Parameterized Complexity for Graph Linear Arrangement Problems

Gregory Gutin

Royal Holloway, U. of London (RHUL) and University of Haifa

joint with Arash Rafiey (RHUL), Stefan Szeider (Durham University), and Anders Yeo (RHUL)

Linear Arrangements

A linear arrangement of a graph G = (V, E)is a one-to-one mapping $\alpha : V \rightarrow \{1, \dots, |V|\}$. The length of an edge $uv \in E$ relative to α is

$$\lambda_{\alpha}(uv) = |\alpha(u) - \alpha(v)|.$$

The cost $c(\alpha, G)$ of a linear arrangement α is

$$\mathsf{c}(\alpha,G) = \sum_{e \in E} \lambda_{\alpha}(e).$$

Linear arrangements of minimal cost are optimal; ola(G) denotes the cost of an optimal linear arrangement of G.

Linear arrangements α and β with

 $c(\alpha, P_4) = 4 \text{ and } c(\beta, P_4) = 3$

Linear Arrangement Problem (LAP)

It is the problem of deciding, given a graph Gand an integer k, whether $ola(G) \le k$.

LAP is a classical NP-complete problem (Garey and Johnson, 1979).

Goldberg and Klipker (1976) were the first to obtain a polynomial-time algorithm for computing optimal linear arrangements of trees. Faster algorithms for trees were obtained by Shiloach (1979) and Chung (1984).

Fixed Parameter Tractability: Definitions

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k (usually an integer) is the parameter. Π is called fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O(f(k)|I|^c)$, where |I| is the size of I, f(k) is a computable function, and c is a constant independent from k and I.

A reduction to problem kernel (or kernelization) is a polynomial-time many-to-one transformation from the parameterized problem to itself, such that (i) (I,k) is reduced to (I',k')with $k' \leq ck$, $|I'| \leq g(k)$, for some constant c and some computable function g, and (ii) $(I,k) \in \Pi$ if and only if $(I',k') \in \Pi$. Here, (I',k') is called the problem kernel.

Fixed Parameter Tractability: Approaches

FPT: one of the approaches to solve NP-hard problems

FPT applicability: bioinformatics (e.g., M.A. Langston, clique computation via vertex cover)

FPT applicability: preprocessing rules for exact and approx. computations

Well-known FPT approaches:

- (a) Reduction to problem kernel (lots)
- (b) Bounded search trees (even more)
- (c) Color-coding

Parameterized LAP

The following is a straightforward way to parameterize LAP (Fernau, 2005, Serna and Thilikos, 2005):

Parameterized LAP

Instance: A graph G. Parameter: A positive integer k. Question: Does G have a linear arrangement of cost at most k?

An edge has length at least 1 in any LA. Thus, for a graph G with m edges we have $ola(G) \ge m$. Consequently, parameterized LAP is FPT by trivial reasons.

LAPAGV

Consider the net cost $nc(\alpha, G)$ of a linear arrangement α defined as follows: $nc(\alpha, G) = \sum_{e \in E} (\lambda_{\alpha}(e) - 1)$. The net cost of an optimal LA of G is $ola^+(G) = ola(G) - m$. The following parameterization of LAP is due to (Fernau, 2005) who asked whether LAPAGV is FPT ?

LA parameterized above guaranteed value (LAPAGV)

Instance: A graph G. Parameter: A positive integer k. Question: Does G have a linear arrangement of net cost at most k?

Lemmas

Lemma 1. Let G_1, \ldots, G_p be the connected components of a graph G. Then $ola^+(G) = \sum_{i=1}^p ola^+(G_i)$.

Lemma 2. If G is a connected bridgeless graph of order $n \ge 1$, then $ola^+(G) \ge (n-1)/2$.

Proof: Assume $n \ge 3$; *G* is 2-edge-connected. Let α be an optimal linear arrangement of *G* and $u = \alpha^{-1}(1)$, $w = \alpha^{-1}(n)$.

Since G is 2-edge-connected, by Menger's Theorem there are two paths P, P' between u to w such that $E(P) \cap E(P') = \{u, w\}$. Let G' = $P \cup P'$. We can prove $|E(G')| \leq 3(n-1)/2$. We obtain $\operatorname{ola}^+(G) = \operatorname{nc}(\alpha, G) \geq \operatorname{nc}(\alpha, G') \geq$ $2(n-1) - |E(G')| \geq (n-1)/2$.

9

Lemma 3

Lemma 3. Let G be a connected graph. Let X be a vertex set of G such that G[X] is connected and let G - X have connected components G_1, G_2, \ldots, G_r with n_1, n_2, \ldots, n_r vertices, respectively, such that $n_1 \leq n_2 \leq \ldots \leq n_r$. Then $\operatorname{ola}^+(G) \geq \operatorname{ola}^+(G[X]) + \sum_{i=1}^{r-2} n_i$.

 $ola^+(G) \ge ola^+(G[X]) + (n_1 + n_2 + n_3 + n_4)$

Proof: We call a vertex $u \in V(G)$ α -special if G-u is connected and $\alpha(u) \notin \{1,n\}$. Let α be an optimal LA of G. Assume $r \geq 3$. Each non-trivial G_i has a pair u_i, v_i of distinct vertices such that $G_i - u_i$ and $G_i - v_i$ are connected. If G_i is trivial, then set $u_i = v_i$. Since $r \geq 3$, for some $j \in \{1, 2, \ldots, r\}$, $\alpha(u_j) \notin \{1, n\}$ and $\alpha(v_j) \notin \{1, n\}$. Now we claim that there is a vertex $u \in V(G_j)$ such that G-u is connected. Indeed, we set $u = u_j$ if there are edges between v_j and G[X], we set $u = v_j$, otherwise.

We have proved that G has an α -special vertex u not in X. Note: $ola^+(G) \ge ola^+(G-u) + 1$ for an α -special vertex u of G. Procedure: while G - X has a least three components, choose an α -special vertex $u \notin X$ of G and replace G with G - u.

12

Lemma 4

A bridge e of G is k-separating if both components of G - e have more than k vertices.

Lemma 4. Let k be a positive integer and let G be a connected graph with n vertices with $ola^+(G) \le k$. Then either G has a k-separating bridge or $n \le 4k + 1$.

Proof: If *G* is a bridgeless graph, by Lemma 2, $n \leq 2k+1$. Assume: *G* has a bridge. Choose a bridge e_1 with maximal min{ $|V(F_1)|, |V(F_0)|$ }, where F_1, F_0 are the components of $G - e_1$. Assume: $|V(F_1)| \leq |V(F_0)|$. Since e_1 is not a *k*-separating bridge, $|V(F_1)| \leq k$. Let F_0^* the bridgeless component of F_0 containing a vertex incident to e_1 . If $F_0 = F_0^*$ then $|V(F_0)| \leq 2k+1$ and we are done; hence we assume that $F_0 \neq$ F_0^* .

Let e_2, \ldots, e_r denote the bridges of F_0 that are incident to vertices in F_0^* . Moreover, let F_2, \ldots, F_r denote the corresponding connected components of $F_0 - V(F_0^*)$.

Assume: $|V(F_2)| \ge |V(F_3)| \ge ... \ge |V(F_r)|$. Easy to see: $|V(F_1)| \ge |V(F_2)|$. By Lemma 3, $ola^+(G) \ge ola^+(F_0^*) + \sum_{i=3}^r |V(F_i)|$. Thus, $\sum_{i=3}^r |V(F_i)| \le k - ola^+(F_0^*)$. Since $|V(F_2)| \le |V(F_1)| \le k$ and, by Lemma 2, $|V(F_0^*)| \le 2 \cdot ola^+(F_0^*) + 1$, we obtain that

 $n = |V(F_0^*)| + \sum_{i=1}^r |V(F_i)| \le (2 \cdot \text{ola}^+(F_0^*) + 1) + (3k - \text{ola}^+(F_0^*)) = 3k + \text{ola}^+(F_0^*) + 1 \le 4k + 1.$

Suppressing Lemma

Let G be a graph and let v be a vertex of degree 2 of G. Let vu_1, vu_2 denote be the edges incident with v. Assume that $u_1u_2 \notin E(G)$. We obtain a graph G' from G by removing v (and the edges vu_1, vu_2) from G and adding instead the edge u_1u_2 . We say that G' is obtained from G by suppressing vertex v. Furthermore, if the two edges incident with v are k-separating bridges for some positive integer k, then we say that v is k-suppressible.

Lemma 5. Let G be a connected graph and let v be an $ola^+(G)$ -suppressible vertex of G. Then $ola^+(G) = ola^+(G')$ holds for the graph G' obtained from G by suppressing v.

Kernel Theorems

Theorem 1. Let k be a positive integer, and let G be a connected graph without k-suppressible vertices. If $ola^+(G) \le k$, then G has at most 5k + 2 vertices and at most 6k + 1 edges.

Theorem 2. Let f(n,m) be the time sufficient for checking whether $ola^+(G) \le k$ for a connected graph G with n vertices and m edges. Then f(n,m) = O(m+n+f(5k+2,6k+1)).

Theorem 3. We have $f(5k + 2, 6k + 1) = O(5.88^k)$.

18

Serna-Thilikos Problems (2005)

Vertex Average Min Linear Arrangement

Instance: A graph G. Parameter: A positive integer k. Question: Does G have an LA of cost $\leq k|V(G)|$?

Edge Average Min Linear Arrangement

Instance: A graph G. Parameter: A positive integer k. Question: Does G have an LA of cost $\leq k|E(G)|$?

Serna-Thilikos Question

Q.: Are the problems FPT ?

Theorem 4. For each fixed $k \ge 2$, both problems are NP-complete.

A.: No, unless P=NP.

Serna-Thilikos Problem on Graph Profile (2005)

For an LA α of G = (V, E), its profile $prf(\alpha, G) =$

 $\sum_{v \in V} \max\{\alpha(v) - \alpha(u) : u \in N[v]\}.$

Vertex Average Profile

Instance: A graph G. Parameter: A positive integer k. Question: Does G have an LA of profile $\leq k|V(G)|$?

Theorem 5. For each fixed $k \ge 2$, the above problem is NP-complete.