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Abstract

An orientation of a digraph D is a spanning subdigraph of D obtained from D by
deleting exactly one arc between x and y for every pair x 6= y of vertices such that both
xy and yx are in D. Almost minimum diameter orientations of certain semicomplete
multipartite and extended digraphs are considered, several generalizations of results
on orientations of undirected graphs are obtained, some conjectures are posed.

1 Introduction, terminology and notation

An orientation of a digraph D is a spanning subdigraph of D obtained from D by deleting
exactly one arc between x and y for every pair x 6= y of vertices such that both xy and
yx are in D. In this paper, we consider almost minimum diameter orientations of certain
semicomplete multipartite and extended digraphs. We prove several generalizations of
results on orientations of undirected graphs obtained in [5, 12, 14], remark that some
others can be shown analogously, and pose two conjectures on the topic.
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While there is a large number of papers considering minimum diameter orientations of
undirected graphs, see e.g. [3, 6, 8, 9, 10, 11, 13, 14], there is only one recent work [7] on
minimum diameter orientations of digraphs, where the authors provide a motivation for
studying the topic. It is worth noting that there are a few papers [2, 4, 21] considering
finite diameter orientations of mixed graphs (or, equivalently, of directed graphs), but
none of these papers has dealt with minimizing the diameter of an orientation of a given
digraph. We restrict our attention to special classes of digraphs since even the problem
to check whether a given undirected graph has an orientation of diameter 2 is proved to
be NP-complete by Chvátal and Thomassen [3] and the upper bound on the diameter of
an orientation of an undirected graph obtained in [3] is far from best possible for many
classes of undirected graphs.

We use the standard terminology and notation on digraphs as given in [1]. We still
provide most of the necessary definitions for the convenience of the reader.

A biorientation of a digraph D is a spanning subdigraph of D obtained from D by
deleting exactly one arc between x and y for some pairs x 6= y of vertices such that both
xy and yx are in D. Clearly, an orientation of a digraph is a special case of biorientation. A
digraph D is symmetric if for every pair x 6= y of vertices in D either there is no arc between
x and y or both xy and yx are in D. Symmetric digraphs are in natural correspondence
to undirected graphs: for an undirected graph G, the symmetric digraph

↔
G is obtained

from G by replacing every edge xy with the pair xy, yx of arcs. Let D = (V, A) be a
digraph and let x, y be a pair of vertices in D. If xy ∈ A, we say x dominates y, and y is
dominated by x, and denote it by x→y. If X, Y ⊂ V , then X→Y means that every vertex
of X dominates every vertex of Y . Notice that X→Y does not mean that there is no arc
from Y to X. The converse of a digraph D is the digraph obtained from D by replacing
every arc xy of D by the arc yx.

All paths and cycles we consider in this paper are directed and simple. A path from
x to y is an (x, y)-path. The distance, distD(x, y), from x to y in D is the least length
of an (x, y)-path if y is reachable from x, and is equal to ∞, otherwise. We assume that
distD(x, x) = 0 for every vertex x ∈ V . The diameter diam(D) of D is the maximum
distance from a vertex to another vertex of D. Clearly, D is of finite diameter if and only
if D is strong. The minimum diameter of an orientation of a digraph D will be denoted
by diammin(D).

A digraph D is semicomplete if there is at least one arc between any pair of distinct
vertices of D. The (s1, s2, ..., sn)-extension (or just extension) D(s1, s2, ..., sn) of a digraph
D with vertices labelled, say, 1, 2, ..., n is obtained from D by replacing every vertex i by
a set of si independent (i.e. with no arc between them) vertices; more formally,

V (D(s1, s2, ..., sn)) = {(pi, i) : 1 ≤ pi ≤ si, 1 ≤ i ≤ n}
and (p, i)→(q, j) in D(s1, s2, ..., sn) if and only if i→j in D. A digraph D is semicomplete
k-partite, k ≥ 2, if the vertices of D can be partitioned into k partite sets V1, V2, ..., Vk
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such that every partite set is an independent set, but for every pair x, y of vertices from
distinct partite sets, xy or yx (or both) is in D. When k = 2 we speak of semicomplete
bipartite digraphs; when k ≥ 2 we speak of semicomplete multipartite digraphs. Clearly,
every semicomplete digraph with n vertices is a semicomplete n-partite digraph, and an
extension of a semicomplete digraph with n vertices is a semicomplete n-partite digraph.

Semicomplete digraphs, semicomplete multipartite digraphs and some families of ex-
tended digraphs have been extensively studied in the literature (cf. [1] and the bibliography
therein).

2 Semicomplete multipartite digraphs

Almost minimum diameter orientations of semicomplete digraphs and semicomplete bi-
partite digraphs have been studied in [7], where the following two theorems were proved.
Note that Theorem A was proved for a larger family of digraphs, quasi-transitive digraphs;
the digraph

↔
K1,n−1 clearly has no strongly connected orientation.

Theorem A If D is a strong semicomplete digraph, then

diammin(D) ≤ max{3, diam(D)},
and the bound is sharp.

Theorem B If D is a strong semicomplete bipartite digraph and D 6=↔
K1,n−1, then

diammin(D) ≤ max{5, diam(D)},
and the bound is sharp.

Based on Theorems A and B as well as on Theorem 2.3 stated and proved below, one
may guess that there is an absolute constant c such that for every strong semicomplete
multipartite digraph D, we have diammin(D) ≤ max{c, diam(D)}. However, the following
example shows that this guess is wrong.

To simplify the following discussion, let us first consider the definitions of forward and
backward arcs. For an ordering α = v1, v2, ..., vn of the vertices of a digraph D, an arc
vivj ∈ A(D) is forward (backward) if i < j (i > j).

For every integer l ≥ 1, let Dl be the semicomplete multipartite digraph with partite
sets V ′ = {x0}, V ′′ = {y0}, V1 = {x1, y1}, V2 = {x2, y2}, . . . , Vl = {xl, yl} such that the
arcs

x0y0, x0x1, x1x2, . . . , xl−1xl, y0y1, y1y2, . . . , yl−1yl

are the only forward arcs in the ordering β = x0, y0, x1, y1, . . . , xl, yl and x0y0x0 is the only
cycle of length two in Dl.
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Observe that the diameter of Dl is l + 1 as distDl
(x0, yl) = distDl

(y0, xl) = l + 1 and
that the diameter of both D−x0y0 and D− y0x0 is l +2 (while a shortest (x0, yl)-path in
Dl uses only forward arcs of β, a shortest (x0, yl)-path in Dl − x0y0 must use a backward
arc). It is not difficult to see that this example can also be modified to semicomplete
k-partite digraphs with fixed k ≥ 3 (there will be fewer backward arcs).

In view of this example and Theorems A and B, we suspect that the following conjecture
is correct.

Conjecture 2.1 There is an absolute constant c such that for every strong semicomplete
multipartite digraph D, we have diammin(D) ≤ diam(D) + c.

The following two theorems provide further support to this conjecture. Theorem 2.2
shows that the conjecture is true for strong semicomplete multipartite digraphs with a
bounded (from above by an absolute constant) number of cycles of length two; Theorem
2.3 indicates that the conjecture is correct for extended semicomplete digraphs. (Theorem
2.3 is also of independent interest as a generalization of Theorem A.)

Theorem 2.2 If D is a strong semicomplete multipartite digraph, D 6=↔
K1,n−1, containing

a cycle of length two, then for every cycle xyx of length two in D, we have

min{diam(D − xy), diam(D − yx)} ≤ max{5, diam(D) + 1}.

Proof: Assume that the theorem is false and that D is a counter-example to the theorem.
By Theorem B, we may assume that D is not bipartite. Let xyx be a cycle of length two
in D such that

min{diam(D − xy), diam(D − yx)} > max{5, diam(D) + 1}.

Therefore, there exist vertices sxy, txy, syx, tyx in D such that

distD−xy(sxy, txy) > max{5, diam(D) + 1} and distD−yx(syx, tyx) > max{5, diam(D) + 1}.

Let P = p0p1 . . . pl be an (sxy, txy)-path in D of minimum length (in particular, l ≤
diam(D)) and let Q = q0q1 . . . qm be an (syx, tyx)-path in D of minimum length (in par-
ticular, m ≤ diam(D)). Let ρ and η be defined such that xy = pρpρ+1 and yx = qηqη+1.

We now consider the following cases, which exhaust all possibilities. Indeed,

(ρ, η) ∈ [0, l−1]×[0,m−1] = [0, l−2]×[0,m−2]∪[1, l−1]×[1,m−1]∪{(0,m−1)}∪{(l−1, 0)},

where [p, q] = {p, p + 1, ..., q}.
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Case 1: ρ + 1 < l, η + 1 < m. The vertex pρ+2 must belong to the same partite
set as x, since otherwise y→pρ+2→x (by the minimality of l). This would give us a con-
tradiction against distD−yx(syx, tyx) > max{5,diam(D) + 1}. Analogously, qη+2 belongs
to the same partite set as y. Since pρ+2 belongs to the same partite set as x and qη+2

belongs to the same partite set as y, pρ+2 and qη+2 are adjacent. If qη+2→pρ+2, then
distD−xy(sxy, txy) = distD(sxy, txy), a contradiction. Analogously, if pρ+2→qη+2, then we
also get a contradiction.

Case 2: ρ > 0, η > 0. This case can be transformed into Case 1 by considering the
converse of D.

Case 3: ρ = 0, η + 1 = m. Since D is not bipartite, there exists a vertex in a
partite set different from those of x and y. Let w be such a vertex. Clearly, if x→w→y
or y→w→x, then we would get a contradiction. Thus, either {x, y}→w or w→{x, y}.
Assume that {x, y}→w (the other case can be handled analogously).

Let R = r0r1 . . . rt be a shortest path from w to pl in D. Clearly, R must use the arc
xy, since otherwise there is a path from x = p0 to pl of length at most diam(D) + 1 in
D − xy, a contradiction. Let ri = x and observe that i > 1.

If η = 0, then the path yr0r1 . . . ri is a path from q0 to qm of length at most diam(D)+1
in D − xy, a contradiction. Therefore η ≥ 1. Either ri or ri−1 is adjacent to qη−1, and
clearly the arc must go from ri or ri−1 to qη−1. If ri→qη−1, then we have a path of length
2 from x to y, a contradiction, so ri−1→qη−1. However, now the path

xr0r1 . . . ri−1qη−1ri+1ri+2 . . . rt

is a (p0, pl)-path of length at most diam(D) + 1 in D − xy, a contradiction.

Case 4: η = 0, ρ + 1 = l. This case can be transformed into Case 3 by considering
the converse of D. 2

Theorem 2.3 If T is a strong semicomplete digraph with n vertices, n ≥ 3, and si ≥ 1
for i = 1, 2, . . . , n, then

diammin(T (s1, s2, ...sn)) ≤ max{3, diam(T )}.

Proof: By Theorem A, there exists an orientation T ′ of T such that

diam(T ′) ≤ max{3, diam(T )}.

Let D = T (s1, s2, . . . , sn) and D′ = T ′(s1, s2, . . . , sn). We will show that D′ is an orienta-
tion of D such that

diam(D′) ≤ max{3,diam(T ′)} ≤ max{3,diam(T )},
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which would complete the proof.

Let V1, V2, ..., Vn be the partite sets of the semicomplete n-partite digraph D; |Vi| = si

for i = 1, 2, . . . , n. Let x and y be arbitrary vertices in D′ and assume that x ∈ Vi and
y ∈ Vj . If i 6= j, then the path from i to j of length at most diam(T ′) in T ′ can be easily
transformed into a path from x to y of length at most diam(T ′) in D′. So, we may assume
that i = j. Let V ′ be the set of all the vertices dominated by Vi in D′ and V ′′ the set of
all the vertices dominating Vi. Clearly, V (D′) = Vi ∪ V ′ ∪ V ′′ and there must be an arc
uw from V ′ to V ′′, as otherwise T ′ would not be strong. Now the path xuwy is a path of
length 3 in D′, so we are done. 2

The sharpness of the bound of this theorem follows from the sharpness of the bound
of Theorem A. Theorem 2.3 also generalizes the following result.

Theorem C [5, 14] If G is a complete k-partite (undirected) graph and k ≥ 3, then
diammin(G) ≤ 3, and the bound is sharp.

3 Extended digraphs

The aim of this section is to provide a generalization to the following theorem as well as
to some other results in [12].

Theorem D [12] For a connected graph G of order n ≥ 3 and integers s1, s2, ..., sn ≥ 2,
we have diam(G) ≤ diammin(G(s1, s2, ..., sn)) ≤ diam(G) + 2.

Theorem D is valid for n ≥ 3. The case n = 2 is covered in the following result.

Theorem E [19] If s1 ≥ s2 ≥ 2, then diammin(Ks1,s2) = 3 for s1 ≤ ( s2

bs2/2c
)
, and

diammin(Ks1,s2) = 4, otherwise.

Theorem 3.1 Let H be a strong digraph of order n ≥ 3 and let D = H(s1, s2, ..., sn) with
si ≥ 2, 1 ≤ i ≤ n. Then diam(H) ≤ diammin(D) ≤ diam(H) + 2.

Theorem 3.1 can be proved similarly to Theorem D with only some minor alterations
and additions needed. However, we provide a proof of Theorem 3.1 for the sake of com-
pleteness.

The requirement n ≥ 3 is important as one can see from Theorem E (diam(K2) = 1,
but diammin(Ks,2) = 4 for s ≥ 3). Clearly, diam(H) ≤ diam(D′) for every orientation D′

of D. To prove the more difficult part of the inequality in Theorem 3.1, we will use the
following lemma.
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Lemma 3.2 Let ti, si be integers such that 2 ≤ ti ≤ si for 1 ≤ i ≤ n and let H be a
strong digraph with vertices 1, 2, ..., n, n ≥ 3. If the digraph D′ = H(t1, t2, ..., tn) admits
an orientation F ′ in which every vertex v = (p, i), such that i belongs to a cycle in H of
length two, lies on a cycle Cv of length not exceeding m, then D = H(s1, s2, ..., sn) has an
orientation F with diameter at most max{m, diam(F ′)}.

Proof: Given an orientation F ′ of D′, we define an orientation F of D as follows. We
have (p, i)→(q, j) in F if and only if one of the following holds:

(a) p < ti, q < tj and (p, i)→(q, j) in F ′.

(b) p < ti, q ≥ tj and (p, i)→(tj , j) in F ′.

(c) p ≥ ti, q < tj and (ti, i)→(q, j) in F ′.

(d) p ≥ ti and q ≥ tj and (ti, i)→(tj , j) in F ′.

Let u = (p, i) and v = (q, j) be a pair of distinct vertices in F . If i 6= j, then it is clear
that distF (u, v) ≤ diam(F ′) (we can use obvious modifications of the corresponding paths
in F ′). We have the same result if i = j but p < ti or q < tj . Assume that i = j, p ≥ ti
and q ≥ tj . If i belongs to a cycle in H of length two, then using the cycle Cu we conclude
that distF (u, v) ≤ m. If i belongs to no cycle in H of length two, then since u, v dominate
and are dominated by the same vertices and since distF ((1, i), (2, i)) ≤ diam(F ), we have
dist((p, i), (q, i)) ≤ diam(F ). 2

Proof of Theorem 3.1: We prove that there exists an orientation D′ of D such that
diam(D′) ≤ diam(H)+2. If diam(H) = 1, then this claim follows from Theorem C. Thus,
we may assume that diam(H) ≥ 2.

Define an orientation F ′ of H(t1, t2, ..., tn), where every ti = 2, as follows:

(1, i)→(1, j)→(2, i)→(2, j)→(1, i) if and only if i < j. (1)

Let u = (p, i) and v = (q, j) be a pair of distinct vertices in F ′. We show that
distF ′(u, v) ≤ diam(H)+2. Suppose that ik1k2 . . . ksj is a path of length s+1 = distH(i, j)
in H. Then the path Q = (p, i)(k∗1, k1)(k∗2, k2) . . . (k∗s , ks)(j∗, j), where x∗ = 1 or 2, is
of length distH(i, j) in F ′. If j∗ = q, then the last inequality follows. Otherwise, i.e.
j∗ 6= q, the path Q(3− k∗s , ks)(q, j) is of length distH(i, j) + 2 in F ′. Thus, distF ′(u, v) ≤
diam(H) + 2. Hence, diam(F ′) ≤ diam(H). By (1), every vertex (p, i) of F ′, such that i
lies on a cycle in H of length two, belongs to a cycle of length 4. Now this theorem follows
from Lemma 3.2. 2

The following result as well as its corollary can be proved similarly to Theorem 2 and
its corollary in [12].
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Theorem 3.3 Let H be a strong digraph of order n ≥ 3 and let D = H(s1, s2, ..., sn) with
si ≥ 4, 1 ≤ i ≤ n be of diameter at least four. Then diammin(D) = diam(H).

Corollary 3.4 Let H be a strong digraph of order n ≥ 3 and let D = H(s1, s2, ..., sn)
with si ≥ 4, 1 ≤ i ≤ n be of diameter at least three. Then diammin(D) ≤ diam(H) + 1.

Some other results in [12] can also be generalized to orientations of digraphs (the
results on cycles). Finally, we would like to suggest the following generalization of the
conjecture in [12] (the conjecture in [12] is the same as Conjecture 3.5, but only for
connected undirected graphs). The conjecture in [12] seems quite difficult; it was settled
for trees in [20].

Conjecture 3.5 Let H be a strong digraph of order n ≥ 3 and let D = H(s1, s2, ..., sn)
with si ≥ 2, 1 ≤ i ≤ n be of diameter at least three. Then diammin(D) ≤ diam(H) + 1.

This conjecture is correct for semicomplete digraphs H, see Theorem 2.3, and H =
↔
T ,

where T is a tree [20].
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[19] L. Šoltés, Orientations of graphs minimizing the radius or the diameter. Math. Slovaca 36 (1986) 289–296.

[20] E.G. Tay, Optimal orientations of graphs, PhD thesis, National University of Singapore, 1999.

[21] L. Volkmann, Spanning multipartite tournaments of semicomplete multipartite digraphs. ARS Combinatoria
8 (2001) 271-278.

9


