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Abstract. In this paper we introduce three greedy algorithms for the
traveling salesman problem. These algorithms are unique in that they
use arc tolerances, rather than arc weights, to decide whether or not
to include an arc in a solution. We report extensive computational ex-
periments on benchmark instances that clearly demonstrate that our
tolerance-based algorithms outperform their weight-based counterpart.
Along with other papers dealing with the Assignment Problem, this pa-
per indicates that the potential for using tolerance-based algorithms for
various optimization problems is high and motivates further investigation
of the approach. We recommend one of our algorithms as a significantly
better alternative to the weight-based greedy, which is often used to
produce initial TSP tours.

1 Introduction

In this paper we propose several algorithms for the traveling salesman problem
(TSP). In a TSP instance of size (or dimension) n, we are given a weighted
complete digraph D = (V, A,C) where V is the set of n vertices, A the set of
arcs between vertices in V, and C = [¢(4, )] is the n x n-matrix of arc weights,
and we are required to find a Hamilton cycle (called a tour) such that the sum
of the weights of the arcs in the tour is as small as possible. A TSP instance
is called a symmetric TSP (STSP) instance if for each pair of vertices ¢ and
J, c(i,7) = ¢(j,1); and an asymmetric TSP (ATSP) instance otherwise. Also, a
TSP instance is defined by the weight matrix C'.

Most algorithms for solving the TSP make use of the arc weights to de-
cide whether or not to include an arc in the solution that they finally output.
For example, the weight-based greedy algorithm and its variations are popular
heuristics to produce initial tours for local search and other improvement heuris-
tics (see, e.g., [3]). However, as pointed out in [8] and [18], arc tolerances are
better indicators than arc weights for generating good tours.
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The arc tolerance (see e.g., [6], [7], [16]) is the maximum amount by which
the weight of an arc that is in (not in) an optimal tour can be increased (re-
spectively, decreased) while keeping other arc weights unchanged for the tour
to remain optimal. Among currently known algorithms for the TSP, only Hels-
gaun’s version of the Lin-Kernighan heuristic for the STSP (see [13]) explicitly
applies tolerances in algorithm design. Implicit applications of tolerances in al-
gorithm design are found in the Vogel’s method for the Transportation Problem
and in the MAX-REGRET heuristic for solving the Three-Index Assignment
Problem (see [1]).

Greedy algorithms for TSP are often used in computational practice (cf. [14])
to produce tours that are further improved by local search or other algorithms.
To the best of our knowledge the concept of tolerances has not been applied to
the design of greedy algorithms for the TSP prior to this paper. Our aim is to
initiate and motivate research on the use of tolerances for decision making in fast
TSP heuristics. The algorithms that we propose might therefore not be the best
of breed, but they clearly show superiority of tolerance-based algorithms over
their arc-weights counterparts. We also show the superiority of tolerance based
algorithms using domination analysis (see [9], [10]) for our simplest tolerance-
based R-R-GREEDY heuristic applied to the Assignment Problem (AP). We
prove that the domination number of R-R-GREEDY for the AP is equal to
2n=1 while it is just 1 for the weight-based greedy (W-GREEDY). This means
that while an assignment produced by R-R-GREEDY is always at least as good
as 2"~ ! assignments, there is a family of n x n AP-instances for each n for which
W-GREEDY finds an assignment, which is unique worst possible, and, thus,
in this respect W-GREEDY is no better than a heuristic producing a random
solution. We believe that our results indicate high potential of tolerance-based
algorithms for various optimization problems and motivate further investigation
of the approach.

In the next section, we develop concepts that will help us to describe the al-
gorithms that we introduce for the TSP in Section 3. Our tolerance-based greedy
algorithms are described in Section 3, where we also prove the above-mentioned
domination result. We report computational experience with our greedy algo-
rithms in Section 4. We conclude the paper in Section 5 with a summary of our
main contributions and suggestions for future research.

2 Some relevant concepts

2.1 The Relaxed Assignment Problem

The Assignment Problem (AP) is a well-known relaxation of the TSP, which
is used more often for the ATSP than for the STSP. Let D = (V, A,C) be a
bipartite digraph with bipartition V' = V4 U Va, |V;| = |Va| = n, and such that
A =V x V5. The AP is defined as the problem to find n arcs (s;,t;), 1 <i<n
of minimum total weight such that s; # s; and ¢; # t; for every 1 <1¢ # j < n,
i.e., the AP is the problem to find a minimum weight perfect matching. Notice
that if V1 and V5 are two copies of the vertex set of an TSP instance, where the



arc weights of the bipartite directed graph correspond to the arc weights of the
TSP and the weight of every arc from one copy of a vertex to the other is set
to oo, then the AP solution can be interpreted as a collection of cycles (called
subtours) for the instance.

An integer programming formulation of the AP on an ATSP instance defined
on a complete digraph G = (V, 4,C) (where |V| = n, and C = [¢(i,7)]) using
variables x;;, ¢,7 € V such that z;; = 1 when (4, j) is included in the solution
and 0 otherwise, is given below.

n n
Minimize Z Z (i, j)wi;

i=1 j=1

Subject to inj =1 ie{l,...,n} (1)
j=1

ay=1 je{l,...,n} (2)
i=1
Tij 6{0,1} i,jE{l,...,’rL}

The Relaxed Assignment Problem (RAP) is a relaxation of the AP in which
constraint set (2) is removed from the earlier formulation. Thus, instead of an
one-to-one matching in case of the AP, in the RAP the first copy of V maps into
the second copy of V. Note that a feasible solution to the AP is also a feasible
solution to the RAP, but not vice versa. Also note that a solution to the RAP
may not consist exclusively of cycles.

2.2 Determining tolerances for AP and RAP

Extending the informal definition of tolerances in the introductory section, the
upper (lower) tolerance of an arc that is included in (excluded from) an optimal
solution to the AP is the maximum amount by which the weight of the arc can
be increased (respectively, reduced) while keeping other arc weights unchanged,
such that the current optimal solution to the AP remains optimal. Tolerances
for arcs of the RAP can be defined analogously.

Computing arc tolerances for the AP involves revising the arc weight to a
suitably high value if the arc is a part of the optimal solution, and a suitably low
value if it is not (see [6]), and re-solving the AP. The AP can be solved in O(n?)
time, and using a shortest path based approach, all arc tolerances can also be
computed in O(n?) time (see [19]).

Computing arc tolerances for the RAP, on the other hand, is a more tractable
problem. An optimal solution to the RAP can be characterized as a collection
of arcs, one from each vertex in the graph, such that the weight of the arc is
the smallest among those of all arcs from that vertex. Therefore, for each arc
that belongs to an optimal solution to the RAP, its upper tolerance is the excess
of the weight of the second smallest weight out-arc from the same vertex over
the weight of that arc. If the arc is not in an optimal solution, then its lower



tolerance would be the excess of the weight of the arc over that of the smallest
weight out-arc from the same vertex. Obtaining all tolerances therefore requires
finding the weights of the two least weight entries in each row of the cost matrix,
and then performing a simple subtraction operation once for each arc. Both jobs
can be achieved in O(n?) time so that the overall complexity of determining all
arc tolerances for the RAP is O(n?) time.

2.3 The contraction procedure and a greedy algorithm

The (path) contraction procedure (see, e.g., [4]) is a method of updating a di-
graph once a directed path is removed from it and replaced by a single ver-
tex. Consider a digraph D = (V, A,C) with C' = [c(4, )] and a directed path
P = vjvy - - - vy in it. The contraction procedure for marking the path (and re-
placing it by a vertex p) replaces D by a digraph D,. The vertex set of D, is
Vp = VU{p} — {v1,...,vx}. The arc set of D, includes all arcs (¢, j) from D
where i,j ¢ P. In addition for all vertices ¢ in V), except p, it introduces and
includes arcs (i, p) with weight ¢(i,v1) and (p, ¢) with weight ¢(vg, i) (where ¢, 1,
v1, and v, are defined for digraph D). In this paper we only need a special case
of the path contraction procedure, namely contracting only a single arc (say a)
from a digraph D. We use a shorthand notation C'P(a, D) for this procedure.

Given the contraction procedure, a generic greedy algorithm can be defined
as follows:

A generic greedy algorithm

Input: A weighted complete digraph D = (V, A, C).

Output: A tour T

Step 1: G — D, T < 0.

Step 2: While G consists of at least three vertices, using a suitable myopic
procedure, choose an arc (say a = (u,v)), that does not create a cycle, to
include in the tour.
(For example, if arcs (1,2) and (2,3) are already contracted, the contraction
of (3,1) would create a cycle.)
Set T — T U{a}, G — CP(a,G).

Step 3: Set T« T U {(v1,v2), (v2,v1)} and output 7.

This algorithm is generic since the myopic arc selection procedure used in
Step 2 has not been defined. Typically greedy algorithms employ myopic proce-
dures based on arc weights, choosing the least weight arc as the one to contract.
Therefore, as a benchmark for tolerance-based algorithms that we present in the
next section, we define the following variant.

W-GREEDY algorithm: At each iteration of the generic greedy algorithm,
in Step 2, the myopic procedure chooses the least weight arc. This arc is
chosen for contraction (i.e., inclusion in the tour).



3 Tolerance-based greedy algorithms

Since exploratory computational experiments (see, e.g., [18]) show that, given
an optimal AP solution to an T'SP instance, the ‘probability’ of the arc with the
largest upper tolerance for the AP solution being in an optimal TSP solution is
much higher than the ‘probability’ of the smallest weight arc being in an optimal
TSP solution, it is interesting to create myopic procedures for the generic greedy
algorithm developed in Section 2.3 which use tolerances instead of arc weights
to choose arcs. In this section, we introduce the following three variants of such
myopic procedures, leading to three greedy algorithms.

R-R-GREEDY algorithm: At Step 2 of each iteration of the generic greedy
algorithm, the myopic procedure generates an optimal RAP solution on the
digraph. Then the upper tolerances of each arc included in the solution
are generated. The arc in the optimal RAP solution with the largest upper
tolerance is chosen for contraction (i.e., inclusion in the tour).

A-R-GREEDY algorithm: At each iteration, the myopic procedure gener-
ates an optimal AP solution and an optimal RAP solution on the digraph.
For each arc in the AP solution and in the RAP solution, the upper tolerance
(w.r.t. the RAP) is computed, and for each arc in the AP solution but not
in the RAP solution, the lower tolerance (w.r.t. the RAP) is computed, and
multiplied with —1. The values thus obtained are sorted, and the arc with
the largest value is chosen for contraction.

The relaxation of constraint set (2) in the formulation of AP to generate RAP
was arbitrary. One could easily come up with another relaxation of the AP (let
us call it RAP1) in which constraint set (1) is relaxed instead of the set (2). The
third algorithm implements a myopic procedure that uses both the RAP and
RAP1 relaxations.

A-RC-GREEDY algorithm: Optimal solutions are generated for AP as well
as for RAP and RAP1. The myopic procedure described in the A-R-GREEDY
algorithm is carried out twice, once with the optimal solutions to AP and
RAP, and the second time with the optimal solutions to AP and RAP1.
In the second case, the tolerances are computed with respect to the RAP1
relaxation. Of the two candidates that emerge from the two procedures, the
one which has a larger value is chosen for contraction.

Note that for A-R-GREEDY and A-RC-GREEDY we only approximate the
upper tolerances for the AP. The reason is, that in practice, solving an AP
in O(n?) time by the Hungarian algorithm and then computing approximate
tolerances in O(n?) time is much faster than using the Hungarian algorithm
and then Volgenant’s method (see [19]) for exactly computing the tolerances in
O(n?), even though both methods have an overall O(n?) time complexity.

The greedy algorithms described above can be speeded up considerably using
book-keeping techniques. For example, in R-R-GREEDY, if in an iteration, the
end vertex of the contracted arc does not contain a smallest or a second smallest



weight arc from any of the vertices, then in the next iteration, both the RAP so-
lution and the upper tolerances remain unchanged. Even otherwise, the changes
in the RAP solution and upper tolerance at the next iteration involve only those
vertices from which the smallest or second smallest weight arcs were directed to
the end vertex of the contracted arc in the previous iteration. Furthermore, in
the A-R-GREEDY and A-RC-GREEDY algorithms, if the arc contracted does
not belong to a subtour with two arcs only, the optimal AP solution before and
after the contraction operation differ only by the arc contracted.

Our extensive computational experiments with the W-GREEDY and R-R-
GREEDY applied to a wide set of the AP instances with n > 100 (see [2] for a
description of the instances) show that the quality of R-R-GREEDY solutions is
at least 10 times better than the quality of W-GREEDY solutions and these re-
sults are further supported by domination analysis (for all undefined definitions
in domination analysis and graph theory we refer to [9], [10]). The domination
number of a heuristic H for a combinatorial optimization problem P is the max-
imum number, taken over all instances of size n, of solutions that are not better
than the solution found by H for any instance of size n. The domination number
of W-GREEDY for the AP equals 1 [9], i.e., for every n there are instances of
AP for which W-GREEDY finds the unique worst solution.

The following theorem indicates that the domination number of R-R-GREE-
DY for the AP is exponential.

Let K, , be a complete bipartite graph with partite sets V' = {1,2,...,n}
and V' = {1',2',...,n'}. The weight of an edge ij’ is denoted by ¢;;. Recall that
the Assignment Problem (AP) is the problem of finding an assignment (i.e., a
perfect matching) of K, , of total minimum weight.

Theorem 1. For the AP, R-R-GREEDY has domination number 271,

Proof. Let AP-R-R-GREEDY be the algorithm R-R-GREEDY applied to the
AP. If — like for the TSP — all diagonal elements of the cost matrix are oo,
the algorithm is the same as R-R-GREEDY except that in the generic greedy
algorithm the myopic procedure may also choose an arc that creates a cycle.

In the general case the algorithm works as follows. Set W = W’/ = M = ().
While V' # W do the following: For each i € V — W, compute two lightest
edges ij’ and ik, where j', k' € V' — W', and the difference A; = |¢;; — cix|. For
i € V — W with maximum A; choose the lightest edge ij’, where j' € V! — W,
and add ij’ to M, i to W and j' to W".

Consider an instance Z of AP on K, , such that the number of assignments
that are not better than the assignment found by AP-R-R-GREEDY equals
the domination number of AP-R-R-GREEDY. We may assume that AP-R-
R-GREEDY constructs the assignment M = {11’,22,... nn'} and the edges
in M are chosen such that i’ is picked before jj’ if and only if ¢ < j. Then
11’ and 1j’ for some j # 1 are lightest edges of K, , subject to the condition
that the start vertex is 1, and it holds c;; < ¢;;. Since adding a constant to the
weight of every edge with the first vertex 1 will not change the solution found
by AP-R-R-GREEDY, we may assume that ¢;; = 0 and ¢;1 = Ay < 0. Since



c1r > 0 for each k # 1 and taking larger c1; with k£ # 1 may only increase the
number of assignments of weight at least ¢(M) := Y. | ¢; 7, we may assume
that ¢, = 0 for each k #£ 1.

Let 22" and 2s’, s > 2, be the lightest edges with the first vertex 2 with
the possible exception of 21’. As above we may assume that coo = As < 0 and
cor = 0 for each k > 2. Since 11’ was chosen by AP-R-R-GREEDY before 22,
c21 > A1 + Ay and we may assume that co; = Ay + As. Analogously, for ¢ > 3,
we may assume that ¢;s = 0 for each s > ¢ and ¢y, = Ag + Agy1 + ... + 4, for
each k < t. Notice that ¢y = Ay < 0 for t < n. (However, we have no restriction
on the sign of ¢,,, = 4A,, as we do not have any choice when picking the edge nn’.
We may assume that A,, > 0 to decrease the number of assignments of weight
larger or equal to ¢(M).)

Denote the number of assignments of weight at least ¢(M) = " | A; by
g(A1, Ag, ..., A,). By the arguments above the domination number d(n) of AP-
R-R-GREEDY equals

min{g(AluA27"'7An) : Al < A2 <. < An—l < O}

Let Op(i,p) denotes an operation that replaces in M the edges {4i’, (i + 1)(i +
1),..., (i+p)(i+p)'} by the edges {i(i+1)’, (i+1)(i4+2), ..., (i+p—1)(i+p), (i+
p)i'}. Notice that Op(i, p) preserves the weight of the assignment. Consider the
following procedure. It starts from 4 := 1. It chooses an arbitrary integer p with
0 < p < n —i, performs Op(i,p), sets i := i + p+ 1 and continues this loop if
1 <n.

Let f(n) be the number of all possible assignments that can be obtained
by the procedure. Since all these assignments are of the same weight as the
assignment {117,22’,... ,nn’}, we conclude that d(n) > f(n). Clearly, f(1) =1
and set f(0) = 1. To compute f(n) observe that after using Op(1,p) we will
have f(n — p) possible assignments. Thus, for each n > 2 we have f(n) =
f(n—=1)4 f(n—2)+ ...+ f(0). This implies that f(n) =2""1 for n > 1.

To show that d(n) = f(n) construct a complete digraph K with vertices
{1,2,...,n} and with a loop on every vertex. For arbitrary 1 < i,j < n, the arc
(i,7) of K corresponds to the edge ij’ in K, , and we set the weight of (i, )
equal ¢;;. We call every arc (i,7) with ¢ < j forward and with ¢ > j backward.
Notice that the weight of every forward arc is 0.

An assignment (i.e., perfect matching) in K, , corresponds to a cycle factor
of K, which is a collection of disjoint cycles (some of them may be loops) that
cover all vertices of K. In particular, the weight of an assignment in K, ,, equals
the weight of the corresponding cycle factor in K. Notice that the weight of
every forward arc is 0 and, thus, the weight of a cycle factor equals the sum
of the weights of its backward arcs. We call a pair (,7), (i',5’) of backward
arcs intersecting if the intervals [j,4] and [j7,¢'] of real line intersect (one of
these intervals may be just a point). Observe that if a cycle factor does not
have intersecting backward arcs, then its weight equals > ., A; = ¢(M) and
every such cycle factor corresponds to an assignment that can be obtained by
the procedure above. Thus, there are exactly f(n) = 2"~! cycle factors without
intersecting backward arcs.



Now suppose that a cycle factor F' has an intersecting pair (4, 75), (', ') of
backward arcs. Thus, there is an integer k such that k € [4,4] N [j/,7']. By the
definition of a cycle factor, k¥ < m. Observe that the above arguments imply
that c(F) < Yoo | A; + Ay < ¢(M). Thus, if we set A; < 0 for each i < n,
we will obtain that every cycle factor with a pair of intersecting backward arcs
has weight smaller than ¢(M). Observe that a cycle factor with intersecting
backward arcs corresponds to an assignment in K, ,, that cannot be obtained
by the procedure above. Therefore, d(n) = f(n) =271 [ ]

In the next section, we compare the three tolerance-based greedy algorithms
introduced in this section with each other on benchmark TSP instances using the
W-GREEDY algorithm to calibrate the algorithms. Since the performance of the
W-GREEDY algorithm has been compared with other well-known algorithms for
the TSP (see, e.g., [4]), the next section also provides an indirect comparison
with those algorithms.

4 Computational experience

The four greedy algorithms mentioned in the paper were implemented in order to
observe their performance on benchmark instances of the TSP. The implemen-
tations were done in C under Linux on a Genuinelntel Intel® Xeon™ 3.2GHz
machine with 4 GB RAM. In our implementations we use the Jonker and Vol-
genant’s (see [15]) code for solving the AP.

Out of the four algorithms, only the W-GREEDY algorithm is known in
the literature (see the GR algorithm in [4] and [11]). Therefore, we report our
computational results using W-GREEDY as a base. Assume that for a particular
TSP instance, W-GREEDY finds a tour of length Ly, while another algorithm
A finds a tour of length L 4. Also assume that the length of an optimal tour, or
a good lower bound for it, is L*. Then for that instance we define the solution
quality parameter g4 for A as

As the execution times for many small instances are often very small and there-
fore inaccurate, we measure the time for the whole class. Assume that for a whole
class, W-GREEDY needs time Ty, while another algorithm A needs time T4.
Then for that class we define the time quality parameter 74 for A as
TA = Ta x 100
Tw

Clearly, the smaller the average value of ¢4 and the value of 74 is, the better is
the algorithm. We tested the algorithms on nine classes of instances. Classes 1
through 7 were taken from [4], Class 8 is the class of GYZ instances introduced
in [11] for which the domination number of the W-GREEDY algorithm for the



ATSP is 1 (see Theorem 2.1 in [11]) and Class 9 is the amalgamation of several
classes of instances from [14]. The exact description of the nine classes is as
follows.

Class 1: All asymmetric instances from TSPLIB [17] (26 instances).

Class 2: All symmetric instances from TSPLIB [17] with less than 3000 vertices
(99 instances).

Class 3: Asymmetric instances with ¢(i, j) randomly and uniformly chosen from
{0,1, ---, 100000} for ¢ # j. 10 instances are generated for dimensions
100, 200, - - -, 1000 and three instances for dimensions 1100, 1200, ---, 3000
(160 instances).

Class 4: Asymmetric instances with ¢(, j) randomly and uniformly chosen from
{0,1,---,i-j} for i # j. 10 instances are generated for dimensions 100, 200, - - -,
1000 and three instances for dimensions 1100, 1200, - - -, 3000 (160 instances).

Class 5: Symmetric instances with ¢(¢, j) randomly and uniformly chosen from
{0,1, ---, 100000} for ¢ < j. 10 instances are generated for dimensions
100, 200, - - -, 1000 and three instances for dimensions 1100, 1200, ---, 3000
(160 instances).

Class 6: Symmetric instances with ¢(¢, j) randomly and uniformly chosen from
{0,1,---,4-5} for i < j. 10 instances are generated for dimensions 100, 200, - - -,
1000 and three instances for dimensions 1100, 1200, - - -, 3000 (160 instances).

Class 7: Sloped plane instances with given x;, z;, y;, y; randomly and uniformly
chosen from {0,1,---,i-j} for i # j and c(i,§) = \/(zi — ;)% + (yi — y;)?
—max{0,y; — y;} + 2 - max{0,y; — y;} for ¢ # j. 10 instances are gener-
ated for dimensions 100,200, ---,1000 and three instances for dimensions
1100, 1200, - - -, 3000 (160 instances).

Class 8: GYZ instances (see Theorem 2.1 in [11]) in which the arc weights
c(i,j) are defined as

n3 fori=n,j=1;

o, §) = mn forj=i+1,i=1,2,...,n—1;
LA T | fori=3,4,...,n—1;j = 1;
nmin{i,j} + 1 otherwise.

One instance is generated for each n = 5,10, ---, 1000 (200 instances).
Class 9: There are 12 problem generators from Johnson et al. [14], called tmat,
amat, shop, disc, super, crane, coin, stilt, rtilt, rect, smat, and tsmat. Each
of these generators yields 24 instances, 10 of dimensions 100, 10 of dimension
316, three of dimension 1000, and one of dimension 3162 (288 instances).

Note that for Classes 1 and 2 we use as L* the known optima (see [17]), for
the symmetric and almost-symmetric Classes 5, 6, and 9 the HK (Held-Karp)
lower bound ([12]) and for the asymmetric Classes 3, 4, and 7 the AP lower
bound.

It is clear from Table 1 that the usual weight-based greedy algorithm is
comprehensively outperformed by tolerance-based greedy algorithms in terms
of solution quality, although it takes much less execution time than two of the



Table 1. Performance of tolerance-based algorithms

Algorithm Problem q values T values
Class mean std. dev.
R-R GREEDY 1 109.18 160.76 100

2 125.49  55.18 105.17
3 32.61 10.95 106.63
4 2.16 0.99 115.69
5 35.68 11.18 116.42
6 3.27 1.07 121.58
7 5.92 1.9 81.16
8 19.08 2.07 103.88
9 64.77  40.52 65.76

A-R GREEDY 1 33.52  23.29 100

2 69.67 29.63  3301.72
3 9.37 8.17 131.6
4 0.19 0.26 147.13
5 12.38 7.16  4302.68
6 1.36 0.58  8228.45
7 2.78 1.65 11581.88
8 0 0.01 92.53
9

30.05 29.19  3480.53

A-RC GREEDY 1 22.07 17.16 125

2 62.31 37.55  3408.62
3 4.03 5.25 219.34
4 0.38 0.65 240.22
5 6.98 4.43  3428.08
6 2.42 1.15  5075.24
7 2.61 1.50 12301.37
8 0 0.01 122.65
9

25.96 29.56  3555.79

tolerance-based algorithms. It is also clear that A-RC-GREEDY, and to a lesser
extent, A-R-GREEDY are greedy algorithms of choice if one desires good-quality
solutions. Even the extremely simplistic R-R-GREEDY algorithm generates bet-
ter quality solutions for all except two classes (Classes 1 and 2) in nearly the
same time. This fact is seen most starkly in Classes 4 and 7.

An interesting observation is that AP relaxation based algorithms require
very long execution times on average for instances in Classes 7 and 9. For in-
stances in these classes, experiments show that the optimal solutions to the AP
relaxation for the digraphs in several iterations have many cycles of length 2, and
the arc to be contracted usually comes from one of these cycles. Consequently,
in the next step of the algorithm, the AP relaxation needs to be solved again,
and the tolerances recalculated, thus leading to long execution times (refer to
the discussion on book-keeping techniques in Section 3).



5 Summary and Future Research Directions

In this paper, we examine in detail the idea of using arc tolerances instead of
arc weights as a basis for making algorithmic decisions on whether or not to
include an arc in an optimal solution. Such methods have only been studied
in passing in the literature (see [13]) and deserve more attention. In order to
evaluate the usefulness of the concept, three tolerance-based greedy algorithms
are proposed (see Section 3) for the traveling salesman problem. Two of these (A-
R-GREEDY and A-RC-GREEDY) are based on an AP relaxation of the original
problem, while the third one (R-R-GREEDY) is based on a new relaxation of
the AP relaxation itself. With the purpose of investigating the usefulness of
the relaxed AP (RAP), we made extensive computational experiments with our
R-R-GREEDY heuristic applied to the AP (not reported here in detail due to
the space limitation) and studied the worst case performance using domination
analysis. The computational results for the TSP show that the R-R-GREEDY
outperforms a weight-based greedy (W-GREEDY) in quality at least 10 times on
average, while for AP the corresponding domination numbers for R-R-GREEDY
and W-GREEDY are 2"~! and 1, respectively.

Our experiments show that the quality of solutions produced by tolerance-
based greedy algorithms are overall significantly better than those found by
the arc weight-based greedy algorithm. Unfortunately, A-R-GREEDY and A-
RC-GREEDY are often slower than W-GREEDY, but R-R-GREEDY, being
superior to W-GREEDY in quality, is nearly as fast as W-GREEDY. Overall, the
simplest tolerance-based greedy, R-R-GREEDY,, is the best algorithm for solving
the STSP, while the A-RC-GREEDY algorithm could be suggested for the ATSP.
It is worth mentioning that the construction heuristics in [4] (see from Table 1 in
[4]) have the following average excesses (taken over seven families of instances)
over the length of an optimal tour or lower bound: GR= 580.35%, RI= 710.95%,
KSP= 135.08%, GKS= 98.09%, RPC= 102.02%, COP= 23.01%. Computational
experiments reported in [5] for our algorithms give R-R-GREEDY= 67.14%, A-
R-GREEDY=34.75%, and A-RC-GREEDY= 29.19%. It is not difficult to obtain
an upper bound 2(n — 3)! for the domination number of ATSP-R-R-GREEDY
and it would be interesting to find a non-trivial lower bound. Another question
is whether a 1-tree-based relaxation of the traveling salesman problem would
generate tolerance-based greedy algorithms that are better for the STSP. Also
it would be interesting to see if the success of tolerance-based algorithms on the
TSP can be extended to other combinatorial optimization problems.
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Appendix

Examples

Ezample 1. Consider a TSP instance of size 6, with the arc weight matrix shown
below.

1 23456
ljco 6 7 7 7 7
2/ 7 0012131313
335 1300181919
4|35 1319 002425
535 1319 25 oo 30
6(216 13 19 25 31 oo

The optimal AP solution to this instance is given by {(1,6), (6,2), (2,1), (3,4),
(4,5), 5,3)} with length 88 units. This solution contains two subtours, 1-6-2-1
and 3-4-5-3. (Of course this solution is not a unique optimal AP solution.) The
optimal RAP solution to this instance contains the arc set {(1,2), (2,1), (3,2),
(4,2), (5,2), (6,2)} with total objective value of 65 units. Note that in the optimal
RAP solution there is only one subtour 1-2-1, and it does not span all vertices.

Example 2. AP tolerances: In Example 1, for the optimal AP solution, the arc
(1,6) is in the solution. The upper tolerance for this arc is computed by increasing
its weight so that it does not remain in an optimal AP solution. Check that this
can be done by increasing its weight by more than 1 unit. After this, a new
optimal AP solution {(1,5), (5,3), (3,4), (4,6), (6,2), (2,1)} is obtained which has
an objective value of 89. Hence the upper tolerance for arc (1,6) is 1.

The arc (1,3) is not in the optimal AP solution. In order to compute its lower

tolerance, we need to find out by how much its weight needs to be reduced in
order for it to enter into an optimal AP solution. The best solution including
the arc (1,3) is {(1,3), (3,6), (6,4), (4,5), (5,2), (2,1)} with objective value of 95;
which means that the weight of the arc (1,3) needs to be reduced by more than
95—88 = 7 for it to enter an optimal AP solution. Hence the lower tolerance of
arc (1,3) is 7.
RAP tolerances: Consider the optimal RAP solution in Example 1. The
arc (1,2) is in the solution. If the arc is to be forced out of any optimal RAP
solution, then its weight needs to be increased by more than 1 unit. After such
an increase, the solution {(1,3), (2,1), (3,2), (4,2), (5,2), (6,2)} with objective
value 66 becomes optimal. Hence the upper tolerance of the arc (1,3) is 1.

Finally consider the arc (1,6) which is not in the optimal RAP solution. It
would enter into an optimal RAP solution only if its weight is reduced by more
than 1 unit. After such a reduction, the solution {(1,6), (2,1), (3,2), (4,2), (5,2),
(6,2)} becomes optimal. Hence the lower tolerance for arc (1,6) is 1.



Ezample 3. The development of the solution finally output by each of the four
algorithms through their iterations is shown in Figures 1 and 2. A black (grey)
vertex is an out- (in-) vertex before contraction. Each light grey arc after the
contraction is directed from left to right and represented by light grey neighbor-
ing vertices. If a begin (end) of a contracted sequence of arcs (path) is chosen for
contraction, then it becomes grey (black). The numbers z(y) along each arc are
the weight x (respectively, upper/lower tolerance y) of the arc for the four algo-
rithms, computed w.r.t. the RAP. A bold letter on the left side corresponds to the
current iteration number for each algorithm. The W-GREEDY, R-R-GREEDY,
A-R-GREEDY, and A-RC-GREEDY algorithms output greedy solutions with
values 306, 90, 89, 83 (optimal value), respectively. Figure 2 shows that the A-
R-GREEDY algorithm returns a greedy solution at the fourth iteration (D) and
the A-RC-GREEDY algorithm at the third iteration (C), since all depicted arcs
are from an optimal AP solution which is a Hamiltonian cycle.



W - GREEDY R - R- GREEDY

306 90

Fig. 1. Working of W-GREEDY and R-R-GREEDY



A -R- GREEDY A - RC - GREEDY

89 88

Fig. 2. Working of A-R-GREEDY and A-RC-GREEDY
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