
Ranking the vertices of a complete
multipartite paired comparison digraph

Gregory Gutin ∗

Anders Yeo
Department of Mathematics and Computer Science

Odense University, Denmark

September 1, 2003

Abstract

A paired comparison digraph (abbreviated to PCD) D = (V,A) is a
weighted digraph in which the sum of the weights of arcs, if any, joining
two distinct vertices equals one. A one-to-one mapping α from V onto
{1, 2, ..., |V |} is called a ranking of D. For every ranking α, an arc vu ∈
A is said to be forward if α(v) < α(u), and backward, otherwise. The
length of an arc vu is `(vu) = ε(vw)|α(v)− α(u)|, where ε(vw) is the
weight of vu. The forward (backward) length fD(α) (bD(α)) of α is the
sum of the lengths of all forward (backward) arcs of D. A ranking α is
forward (backward) optimal if f(α) is maximum (b(α) is minimum).
M. Kano (Disc. Appl. Math., 17 (1987) 245-253) characterized all
backward optimal rankings of a complete multipartite PCD D and
raised the problem to characterize all forward optimal rankings of
a complete multipartite PCD L. We show how to transform the last
problem into the single machine job sequencing problem of minimizing
total weighted completion time subject to precedence ”parallel chains”
constraints. This provides an algorithm for generating all forward
optimal rankings of L as well as a polynomial algorithm for finding

∗Corresponding author. This work was supported by the Danish Research Council
under grant no. 11-0534-1. The support is gratefully acknowledged.

1

the average rank of every vertex in L over all forward optimal rankings
of L.

1 Introduction

Kano and Sakamoto [7, 8, 9] introduced a few new methods (forward, back-
ward and mutual) of ranking the vertices of a paired comparison digraph
(abbreviated to PCD). Advantages and applications of these methods were
described in [4, 7, 8, 9]. We only note that, for tournaments, all these meth-
ods, unlike some others, coincide with the most popular approach consisting
of computing the scores, the number of games won by each player, and com-
paring them (see [7]).

It is not difficult to find all optimal mutual rankings of any PCD using
Theorem 1 in [7]. At the same time the problems of finding a forward or
backward optimal ranking are NP -hard (see Theorem 6.5 in [9] and Theorem
3.1 here). Moreover, Brightwell and Winkler [1] showed that the problem of
counting the number of backward optimal rankings of an acyclic digraph is
#P -complete. In contrast, Kano characterized all optimal backward rankings
of a complete multipartite PCD (Theorem 1 in [6]).

Kano and Sakamoto derived a characterization of all forward optimal
rankings of a complete multipartite PCD containing not more than two ver-
tices in each colour class (Theorem 4 in [7]) and Kano [6] raised the problem
to characterize all forward optimal rankings of any complete multipartite
PCD L. We show how to transform the last problem into the single ma-
chine job sequencing problem of minimizing total weighted completion time
subject to precedence ”parallel chains” constraints. The single machine job
sequencing problem of minimizing total weighted completion time subject to
various precedence constraints has been considered in a number of papers
(see [3]).

The transformation above provides an algorithm for generating all for-
ward optimal rankings of L as well as a polynomial algorithm for computing
the average rank (called the proper forward rank) of every vertex in L over
all forward optimal rankings of L. A polynomial algorithm for finding the
proper backward rank of every vertex in L was described in [4]. In con-
trast, the problem of calculating the proper backward rank of a vertex of an
acyclic digraph is proved [1] to be polynomially equivalent to a #P -complete

2

problem.
Kano [6] proved his main theorem using an approach based on Lemma

2.3 [9], i.e. he considered differences fD(αxy) − fD(α) (see Section 2.) Our
approach is based on considering the explicit form of the function fD(α).
Using our approach the main result of [6] can be proved in a somewhat
easier manner.

2 Terminology and notation

Let D = (V,A) be a weighted digraph in which every arc xy has a positive
real weight ε(xy). A digraph D is called a paired comparison digraph if D
satisfies the following conditions:

1. ε(xy) + ε(yx) = 1 if both xy and yx are arcs;

2. ε(xy) = 1 if xy ∈ A but yx /∈ A.

A PCD D is said to be multipartite if the vertex set V of D can be partitioned
into colour classes V1, ..., Vr such that there is no arc between any pair of
vertices from the same colour class. A multipartite PCD D is complete if
every two vertices from different colour classes are joined by at least one arc.
A complete multipartite PCD D is a complete PCD if every colour class of
D consists of a single vertex.

The positive (negative, resp.) score of a vertex x ∈ V is

σ+(x) =
∑

xy∈A

ε(xy), (σ−(x) =
∑

yx∈A

ε(yx), resp.)

A one-to-one mapping α from V onto {1, 2, ..., |V |} is called a ranking of D.
For α(x) = i, α−1(i) = x. Sometimes, we shall determine a ranking α by the
string (α−1(1), ..., α−1(|V |)). For a subset X of V , a ranking α of D induces
the following permutation α|X : for a vertex x ∈ X, α|X(x) = |{y ∈ X :
α(y) ≤ α(x)}|. Let x and y be two vertices in D and let α be a ranking
of D. Then αxy denotes a ranking of D as follows: αxy(z) = α(z) for every
z /∈ {x, y}, and αxy(x) = α(y), αxy(y) = α(x).

For a ranking α, an arc vu ∈ A is called forward if α(v) < α(u). The
length of an arc vu is ε(vu)|α(v) − α(u)|. The forward length fD(α) of α is
the sum of the lengths of all forward arcs. A ranking α is forward optimal if

3

fD(α) is maximum. The set of all forward optimal rankings of D is denoted
by FOR(D). The main objective is to calculate the proper forward rank of
every vertex x of D, i.e.

π(x) =
1

|FOR(D)|
∑

α∈FOR(D)

α(x).

Let D = (V,A) be a multipartite PCD and let α be a ranking of D. Then,
for a vertex x ∈ V , we define ψ−(α, x) = σ−(x) + |{y ∈ U : α(y) > α(x)}|
and ψ+(α, x) = σ+(x)+ |{y ∈ U : α(y) < α(x)}|, where U is the colour class
of D containing x.

3 NP -hardness

Theorem 3.1 The problem of finding a forward optimal ranking of a PCD
is NP -hard.

Proof: This proof is similar to that of Theorem 4 in [9] but we shall use
the following problem instead of the optimal linear arrangement problem
(OLAP), see [2], p.200.

Maximum linear arrangement problem (MLAP).
Instance: Graph G = (V,E(G)) and positive integer k.
Question: Is there a ranking α so that∑

{x,y}∈E(G)

|α(x)− α(y)| ≥ k.

(If we replace ≥ by ≤ we get the OLAP.)

The MLAP is NP -complete since the OLAP is NP -complete and since∑
{x,y}∈E(G)

|α(x)− α(y)|+
∑

{x,y}∈E(G)

|α(x)− α(y)|

is a constant depending only on the number of vertices in G (G is the com-
plement of G.)

4

Let G = (V,E) be a graph and let D = (V,A) be the symmetric digraph
corresponding to G, i.e. A = {xy, yx : {x, y} ∈ E}. Let also ε(xy) = 0.5 for
every xy ∈ A. Then ∑

{x,y}∈E

|α(x)− α(y)| = 2fD(α).

Hence, the MLAP is polynomial reducible to the problem of finding an opti-
mal forward ranking of a PCD. 2.

4 Lemmas

Lemma 4.1 [7] Let K = (V,A) be a complete PCD with n vertices, and let
α be a ranking of K. Then

fK(α) =
∑
x∈V

σ−(x)α(x)− 1

6
n(n2 − 1) =

1

3
n(n2 − 1)−

∑
x∈V

σ+(x)α(x). (1)

In the sequel, let D = (V,A) be a complete multipartite PCD with n
vertices contained in r colour classes V1, ..., Vr.

The result of Lemma 4.2 (involving ψ−(α, x) only) was proved in [6]. Note
that our proof is shorter.

Lemma 4.2 Let α be a ranking of D. Then

fD(α) =
∑
x∈V

ψ−(α, x)α(x)−1

6
n(n2−1) =

1

3
n(n2−1)−

∑
x∈V

ψ+(α, x)α(x). (2)

Proof: For every colour class U of D, add the set of arcs {vw : v, w ∈
U, α(w) < α(v)} (all of weight one) to A. The new PCD H is complete.
Note that the negative (positive, resp.) score of a vertex x in H equals
ψ−(α, x) (ψ+(α, x), resp.). Now (2) follows from (1) and an obvious fact that
fD(α) = fH(α). 2.

5

Lemma 4.3 Let α be a forward optimal ranking and β be a ranking of D,
and let x and y be vertices in the same colour class of D. Then

(i) fD(βxy)− fD(β) = m(σ+(y)− σ+(x)), where m = α(y)− α(x);
(ii) if σ+(x) = σ+(y), then αxy ∈ FOR(D) as well, and in particular,

π(x) = π(y);
(iii) α(x) < α(y) implies σ+(x) ≥ σ+(y).

Proof: (i) can be proved by (2), and (ii) and (iii) are easy consequences of
(i). 2.

5 Forward optimal rankings

Lemma 4.3 (iii) provides a unique ’optimal’ ranking of the vertices in any
colour class of D up to the vertices having the same positive score. Now we
wish to fix completely the order of vertices having the same positive score and
contained in the same colour class of D. To do that we consider a collection
Λ = {λ1, ..., λr} of rankings of the colour classes of D, where λi is a ranking
of Vi, such that

σ+(λ−1
i (1)) ≥ σ+(λ−1

i (2)) ≥ ... ≥ σ+(λ−1
i (|Vi|)), (3)

for every i = 1, ..., r. We wish to find all forward optimal rankings α so that
α|Vi

= λi for each i = 1, ..., r. We call such rankings Λ-optimal. By Lemma
4.3, Λ-optimal rankings exist for every Λ satisfying (3).

Fix a collection Λ satisfying (3). Then, for every Λ-optimal ranking α of
D, ψ+(α, x) does not depend on α. Hence, we can define ω(x) = ψ+(α, x),
for a Λ-optimal ranking α and a vertex x of D. By (2), the problem to find
all Λ-optimal rankings of D is equivalent to the following problem. Find all
rankings α of D which provide minimum to the function

F (D,α) =
∑
x∈V

ω(x)α(x)

subject to the constraints

α|Vi
= λi, for every i = 1, ..., r. (4)

Consider the following single machine job sequencing problem (for basic
terminology on the theory of scheduling see, e.g., [3].) Let us be given n jobs

6

which, for simplicity, are the vertices of D and a collection Λ satisfying (3).
Let ω(x) be the weight and p(x) be the processing time of a job (vertex)
x. Then, the total weighted completion time C(D,α), when the jobs are
sequenced according to a permutation α, is

C(D,α) =
∑
x∈V

ω(x)
∑

{p(y) : α(y) ≤ α(x)}.

We wish to minimize C(D,α) subject to the constraints (4). But these
constraints are just the ”parallel chains” constraints [10]. Horn [5] was the
first to propose an algorithm for finding an optimal permutation, i.e. a
permutation providing the minimum total completion time subject to the
”parallel chains” constraints (he has really considered more general forest-
like constraints.) Obviously, the job sequencing problem above, when all
p(x) = 1, is equivalent to the problem of finding Λ-optimal rankings of D.

We shall deal with a modification of Horn’s algorithm due to Sidney (see
Algorithm 2 in [10].) Sidney proved (Theorem 9 and Lemma 14 in [10]) that
a permutation is optimal if and only if it can be generated by his algorithm.
Below we describe Sidney’s algorithm adopted to our problem.

Let λi = (v
(i)
1 , v

(i)
2 , ..., v(i)

ni
) (ni = |Vi|) for every i = 1, ..., r. For an index

i ∈ {1, ..., r} and a pair j, k so that 1 ≤ j ≤ k ≤ ni, define the set S
(i)
jk =

{v(i)
j , v

(i)
j+1, ..., v

(i)
k } and its average of ω: ρ(S

(i)
jk) = (k − j + 1)−1 ∑k

m=j ω(v(i)
m).

For j ∈ {1, ..., ni}, a set S
(i)
jk is called ρ∗-maximal if, for every ` ∈ {j, j +

1, ..., ni}, ρ(S(i)
jk) ≥ ρ(S

(i)
j`) and, for every t ∈ {j, j + 1, ..., k − 1}, ρ(S(i)

jk) >

ρ(S
(i)
jt). We shall denote such a ρ∗-maximal set by S

(i)
j and its average of ω

by ρ
(i)
j .

Algorithm 1.

1. Choose a collection Λ = {λ1, ..., λr} satisfying (3). Call λi = (v
(i)
1 , v

(i)
2 , ..., v(i)

ni
)

the i’th chain.

2. The initial current permutation α is the empty permutation. For every
i = 1, ..., r, the current first vertex on the i’th chain has index mi = 1
and set S

(i)
ni+1 = ∅ and ρ

(i)
ni+1 = −∞.

3. For every i = 1, ..., r and j = 1, ..., ni, compute S
(i)
j and ρ

(i)
j .

7

4. Choose an index i so that ρ(i)
mi

= max1≤t≤r ρ
(t)
mt

. Let S(i)
mi

= S
(i)
mi,k

.

Append the elements of S(i)
mi

, in their natural order, to α. Setmi = k+1.

5. If all S
(i)
j are empty, stop; α is optimal. Otherwise, return to Step 4.

By the discussion above we obtain the following characterization of for-
ward optimal rankings.

Theorem 5.1 A ranking α is forward optimal if and only if it can be gen-
erated by Algorithm 1.

To illustrate the last theorem consider the complete multipartite PCD H
treated in [7], Fig.4. The PCD H has colour classes V1 = {a, b}, V2 = {c}
and V3 = {d, e}. The positive scores are σ+(a) = 2.6, σ+(b) = 1.3, σ+(c) =
1.7, σ+(d) = 1, σ+(e) = 1.4. The only collection Λ satisfying (3) is
Λ = {(a, b), (c), (e, d)}. Hence, we obtain ω(a) = 2.6, ω(b) = 2.3, ω(c) =
1.7, ω(e) = 1.4, ω(d) = 2. The ρ∗-maximal sets and their averages of ω are
S ′1 = {a}, ρ′1 = 2.6, S ′2 = {b}, ρ′2 = 2.3, S ′′1 = {c}, ρ′′1 = 1.7, S ′′′1 = {e, d},
ρ′′′1 = 1.7, S ′′′2 = {d}, ρ′′′2 = 2. Therefore, by Algorithm 1, FOR(H) =
{(a, b, e, d, c), (a, b, c, e, d)}. This set coincides with that constructed in [7]
using Theorem 4 of [7].

A fast implementation of Algorithm 1 is based on the following procedure
(Procedure 2) for finding S

(i)
j and ρ

(i)
j (in Step 3) due to Horn [5].

For j = ni, ni − 1, . . . , 1 (in that order) do the following 3 steps:

1. F (j) = j + 1 and ρ
(i)
j = ω(v

(i)
j)

2. While F (j) ≤ ni and ρ
(i)
j < ρ

(i)
F (j) do the following:

ρ
(i)
j =

ρ
(i)
j (F (j)− j) + ρ

(i)
F (j)(F (F (j))− F (j))

F (F (j))− j

F (j) = F (F (j))

3. S
(i)
j = {v(i)

j , v
(i)
j+1, . . . , v

(i)
F (j)−1}

8

Lemma 5.2 Procedure 2 computes all S
(i)
j and ρ

(i)
j (i = 1, 2, . . . , r j =

1, 2, . . . , ni) in time O(n).

Proof: Define a potential function Φ(j) as follows. Φ(j) is the minimum
integer so that FΦ(j)+1(j) = ni + 1 (e.g. Φ(ni) = 0 since F (ni) = ni + 1).
Clearly all Φ(j) ≥ 0, when j = 1, 2, . . . , ni. Let T (j) be the total time used
in the procedure, up to and including the point when we have computed
S

(i)
j , where a performance of Step 1 takes a total of one unit of time, and

each iteration of the while-loop (i.e. computing ρ
(i)
j and F (j)) takes one

unit of time. Step 1 sets T (ni) = 1, T (j) = T (j + 1) + 1, Φ(ni) = 0 and
Φ(j) = Φ(j + 1) + 1 when j = 1, 2, . . . , ni − 1. Each time one goes down
into the while-loop it decreases Φ(j) by one, but increases T (j) by one. This
means that T (j) + Φ(j) = 2(ni − j) + 1. Since Φ(1) ≥ 0, we get that
T (1) < 2ni, which provides the desired complexity. 2.

By Lemma 5.2 Steps 1, 2 and 3 can be completed in O(n) time. Now
by using an appropriate priority queue, such as a heap (see [11]), we can
perform Steps 4 and 5 in O(log r) time per iteration. Since there are at most
n iterations of Steps 4 and 5, we obtain the following:

Theorem 5.3 Algorithm 1 runs in time O(n log n).

Algorithm 1 can be easily modified to an algorithm for generating all
optimal forward rankings. It is less trivial, but still not difficult to obtain
an algorithm for computing proper forward ranks of the vertices of D. By
Lemma 4.3 (ii), we may fix a collection Λ satisfying (3) in the beginning of
the algorithm and, then, in the end recalculate the average rank of any vertex
as the mean of the ranks of all vertices from the same colour class having the
same positive score. The only non-trivial problem which arises here is how
to find the proper forward ranks of the vertices in ρ∗-maximal sets with the
same average of ω.

It is easy to see that, in order to solve the problem above, it is sufficient
to solve the following auxiliary problem. Let P = {P1, P2, . . . , Pr} be a

collection of sequences Pi = (R
(i)
1 , R

(i)
2 , . . . , R

(i)
qi

), where R
(i)
k are disjoint sets

of Vi and i = 1, 2, . . . , r; q1, q2, . . . , qr ≥ 1. A ranking, β, of all the sets
R

(i)
k is feasible if, for every i = 1, 2, ..., r, 1 ≤ s < j ≤ qi implies that

β(R(i)
s) < β(R

(i)
j). Let FP denote the set of all feasible rankings of the sets

9

in P . We wish to find EP (k, i), the average number of all vertices in front of

R
(i)
k taken over all feasible rankings of P , i.e.

EP (k, i) =
1

|FP |
∑

β∈FP

∑
β(X)<β(R

(i)
k)

|X|

For each i = 1, 2, ..., r and k = 1, 2, . . . , qi, EP (k, i) can be computed as
follows.

EP (k, i) =
∑k−1

k′=1 |R
(i)
k′ |+

∑r
i′=1
i′ 6=i

∑qi′
k′=0QP (k, k′, qi, qi′)

∑k′

k′′=1 |R
(i′)
k′′ |,

where QP (k, k′, qi, qi′) =

(
k+k′−1

k′

)(
qi+qi′−k−k′

qi′−k′

)
(

qi+qi′
qi′

)
To show that the formula above is correct we just notice thatQP (k, k′, qi, qi′)

is the probability that a randomly chosen β ∈ FP will have β(R
(i′)
k′) <

β(R
(i)
k) < β(R

(i′)
k′+1) where β(R

(i′)
0) = −∞ and β(R

(i′)
qi′+1) = ∞. Indeed, there

are
(

k+k′−1
k′

)
ways of permuting the first k − 1 sets of Pi together with the

first k′ sets of Pi′ , there are also
(

qi+qi′−k−k′

qi′−k′

)
ways of permuting the last qi−k

sets of Pi together with the last qi′ − k′ sets of Pi′ . The total number of per-
mutations of the sets in Pi together with the sets in Pi′ is

(
qi+qi′

qi′

)
. Obviously,

the formula above leads to a polynomial algorithm for finding all EP (k, i).

In order to keep the paper in appropriate length we omit a detailed con-
sideration of an algorithm for finding the proper forward ranks of the vertices
in D.

6 Acknowledgments

The authors would like to thank N. Alon, G. Brightwell and M. Kano for
some helpful correspondence, and both referees for some useful suggestions.

References

[1] G. Brightwell and P. Winkler, Counting linear extensions. Order 8 (1991) 225-242.

10

[2] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the
Theory of NP -Completeness, Freeman, San Fransisco, 1979.

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals Disc.
Math. 5 (1979) 287-326.

[4] G. Gutin, Determining the ranks of vertices in a complete multipartite graph of
paired comparisons. Automation and Remote Control no. 10 (1989) 139-147.

[5] W.A. Horn, Single machine job sequencing with treelike precedence ordering and
linear delay penalties. SIAM J. Appl. Math. 23 (1972) 189-202.

[6] M. Kano, Ranking the vertices of an r-partite paired comparison digraph. Disc. Appl.
Math. 17 (1987) 245-253.

[7] M. Kano and A. Sakamoto, Ranking the vertices of a weighted digraph using the
length of forward arcs. Networks 13 (1983) 143-151.

[8] M. Kano and A. Sakamoto, Ranking the vertices of a paired comparison digraph
with normal completeness theorems. Bull. Faculty Engineering, Tokushima Univ. 20
(1983) 119-128.

[9] M. Kano and A. Sakamoto, Ranking the vertices of a paired comparison digraph.
SIAM J. Alg. Disc. Meth. 6 (1985) 79-92.

[10] J.B. Sidney, Decomposition algorithms for single-machine sequencing with prece-
dence relations and deferral costs. Operations Res. 23 (1975) 283-298.

[11] J.W.J. Williams, Algorithm 232: Heapsort. Comm. ACM 7 (1964) 347-348.

11

