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Abstract

We study the following two functions: d(n, c) and ~d(n, c); d(n, c) (~d(n, c))
is the minimum number k such that every c-edge-colored undirected (directed)
graph of order n and minimum monochromatic degree (out-degree) at least k
has a properly colored cycle. Abouelaoualim et al. (2007) stated a conjecture
which implies that d(n, c) = 1. Using a recursive construction of c-edge-colored
graphs with minimum monochromatic degree p and without properly colored
cycles, we show that d(n, c) ≥ 1

c (logc n− logc logc n) and, thus, the conjecture
does not hold. In particular, this inequality significantly improves a lower
bound on ~d(n, 2) obtained by Gutin, Sudakov and Yeo in 1998.
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1 Introduction

All directed and undirected graphs considered in this paper are simple, i.e., have no
loops or parallel edges. We consider only directed cycles in digraphs; the term cycle
(in a digraph) will always mean a directed cycle.

Let G = (V, E) be a directed or undirected graph, and let χ : E → {1, 2, . . . , c}
be a fixed (not necessarily proper) edge-coloring of G with c colors, c ≥ 2. With
given χ, G is called a c-edge-colored (or, edge-colored) graph. A subgraph H of G
is called properly colored if χ defines a proper edge-coloring of H, i.e., no vertex
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of H is incident to a pair of edges of the same color. For a vertex of a c-edge-
colored graph G, di(x) denotes the number of edges of color i incident with x. Let
δmon(G) = min{di(x) : x ∈ V (G), i ∈ {1, 2, . . . , c}}. If G is directed, d+

i (x) denotes
the number of edges of color i in which x is tail. Let δ+

mon(G) = min{d+
i (x) : x ∈

V (G), i ∈ {1, 2, . . . , c}}.
The authors of [2] stated the following:

Conjecture 1.1 Let G be a c-edge-colored undirected graph of order n with δmon(G) =
d ≥ 1. Then G has a properly colored cycle of length at least min{n, cd}. Moreover,
if c > 2, then G has a properly colored cycle of length at least min{n, cd + 1}.

In the next section, using a recursive construction of c-edge-colored graphs with
minimum monochromatic degree d and without properly colored cycles, we show
that this conjecture does not hold. Moreover, for every d ≥ 1 there exists an edge-
colored graph G with δmon(G) ≥ d and with no properly colored cycle.

We will study the following two functions: d(n, c) and ~d(n, c); d(n, c) (~d(n, c)) is
the minimum number k such that every c-edge-colored graph (digraph) of order n
and minimum monochromatic degree (out-degree) at least k has a properly colored

cycle. Gutin, Sudakov and Yeo [5] proved the following bounds for ~d(n, 2)

1

4
log2 n +

1

8
log2 log2 n + Θ(1) ≤ ~d(n, 2) ≤ log2 n− 1

3
log2 log2 n + Θ(1) (1)

Using our construction, we prove that ~d(n, 2) ≥ 1
2
(log2 n − log2 log2 n). This

improves the lower bound in (1). (The lower bound in (1) was obtained using

significantly more elaborate arguments.) This bound on ~d(n, 2) follows from lower

and upper bounds on d(n, c) and ~d(n, c) obtained for each value of c. The bounds

imply that d(n, c) = Θ(log2 n) and ~d(n, c) = Θ(log2 n) for each fixed c ≥ 2.

Properly colored cycles have been studied in several papers, for a survey, see
Chapter 11 in [3]. Properly colored cycles in 2-edge-colored undirected graphs gen-
eralize cycles in digraphs and are of interest in genetics [3]. More recent papers on
properly colored cycles include [1, 2, 4]. Interestingly, the problem to check whether
an edge-colored undirected graph has a properly colored cycle is polynomial time
solvable (we can even find a shortest properly colored cycle is polynomial time [1]),
but the same problem for edge-colored digraphs is NP-complete [5].
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Figure 1: Edge-coloured graphs with no PC cycles.

2 Results

Theorem 2.1 For each d ≥ 1 there is an edge-colored graph G with δmon(G) = d
and with no properly colored cycle.

Proof: Let (p1, p2, . . . , pc) be a vector with nonnegative integral coordinates pi.
For an arbitrary (p1, p2, . . . , pc), G(p1, p2, . . . , pc) is recursively defined as follows:
take a new vertex x and graphs H1 = G(p1 − 1, p2, p3, . . . , pc−1, pc) if p1 > 0, H2 =
G(p1, p2 − 1, p3, . . . , pc−1, pc) if p2 > 0, . . ., Hc = G(p1, p2, p3, . . . , pc−1, pc − 1) if
pc > 0 and add an edge of color i between x and and every vertex of Hi for each i
for which pi > 0. In particular, G(0, 0, . . . , 0) = K1. (Fig. 1 depicts G(1, 0), G(0, 1)
and G(1, 1).)

It is easy to see, by induction on p1 + p2 + · · · + pc, that G = G(p1, p2, . . . , pc)
has no properly colored cycle and δmon(G) = min{pi : i = 1, 2, . . . , c}. 2

In fact, for each d ≥ 1 there are infinitely many edge-colored graphs G with
δmon(G) = d and with no properly colored cycle. Indeed, in the construction of
G(p1, p2, . . . , pc) above we may assume that G(0, 0, . . . , 0) is an edgeless graph of
arbitrary order.

Lemma 2.2 Let n(p1, p2, . . . , pc) be the order of G(p1, p2, . . . , pc) and let nc(p) =
n(p1, . . . , pc) for p = p1 = · · · = pc. Then n(p1, . . . , pc) ≤ s2s, where s = p1 + p2 +
. . . + pc, provided s > 0 and p ≥ 1

c
(logc nc(p)− logc logc nc(p)).

Proof: We first prove n(p1, . . . , pc) ≤ s2s by induction on s ≥ 1. The inequality
clearly holds for s = 1. By induction hypothesis, for s ≥ 2, we have
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n(p1, . . . , pc) ≤ 1 +
c∑

i=1

{n(p1, . . . , pi−1, pi − 1, pi+1, . . . , pc) : pi > 0}

≤ 1 + c(s− 1)cs−1 ≤ scs

Thus, nc(p) ≤ cp · ccp. Observe that nc(p) > aca provided a = logc nc(p) −
logc logc nc(p) and, thus, cp ≥ logc nc(p)− logc logc nc(p). 2

Corollary 2.3 We have ~d(n, c) ≥ d(n, c) ≥ 1
c
(logc n− logc logc n).

Proof: Let H be a c-edge-colored undirected graph and H∗ be a digraph obtained
from H by replacing every edge e = xy with arcs xy and yx both of color χ(e).
Clearly, H has a properly colored cycle if and only if H∗ has a properly colored
cycle. Thus, ~d(n, c) ≥ d(n, c). The inequality d(n, c) ≥ 1

c
(logc n− logc logc n) follows

from Lemma 2.2 and the fact that graphs G(p, p, . . . , p) have no properly colored
cycles. 2

We see that ~d(n, 2) ≥ 1
2
(log2 n − log2 log2 n). This is an improvement over the

lower bound on ~d(n, 2) in (1). Using the upper bound in (1), we will obtain an upper

bound on ~d(n, c) and, thus, d(n, c).

Proposition 2.4 We have ~d(n, c) ≤ 1
bc/2c(log2 n− 1

3
log2 log2 n + Θ(1)).

Proof: Let D be a c-edge-colored digraph of order n with δmon(D) ≥ 1
bc/2c(log2 n−

1
3
log2 log2 n + Θ(1)). Let D′ be the 2-edge-colored digraph obtained from D by

assigning color 1 to all edges of D of color 1, 2, . . . , bc/2c and color 2 to all edges
of D of color bc/2c + 1, bc/2c + 2, . . . , c. It remains to observe that δmon(D′) ≥
log2 n − 1

3
log2 log2 n + Θ(1) and every properly colored cycle in D′ is a properly

colored cycle in D. 2

Corollary 2.5 For every fixed c ≥ 2, we have d(n, c) = Θ(log2 n) and ~d(n, c) =
Θ(log2 n).
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3 Open Problems

We believe that there are functions s(c), r(c) dependent only on c such that d(n, c) =

s(c) log2 n(1 + o(1)) and ~d(n, c) = r(c) log2 n(1 + o(1)). In particular, it would be
interesting to determine s(2) and r(2).
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