we have viui, vi+2ui+1, ui+1vi, uivi+2 ∈ A(H), but viui+1, vi+2ui 6∈ A(H).
Since H ′ is not isomorphic to either ~C4 or C ′4, we have uivi, ui+1vi+2 ∈ A(H). This
proves that ui→vi provided i = 1, 2, . . . , k−2 and ui→vi+1 provided i = 2, 3, . . . , k−1.
Thus, to prove (3.1) it remains to show that

uk−1→vk−1, uk→vk, u1→v2(3.2)

Consider the subdigraph H ′′ of H induced by four vertices vk−1, uk−1, vk, uk. By
the definition of P , we have vk−1uk−1, vkuk, vkuk−1, ukvk−1 ∈ A(H), but vk−1uk 6∈
A(H). We have proved that uk−1→vk. Since H ′′ is not isomorphic to C ′4 or C ′′4 , we
have uk−1vk−1, ukvk ∈ A(H).

Consider H[{v2, v3, u1, u2}]. By the definition of P , we have v2u1, v2u2, v3u2, u1v3 ∈
A(H), but v3u1 6∈ A(H). We have proved that u2→v2. Since H[{v2, v3, u1, u2}] is
not isomorphic to C ′4 or C ′′4 , we have u1v2, u2v3 ∈ A(H). This implies that (3.2) and,
thus, (3.1) has been proved.

Consider vertex u ∈ U−Û ; we will show that u → V̂ . Suppose this is not true. Let
j be the smallest index such that uvj 6∈ A(H). We have vju ∈ A(H). Suppose j > 1.
Since H[{u, v1, u1, vj}] is not isomorphic to C ′4 or C ′′4 , we have vju1, v1u ∈ A(H). Since
P is a shortest path, we have j = 2 as otherwise v1uvjuj+1 . . . vjuk is shorter than P .
We have v3u 6∈ A(H) as otherwise v1uv3u3 . . . vkuk is shorter than P . However, C ′4 is
isomorphic to H[{v2, u, v3, u3}], a contradiction.

Now assume that j = 1. We have v3u 6∈ A(H) as otherwise we have a shorter path.
Since H is semicomplete bipartite, we have uv3 ∈ A(H). However H[{v1, u, v3, u2}] ∼=
C ′4, a contradiction.

Analogously we can prove that Û → v for every v ∈ V − V̂ . Consider u ∈
U − Û , v ∈ V − V̂ . We show that uv ∈ A(H). Suppose this is not true. We
have vu ∈ A(H). Since H[{v, u, v1, u1}] is not isomorphic to ~C4, C ′4 or C ′′4 we have
v1u, vu1 ∈ A(H). Since H[{v, u, vk, uk}] is not isomorphic to C ′4 or C ′′4 we have
vku, vuk ∈ A(H). But now dist(v1, uk) = 3 in UN(H1), a contradiction.

Case 2: d1 = 4.
We will show that again UN(H2) is a complete bipartite graph. Assume that

v1u
′
1v
′
2u
′
2v
′
3 is a shortest path between a pair v1 ∈ V and v′3 ∈ U in UN(H1). Let

U1 = N+(v1), V2 = N−(U1)−{v1}, U2 = N+(V2)−U1 and V3 = N−(U2)−V2. By the
definitions, V = {v1}∪V2∪V3 and U = U1∪U2. Observe also that (U1, V3) = U1×V3,
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(V3, U1) = ∅, (U2, {v1}) = U2 × {v1} and ({v1}, U2) = ∅. Let u1 ∈ U1, u2 ∈ U2,
v2 ∈ V2 and v3 ∈ V3 be arbitrary. If u2v3 6∈ A(H), then v3u2 ∈ A(H), and now
H[{u1, v3, u2, v1}] is either ~C4 or C ′4, a contradiction. Therefore, we have u2v3 ∈ A(H)
and consequently (U2, V3) = U2 × V3. Consider v3, u2 where v3u2 ∈ A(H). Since
H[{u1, v3, u2, v1}] is not C ′4 or ~C4, we conclude that u1v1 ∈ A(H) and consequently
(U1, {v1}) = U1 × {v1}.

Note that we have already proved that the underlying graph of H2[U1 ∪U2 ∪V3 ∪
{v1}] is a complete bipartite graph. Suppose u1v2 ∈ A(H). Then u2v2 ∈ A(H) as
otherwise H[{u1, v1, u2, v2}] is isomorphic to C ′4 or C ′′4 , a contradiction. Therefore, if
u1v2 ∈ A(H), then (U2, {v2}) = U2 × {v2}. Thus, to show that (U2, V2) = U2 × V2 it
suffices to prove that every vertex in V2 has an in-neighbor in U1. Suppose this is not
true, and let X2 be the set of all vertices in V2 that does not have an in-neighbor in
U1. Let Y2 be the set of all vertices in U2 that have an arc into X2. As H is strong
some vertex in H must have an arc into X2, which implies that Y2 6= ∅.

If there is an arc v3y2 from V3 to Y2, then let x2 be an out-neighbor of y2 in X2

and let u1 ∈ U1 be arbitrary. However this is a contradiction to H[{v3, y2, x2, u1}]
not being isomorphic to C ′4 and C ′′4 , which implies that there is no arc from V3 to Y2.

As H is strong and there is no arc from V3 into U1 or Y2, there must be an arc, say
v3u2, from V3 into U2−Y2. As H is strong there must also be an arc from V (H)−X2−
Y2 into X2 ∪ Y2. By the above this arc, say v2y2, must be from V2 −X2 to Y2. As y2

belongs to Y2 there must be a vertex, say x2 ∈ X2, such that y2x2 ∈ A(H). As v2 6∈ X2

we note that there is a vertex, say u1 ∈ U1, such that u1v2 ∈ A(H). As u1x2 6∈ A(H)
and H[{v2, x2, u1, y2}] is not isomorphic to C ′4 and C ′′4 , we note that x2y2, v2u1 ∈
A(H). If u2v2 6∈ A(H), then H[{v1, v2, u1, u2}] is isomorphic to C ′4 and C ′′4 (as v1u2 6∈
A(H)), a contradiction. As u2v2 ∈ A(H) and H[{v2, v3, u2, y2}] is not isomorphic to
C ′4 and C ′′4 we note that y2v2 ∈ A(H) (as v3y2 6∈ A(H)). As H[{v2, x2, u2, y2}] is not
isomorphic to C ′4 and C ′′4 we note that v2u2 ∈ A(H) (as u2x2 6∈ A(H)). However, the
underlying graph of H[v1, u1, v2, v3, x2, y2, u2]↔ is now a bipartite claw, with edges
{v2u1, v2y2, v2u2, u1v1, y2x2, u2v3}, a contradiction. Therefore U2→V2.

We show that u1v2 ∈ A(H) for every u1 ∈ U1 and v2 ∈ V2. Suppose this is not
true for some v2 ∈ V2 and u1 ∈ U1. Then we have v2u1 ∈ A(H). Let v3 ∈ V3 be
arbitrary and u2 ∈ U2 ∩N+(v3). Then H[{u1, v3, u2, v2}] is isomorphic to C ′4 or C ′′4 .
This completes our proof that UN(H2) is a complete bipartite graph.

Case 3: d1 = 3.
Consider a Min-Max ordering π for H1. Define vertices x, t, y and z as follows.

Let π(x) = min{π(x′) : x′ ∈ V }, π(t) = max{π(t′) : t′ ∈ U}, π(y) = max{π(y′) :
y′ ∈ U, x→y′}, and π(z) = min{π(z′) : z′ ∈ V, z′→t}.

Let T = N−(t). Since H is strong, every vertex of V has an out-neighbor. Since
π is a Min-Max ordering, z′→t for each z′ ∈ V with π(z′) ≥ π(z). Thus, T = {z′ ∈
V : π(z′) ≥ π(z)}. Let X = N+(x). Since H is strong, every vertex of U has an
in-neighbor. Since π is a Min-Max ordering, x→y′ for each y′ ∈ U with π(y′) ≤ π(y).
Thus, X = {y′ ∈ U : π(y′) ≤ π(y)}.

Since dist(x, z) = 2 in UN(H1), we have z→y′ for some y′ ∈ N+(x). Since π
is a Min-Max ordering, z→y (consider the arcs zy′ and xy). Now for every z′′ ∈ V
with π(z′′) ≤ π(z), we have z′′→y (as π is a Min-Max ordering). Similarly, for every
y′′ ∈ U with π(y′′) ≥ π(y), we have z→y′′.

Let π(w) = min{π(w′) : w′ ∈ U}. Notice that dist(w, t) = 2 in UN(H1). Thus,
for some z′ ∈ T , we have z′→w. Hence, z→w and z→X (as π is a Min-Max ordering).
We conclude that z→U. Similarly, we can obtain that V→y.
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Let Y = V − T and Z = U −X. Let x′ ∈ X, y′ ∈ Y. We have z→x′ and y′→y.
Hence (as π is a Min-Max ordering), y′→x′. Thus, Y→X. Analogously, we can prove
that T→Z.

Let x′ ∈ X, t′ ∈ T , y′ ∈ Y and x′→t′. Then t′t, ty′, y′x′ ∈ A(H). Since
H[{x′, t, t′, y′}] is not isomorphic to ~C4, C ′4 or C ′′4 , we have x′→y′ and t→t′. Thus, if
x′→t′, we have x′→Y . Analogously, if x′→t′, we have Z→t′. Hence,

x′→t′ implies x′→Y and Z→t′(3.3)

We will now prove the following: for a pair u, u′ of distinct vertices of U we have
N+(u) ⊆ N+(u′) or N+(u′) ⊆ N+(u). By Lemma 3.1, this implies that H has a 2-
Min-Max ordering and we are done. Suppose that we have neither N+(u) ⊆ N+(u′)
nor N+(u′) ⊆ N+(u). Thus, there is a pair v, v′ of vertices in V such that u→v,
u′→v′, but uv′ and u′v are not arcs in H. Since H[{u, u′, v, v′}] is not isomorphic to
~C4, C ′4 and C ′′4 , we have v→u and v′→u′. Now consider four cases.

Case 3.1: v, v′ ∈ Y. Let t′ ∈ T . By the definition of t, t 6∈ {u, u′}. If u′→t′, then
H[{t, t′, v, u′}] is isomorphic to ~C4, C ′4 or C ′′4 , which is impossible. Thus, u′t′ 6∈ A(H)
and t′→u′. Analogously, ut′ 6∈ A(H) and t′→u. By the fact that t′→t and the existence
and nonexistence of previously considered arcs, we conclude that H[{v, v′, u, u′, t, t′}]
is isomorphic to N1 or N2, which is impossible.

Case 3.2: u, u′ ∈ Z. We can show that this case is impossible similarly to Case 3.1
but considering x,w instead of t, t′.

Case 3.3: v ∈ Y , v′ ∈ T . By (3.3), u′ ∈ Z. By Case 3.2, we may assume that u ∈ X.

Then H[{v, v′, u′, t}] is isomorphic to ~C4, C ′4 or C ′′4 , which is impossible.

Case 3.4: v, v′ ∈ T . By Case 3.2, we may assume that u ∈ X. By (3.3), Z→v and,
thus, u′ ∈ X. By (3.3), we conclude that uxu, u′xu′, vtv and v′tv′ are 2-cycles. Notice
that t→x, but xt 6∈ A(H). Now it follows that H[{x, v, v′, u, u′, t}]↔ is isomorphic to
C6, a contradiction.

It follows from Cases 1,2 and 3 that if neither UN(H1) nor UN(H2) are complete
bipartite graphs, then we must have d1 = d2 = 3. In this case we have shown that for
every pair u, u′ of distinct vertices of U we have N+(u) ⊆ N+(u′) or N+(u′) ⊆ N+(u).
However, by swapping the roles of U and V we also get that for every pair v, v′ of
distinct vertices of V we have N+(v) ⊆ N+(v′) or N+(v′) ⊆ N+(v).

The following theorem shows when MinHOM(H) is polynomial time solvable for
the case when H is not strong, and does not contain ~C4 as an induced subdigraph.

Theorem 3.3. Let H = (V, U ;A) be a semicomplete bipartite digraph with strong
components C1, C2, . . . , Cp (p ≥ 2) satisfying the following:

• There is no arc from Ci to Cj for i > j,
• H does not contain an induced subdigraph belonging to HFORB or an induced

directed 4-cycle.
Then H has a 2-Min-Max ordering and MinHOM(H) is polynomial time solvable.

Proof. If there are no v, v′ ∈ V and u, u′ ∈ U such that A(H→[{v, v′, u, u′}]) =
{vu, v′u′}, then H→ satisfies the condition of Lemma 3.1. Therefore H has a 2-Min-
Max ordering.

Thus, we may assume that there exist v, v′ ∈ V and u, u′ ∈ U such that
A(H→[{v, v′, u, u′}]) = {vu, v′u′}. Note that {v, v′, u, u′} belong to a strong compo-
nent of H as they are contained in a 4-cycle. Let {v, v′, u, u′} ⊆ V (Ct) for some t and
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let V1 = {x ∈ V | x ∈ Ci , i < t}, U1 = {y ∈ U | y ∈ Ci , i < t}, V2 = V ∩ Ct,
U2 = U ∩ Ct , V3 = V − V1 − V2 and U3 = U − U1 − U2.

If there is a w′ ∈ U3 and w ∈ V3, such that w′→w, then H[{u, v, u′, v′, w, w′}] is
the converse of either N1 or N2. Therefore we must have A(H[U3 ∪ V3]) = V3 × U3.
Analogously we must have A(H[U1 ∪ V1]) = V1 × U1. Consider H ′ = H[U2 ∪ V2] and
note that H ′ is strong and does not contain a digraph from HFORB or ~C4 as an
induced subdigraph. Therefore Theorem 3.2 implies that U2→V2 (as V2→U2 is not
true), which furthermore implies that (U1 ∪ U2)→(V2 ∪ V3).

Let π be a Min-Max ordering of H→. Let uv ∈ A(H) and u′v′ ∈ A(H) be two
distinct arcs from U to V . As d+(u) > 0 we note that u ∈ U1 ∪ U2, by the above.
Analogously we note that u′ ∈ U1 ∪ U2, v ∈ V2 ∪ V3 (as d−(v) > 0) and v′ ∈ V2 ∪ V3.
By the above we therefore have uv′, u′v ∈ A(H). As u, u′, v, v′ were chosen arbitrarily,
this implies that π is a 2-Min-Max ordering.

The following theorem shows when MinHOM(H) is polynomial time solvable for
the case when H does contain ~C4 as an induced subdigraph.

Theorem 3.4. Let H be a semicomplete bipartite digraph. Assume that H does
not contain a digraph from HFORB as an induced subdigraph, but contains ~C4 as an
induced subdigraph. Then H is an extension of a ~C4 and MinHOM(H) is polynomial
time solvable.

Proof. Observe that an extension L of any cycle ~Cp, p ≥ 2, has a p-Min-Max
ordering. Thus, MinHOM(L) is polynomial time solvable by Theorem 2.2. Let C =
v1u1v2u2v1 be an induced 4-cycle of H. It suffices to prove that H is an extension of
C.

For i = 1, 2, let M+(vi) = {u ∈ U : viu ∈ A(H), uvi 6∈ A(H)}, M−(vi) = {u ∈
U : uvi ∈ A(H), viu 6∈ A(H)}, and M(vi) = {u ∈ U : uvi, viu ∈ A(H)}. We have
M+(v1)∩M+(v2) = ∅ as otherwise H[{v1, v2, u1, u2, u3}] ∼= H∗, where u3 ∈ M+(v1)∩
M+(v2). We have M−(v1) ∩M−(v2) = ∅ as otherwise H[{v1, v2, u1, u2, u3}] ∼= H∗∗,
where u3 ∈ M−(v1) ∩M−(v2) and H∗∗ is the converse of H∗.

We have M(v1) ∩ (M+(v2) ∪M−(v2)) = ∅ as otherwise H[{v1, u1, v2, u}] ∼= C ′4,
where u ∈ M(v1) ∩M+(v2) or H[{v1, u2, v2, u}] ∼= C ′4, where u ∈ M(v1) ∩M−(v2).
Moreover, M(v1)∩M(v2) = ∅ as otherwise H[{v1, u1, v2, u}] ∼= C ′′4 , where u ∈ M(v1)∩
M(v2). The arguments above imply that M(v1) = M(v2) = ∅, and M+(v1) = M−(v2)
and M−(v1) = M+(v2).

Similarly, we can define M + (ui), M−(ui) and M(ui), i = 1, 2, and prove the
relations analogous to those for M+(vi), M−(vi) and M(vi), i = 1, 2.

Let v ∈ V −{v1, v2} and u ∈ U−{u1, u2} be arbitrary. Without loss of generality,
assume that u ∈ M+(v1) = M−(v2) and v ∈ M+(u2) = M−(u1) (all other cases can
be treated similarly). To show that H is an extension of C, it suffices to prove that
v→u, but uv 6∈ A(H). Suppose first that u→v and v→u. Then H[{v, u, v2, u2}] ∼= C ′4,
a contradiction. Now suppose that u→v, but vu 6∈ A(H). Then H[{v, v1, v2, u, u2}] ∼=
H∗, a contradiction. Thus, v→u, but uv 6∈ A(H) and we are done.

The three theorems of this section and the fact that ~C4 has a 4-Min-Max ordering
imply the following:

Corollary 3.5. Let H be a semicomplete bipartite digraph not containing a
digraph from HFORB as an induced subdigraph. Then MinHOM(H) is polynomial
time solvable and H has a k-Min-Max ordering for k = 2 or 4.

4. NP-hardness Cases. It is well known that the problem of finding a maxi-
mum size independent set in an undirected graph G is NP-hard. We say that a set I
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in a digraph D is independent if no vertices in I are adjacent. Clearly, the problem of
finding a maximum size independent set in an oriented graph D (MISO) is NP-hard.

Lemma 4.1. MinHOM(C ′4) is NP-hard.
Proof. Let H be isomorphic to C ′4 as follows:

V (H) = {1, 2, 3, 4}, A(H) = {12, 21, 23, 34, 41}.
Let D be an arbitrary oriented graph. We replace every arc uv of D by the digraph
Guv with V (Guv) = {u, v, xuv, yuv, zuv} and A(Guv) = {uxuv, xuvyuv, yuvzuv, vzuv}.
Here xuv 6= xu′v′ , yuv 6= yu′v′ and zuv 6= zu′v′ for each uv 6= u′v′. Let D′ be the
obtained oriented graph. Define the cost function as follows: c1(w) = 1, c2(w) = 1,
c3(w) = 0, and c4(w) = 1 for each w ∈ V (D) and ci(t) = 0 for each t ∈ V (D′) \ V (D)
and i ∈ {1, 2, 3, 4}.

Let g be a homomorphism of D′ to H and let S = {s ∈ V (D) : g(s) = 3}. Observe
that the cost of g is |V (D)| − |S| and S is an independent set in D Indeed, suppose
that uv ∈ A(D) and {u, v} ⊆ S. Then g(yuv) = 1 and g(zuv) = 4, a contradiction to
the fact that g is a homomorphism of D′ to H.

Let I be an independent set in D of maximum size. Set f(w) = 3 for each w ∈ I
and f(w) = 1 for each w ∈ V (D) \ I. For each uv ∈ A(D), set

(a) f(xuv) = 2, f(yuv) = 1 and f(zuv) = 2 if {u, v} ∩ I = ∅,
(b) f(xuv) = 4, f(yuv) = 1 and f(zuv) = 2 if u ∈ I and v 6∈ I,
(c) f(xuv) = 2, f(yuv) = 3 and f(zuv) = 4 if u 6∈ I and v ∈ I.
Observe that f is a homomorphism of D′ to H and the cost of f is |V (D)| − |I|.

By the arguments above, f is a homomorphism of D′ to H of minimum cost. Thus,
we have reduced MISO to MinHOM(H).

Lemma 4.2. MinHOM(C ′′4 ) is NP-hard.
Proof. Let H be isomorphic to C ′′4 as follows:

V (H) = {1, 2, 3, 4}, A(H) = {12, 21, 23, 32, 34, 41}.
Let D be an arbitrary oriented graph. We replace every arc uv of D by the digraph
Guv with V (Guv) = {u, v, xuv} and A(Guv) = {uxuv, xuvv}. Here xuv 6= xu′v′ for
each uv 6= u′v′. Let D′ be the obtained oriented graph. Define the cost function as
follows: c1(w) = 1, c2(w) = 1, c3(w) = 1, and c4(w) = 0 for each w ∈ V (D) and
ci(x) = 0 for each x ∈ V (D′) \ V (D) and i = 1, 2, 3, 4.

Let g be a homomorphism of D′ to H and let S = {s ∈ V (D) : g(s) = 4}.
Observe that the cost of g is |V (D)| − |S| and S is an independent set in D.

Let I be an independent set in D of maximum size. Set f(w) = 4 for each w ∈ I,
f(w) = 2 for each w ∈ V (D) \ I, f(xuv) = 3 if v ∈ I and f(xuv) = 1, otherwise, for
each uv ∈ A(D). Observe that f is a homomorphism of D′ to H and the cost of f is
|V (D)| − |I|. By the arguments above, f is a homomorphism of D′ to H of minimum
cost. Thus, we have reduced MISO to MinHOM(H).

The following lemma was stated in [6]. We give a proof here for the sake of
completeness.

Lemma 4.3. MinHOM(H∗) is NP -hard.
Proof. Let H be isomorphic to H∗ as follows:

V (H) = {1, 2, 3, 4, 5}, A(H) = {12, 23, 34, 41, 15, 35}.
We replace every arc uv of an oriented graph Dby the digraph Guv with V (Guv) =
{v1, v2, v3, v4, v5, v6, v7}, where u = v6 and v = v7, and

A(Guv) = {v1v2, v2v3, v3v4, v4v1, v5v6, v5v7, v1v6, v3v7}.
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Let D′ be the obtained oriented graph. Define the cost function as follows: c4(w) = 0
and ci(w) = 1 for each w ∈ V (D) and i ∈ {1, 2, 3, 5}, and ci(t) = 0 for each t ∈
V (D′) \ V (D) and i ∈ {1, 2, 3, 4, 5}.

Let g be a homomorphism of D′ to H and let S = {s ∈ V (D) : g(s) = 4}.
Observe that the cost of g is |V (D)| − |S| and S is an independent set in D Indeed,
suppose that uv ∈ A(D) and {u, v} ⊆ S. Then g(v1) = g(v3) = 3 and g(v2) cannot
be given any value in V (H) since g is a homomorphism.

Let I be an independent set in D of maximum size. Set f(w) = 4 for each w ∈ I
and f(w) = 5 for each w ∈ V (D) \ I. For each uv ∈ A(D), set

(a) f(v5) = 3 and f(vi) = i for every i = 1, 2, 3, 4 if u 6∈ I,
(b) f(v5) = 3 and f(vi) = i+2 for every i = 1, 2, 3, 4, where i+2 is taken modulo

4, if u ∈ I.
Observe that f is a homomorphism of D′ to H and the cost of f is |V (D)| − |I|.

By the arguments above, f is a homomorphism of D′ to H of minimum cost. Thus,
we have reduced MISO to MinHOM(H).

Lemma 4.4. MinHOM(N1) is NP-hard.
Proof. Let H be the following digraph isomorphic to N1: V (H) = {1, 2, 3, 4, 5, 6}

and

A(H) = {12, 21, 34, 43, 56, 65, 23, 25, 14, 16, 54, 36}.
Let D be an arbitrary oriented graph. We replace every arc uv of D with the digraph
Guv with V (Guv) = {x, y, z, u, v} and A(Guv) = {ux, vz, xy, yz}. Consider the fol-
lowing cost function: c2(u) = c2(v) = 1, c6(u) = c6(v) = 0, ci(u) = ci(v) = M + 1
for i 6= 2, 6 and c6(y) = M + 1, where M = |V (D)|. In all remaining cases the cost is
zero.

Let D′ be the obtained oriented graph, let f be a mapping from V (D′) to V (H),
and let uv be an arc in D. Assume that f(u) = f(v) = 2. Then with f(x) = f(z) = 1
and f(y) = 2, we obtain a homomorphism from Guv to H of cost 2. This implies that
there is a homomorphism of D′ to H of cost M < M + 1, and, thus, every vertex of
D in D′ must be colored either 2 or 6 in any minimum cost homomorphism of D′ to
H. Let f be a homomorphism of D′ to H and let us consider the remaining options
for coloring the vertices of D in D′.

Assume that f(v) = 6 and f(u) = 2. Then with f(z) = 5, f(y) = 2 and f(x) = 1,
we obtain a homomorphism from Guv to H of cost 1. Assume that f(v) = 2 and
f(u) = 6. Then with f(x) = 5, f(y) = 4 and f(z) = 3, we obtain a homomorphism
from Guv to H of cost 1. Note that if f(u) = f(v) = 6, then f(x) = f(z) = 5 and
f(y) = 6. Then the cost of f will be at least M + 1 implying we cannot color both
vertices u and v in color 6 in any minimum cost homomorphism of D′ to H.

Now let f be a minimum cost homomorphism, let S be the vertices of D in D′

colored 6 and let T = V (D) \ S. Recall that the vertices of T are colored 2. Notice
that S is an independent set and the cost of f equals |T |. Thus, S is an independent
set of maximum size and we have reduced MISO to MinHOM(H).

Lemma 4.5. MinHOM(N2) is NP-hard.
Proof. Let H be the following digraph isomorphic to N2: V (H) = {1, 2, 3, 4, 5, 6}

and

A(H) = {12, 34, 43, 56, 65, 23, 25, 14, 16, 54, 36}.
Let D be an arbitrary oriented graph. We replace every arc uv of D by the digraph
Guv with V (Guv) = {x, y, z, u, v} and A(Guv) = {ux, vz, xy, zy}. We introduce the
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following cost function: c1(u) = c1(v) = 1, c5(u) = c5(v) = 0, ci(u) = ci(v) = M + 1
for i 6= 1, 5 and c4(x) = c6(z) = M + 1, where M = |V (D)|. In any other cases the
cost is zero. Let D′ be the obtained oriented graph, let f be a mapping from V (D′)
to V (H), and let uv be an arc in D.

Assume that f(u) = f(v) = 1. With f(x) = f(z) = 2 and f(y) = 3 with obtain
a homomorphism from H ′ to H with cost 2. Thus, there is a homomorphism of D′

to H of cost at most M (assign all vertices of D in D′ color 1) and no vertex of D in
D′ must not be assigned any color other than 1 and 5.

Let f be a homomorphism of D′ to H and let us consider the remaining options
for coloring the vertices of D in D′. Assume that f(v) = 1 and f(u) = 5. With
f(z) = 2, f(x) = 6 and f(y) = 5, we obtain a homomorphism of Guv to H of cost
1. Assume that f(v) = 5 and f(u) = 1. With f(x) = 2, f(z) = 4 and f(y) = 3, we
obtain a homomorphism of Guv to H of cost 1. Note that if f(u) = f(v) = 5, then
f(x) ∈ {4, 6} and f(z) ∈ {4, 6}. Thus, f has cost at least M + 1 implying that a
minimum cost homomorphism of D′ to H does not assign adjacent vertices of D color
5 (in D′).

Now let f be a minimum cost homomorphism, let S be the vertices of D in D′

colored 5 and T = V (D) \ S. Recall that the vertices of T are colored 1. Notice that
S is an independent set and the cost of f equals |T |. Thus, S is an independent set
of maximum size and we have reduced MISO to MinHOM(H).

Corollary 4.6. MinHOM(H) is NP-hard for every H ∈ HFORB.
Proof. If H is isomorphic to C ′4, C ′′4 , H∗, N1 or N2 or the converse of one of the

five digraphs, then MinHOM(H) is NP-hard due to the lemmas of this section and
the simple fact that if MinHOM(H) is NP-hard and H ′ is the converse of H then
MinHOM(H ′) is NP-hard as well.

Let B be the set consisting of the following bipartite graphs: bipartite claw, bi-
partite net, bipartite tent and every even cycle with at least 6 vertices. If UN(Hs),
where s ∈ {→,←}, is isomorphic to a graph in B, then MinHOM(H) is NP-hard due
to Theorem 1.2 and the transformation from a bipartite undirected graph to a semi-
complete bipartite digraph described in the last paragraph of subsection ‘Minimum
Cost Homomorphisms’ of Section 1. If UN(H↔) is isomorphic to a graph in B, then
MinHOM(H) is NP-hard as, for each bipartite undirected graph L, MinHOM(L) is
equivalent to MinHOM(L+), where L+ is the digraph obtained from L by replacing
every edge xy with two arcs xy and yx.

5. Dichotomy for semicomplete multipartite digraphs. A digraph D is
called semicomplete k-partite if D can be obtained from a complete k-partite (undi-
rected) graph G by replacing every edge xy of G by either the arc xy or the arc yx
or the pair xy, yx of arcs. Let TTp denote the acyclic tournament on p ≥ 1 vertices.
Let p ≥ 3 and let TT−p be a digraph obtained from TTp by deleting the arc from the
vertex of in-degree zero to the vertex of out-degree zero. Combining the main result
of this paper with the main result of [6], we obtain the following:

Theorem 5.1. Let H be a semicomplete k-partite digraph. If k = 2 and H does
not contain a digraph from HFORB as an induced subdigraph or if k ≥ 3 and H is
an extension of either TTk or TT−k+1 or ~C3, then MinHOM(H) is polynomial time
solvable. Otherwise, MinHOM(H) is NP-hard.

6. Further Research. In the case of undirected graphs H, the well-known theo-
rem of Hell and Nešetřil [11] on the homomorphism problem implies that MinHOM(H)
is NP-hard for each non-bipartite graph H. The authors of [4] obtained a complete
dichotomy of the computational complexity of MinHOM(H) when H is undirected.
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The dichotomy obtained in this paper significantly extends the dichotomy of [4]. This
indicates that the problem of obtaining a dichotomy for the computational complex-
ity of MinHOM(H) when H is a bipartite digraph is a very difficult problem. Note
that MinHOM(H) is polynomial-time solvable for some non-bipartite digraphs, for
example, for acyclic tournaments [6]. Thus, a dichotomy for bipartite directed case
does not coincide with a dichotomy for the general directed case. The problem of
obtaining dichotomy for both cases is a very interesting open problem.
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