
When n-cycles in n-partite tournaments are longest cycles

Gregory Gutin∗

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
G.Gutin@rhul.ac.uk

Arash Rafiey Hafshejani
Department of Computer Science
Sharif University of Technology

Azadi, Tehran, Iran
rafiey@mehr.sharif.edu

Abstract

An n-tournament is an orientation of a complete n-partite graph. It was proved
by J.A. Bondy in 1976 that every strongly connected n-partite tournament has an
n-cycle. We characterize strongly connected n-partite tournaments in which a longest
cycle is of length n and, thus, settle a problem in L. Volkmann, Discrete Math. 245
(2002) 19-53.
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1 Introduction

We use terminology and notation of [2]; all necessary notation and a large part of termi-
nology used in this paper are provided in the next section.

A very informative paper [9] of L. Volkmann is the latest survey on cycles in an
important class of digraphs, multipartite tournaments. Cycles in multipartite tournaments
were earlier overviewed in [3, 5, 8]. Along with description of a large number of results on
cycles in multipartite tournaments, L. Volkmann [9] formulates several open problems.

J.A. Bondy [4] proved that every strong n-partite tournament has a cycle of length n.
Problem 3.2 in [9] is as follows:

Problem 1.1 Characterize all strong n-partite tournaments in which a longest cycle is of
length n.

This seemingly simple problem turns out to be fairly non-trivial. In this paper we
provide such a characterization in Theorems 3.3 and 3.11 and prove that our necessary
and sufficient conditions are verifiable in polynomial time.
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2 Terminology and Notation

A digraph obtained from an undirected graph G by replacing every edge of G with a
directed edge (arc) with the same end-vertices is called an orientation of G. An oriented
graph is an orientation of some undirected graph. A tournament is an orientation of a
complete graph, and an n-partite tournament is an orientation of a complete n-partite
graph. Partite sets complete graphs become partite sets of n-partite tournaments. An
n-partite tournament obtained from a tournament on n vertices by replacing every vertex
with an independent set of vertices is an extended tournament. In an extended tournament
all arcs between two partite sets are oriented in the same direction.

The terms cycle and path mean simple directed cycle and path. A cycle of length k
is a k-cycle. For a cycle C = v1v2 . . . vkv1, C[vi, vj ] denotes the path vivi+1 . . . vj which is
part of C. A cycle subdigraph of a digraph D is a collection of vertex-disjoint cycles of D.
A digraph D is strong if for every pair x, y of vertices in D there exist paths from x to y
and from y to x. For a set X of vertices of a digraph D, D〈X〉 denotes the subdigraph of
D induced by X.

For sets T, S of vertices of a digraph D = (V,A), T→S means that for every vertex
t ∈ T and for every vertex s ∈ S, we have ts ∈ A, and T⇒S means that for no pair s ∈ S,
t ∈ T , we have st ∈ A. While for oriented graphs T→S implies T⇒S, this is not always
true for general digraphs. We also use the notation T ⇀↽ S, if neither T → S nor S → T .
If u→v (i.e., uv ∈ A), we say that u dominates v and v is dominated by u.

The following simple argument is called directed duality. Many properties of a given
digraph D are preserved when we reverse all arcs of D and obtain a new digraph D′. For
example, D has a k-cycle if and only if D′ does.

3 Characterization

The following simple lemma is very useful in our investigation. Similar, yet different
results, can be found in [1, 6].

Lemma 3.1 If a strong n-partite tournament, n ≥ 3, has an k-cycle containing vertices
from less than k partite sets, then D has an m-cycle with m > n.

Proof: Let Z = z1z2 . . . zsz1 be a longest cycle in D with at least two vertices from the
same partite set. Assume that s ≤ n. Consider the set S of vertices from partite sets not
in Z. If a vertex x ∈ S has arcs to and from S, then there exists i such that zi→x→zi+1,
and thus x can be inserted in Z to get a longer cycle with at least two vertices from the
same partite set, a contradiction.
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Thus, we may assume that either S→V (Z) or V (Z)→S. Since both alternatives can
be treated similarly, we consider only V (Z)→S. Since D is strong, we can find a path
P from a vertex x in S to Z. Let P be a shortest such path and let zi be the terminal
vertex of P . Then PZ[zi+1, zi−1]x is a longer cycle with at least two vertices from the
same partite set, a contradiction. 2

The following theorem allows us to settle Volkmann’s problem for extended tourna-
ments:

Theorem 3.2 [7] The length of a longest cycle in a strong extended tournament D equals
the maximal number of vertices in a cycle subdigraph of D. A longest cycle in D can be
found in time O(p3), where p is the number of vertices in D.

As a special case, we immediately obtain the following:

Theorem 3.3 In a strong extended tournament D with n partite sets, the length of a
longest cycle equals n if and only if the maximal number of vertices in a cycle subdigraph
of D equals n. One can verify whether the length of a longest cycle in D is n in time
O(p3), where p is the number of vertices in D.

There exist strong n-partite tournaments D that are not extended tournament, yet ev-
ery longest cycle in D is of length n. Consider a strong 4-partite tournament H with partite
sets V1 = {v1}, V2 = {v1, v

′
1}, V3 = {v3}, V4 = {v4} and such that V1→V2→V3→V4→V1→V3

and v′2→v4→v2. It is not difficult to check that H has no Hamilton cycle.

Theorem 3.3 allows us, from now on, to consider only strong n-partite tournaments
D, which are not extended tournaments. We know that D has an n-cycle C and we
assume that D has no longer cycle. Let V1, V2, . . . , Vn be partite sets of D. By Lemma
3.1, we may assume that C = v1v2 . . . vnv1, vi ∈ Vi, i = 1, 2, . . . , n Let U [Vi, Vj ] denote
Vi

⋃
Vi+1

⋃ · · ·⋃ Vj , where all indices are taken modulo n.

To study the structure of D we prove the following series of lemmas.

Lemma 3.4 Let T (S) be the maximal subset of D − V (C) such that T⇒V (C) and
V (C)⇒S. Then T = S = ∅.

Proof: Assume that T 6= ∅. Let U = V (D) − (V (C) ∪ S ∪ T ). Since D is strong, there
exists an arc xy from S ∪ U to T. There is a (shortest) path from a vertex vi ∈ C to x.
Since y dominates either vi+1 or vi+2 or both, it is easy to see that D has a cycle of length
more than n. Thus, |T | = 0, a contradiction. By directed duality, |S| = 0. 2

Lemma 3.5 For every i ∈ {1, 2, . . . , n}, Vi−1→Vi, where V0 = Vn.
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Proof: Clearly, the lemma holds if both Vi−1 and Vi are singletons. By directed duality,
we may assume that |Vi| ≥ 2. Let Vi−1 = {vi−1} and z ∈ Vi − vi. If z → vi−1 then
z → vi−2, since otherwise the cycle zC[vi−1, vi−2]z has length more than n. By continuing
this argument we conclude that z⇒C, which contradicts Lemma 3.4.

It remains to consider the case of |Vi−1| ≥ 2. Let y ∈ Vi−1 − vi−1. Suppose that z→y.
By directed duality Vi−1→vi and thus, in particular, y→vi. Hence, yC[vi, vi−1]zy is an
(n + 2)-cycle, a contradiction. Thus, Vi−1→Vi. 2

This lemma implies immediately the following:

Corollary 3.6 For every choice wi ∈ Vi, i = 1, 2, . . . , n, w1w2 . . . wnw1 is a cycle in D.

Lemma 3.7 For every pair of non-singletons Vi, Vj we have that either Vi → Vj or
Vj → Vi.

Proof: Suppose that neither Vi → Vj nor Vj → Vi holds. Then, without loss of generality,
we may assume that there are vertices x ∈ Vi and y, z ∈ Vj such that z→x→y. By Corollary
3.6, we may assume that x 6= vi (we may replace vi in C by another vertex in Vi). By
Lemma 3.5, we have that |i − j| > 1 and vj−1→{y, z}→vj+1. Thus, xyC[vj+1, vj−1]zx is
an (n + 1)-cycle, a contradiction. 2

Lemma 3.8 For every triple vi, vj , vk such that vj ∈ C[vi, vk],

a) If |Vi| > 1 and x ← vj for some x ∈ Vi, then x ← Vk,

b) If |Vk| > 1 and z → vj for some z ∈ Vk, then z → Vi.

Proof: By directed duality, Claims a and b are equivalent. Thus, it suffices to prove
only Claim a. Let |Vi| > 1, x ∈ Vi and x ← vj . By Corollary 3.6, we may assume that
x 6= vi. We have vj+1 → x since otherwise the cycle xC[vj+1, vj ]x has length more than n.
Continuing this argument, we conclude that x ← vk. Now by Lemma 3.7 if |Vk| > 1 then
Vk → Vi because x ← vk. 2

Lemma 3.9 Let |Vi| > 1 and |Vj | = 1. If Vi ⇀↽ Vj, then U [Vi+1, Vj−1] ← U [Vj+1, Vi−1].

Proof: Let x ∈ Vi − {vi}. As above we may assume that x → vj and vi ← vj . According
to Lemma 3.8, for every v ∈ C[vi+1, vj ] we have x → v and for every u ∈ C[vj+1, vi−1] we
have u → vi. Now consider arbitrary vertices vt ∈ C[vi+1, vj−1], vl ∈ C[vj+1, vi−1] and
suppose that vt → vl. However, the cycle

xC[vt+1, vl−1]C[vi, vt]C[vl, vi−1]x
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has length more than n. This is a contradiction, and we have vt ← vl. By Corollary 3.6,
instead of C we may consider the cycle obtained from C by replacing vt with a vertex
from U [Vi+1, Vj−1] and vl with a vertex from U [Vj+1, Vi−1]. All arguments above remain
valid, which proves the lemma. 2

Lemma 3.10 Let Vi, Vj be two partite sets such that |Vi| > 1, |Vj | = 1 and Vi ⇀↽ Vj. Let
X be the maximal subset of Vi such that X → vj. Let Dij be obtained from D〈U [Vi, Vj ]〉
by changing orientations of the arcs between X and vj and let Dji be obtained from
D〈U [Vj , Vi]〉 by changing orientations of the arcs between Vi − X and vj. Then Dij and
Dji have no cycles of length more than the number of their partite sets.

Proof: Assume that j > i. Clearly, Dij is strong and the number of partite sets in Dij is
m = j + 1− i. Suppose that Dij has a cycle C ′ of length more than m. Let S̄ be the set
of arcs in D〈U [Vi, Vj ]〉 whose orientations have been changed to obtain Dij .

If C ′ does not contain an arc from S̄, then it follows from Lemma 3.1 that D has a
cycle of length more than n, a contradiction. Now let C ′ contain an arc vjx such that
xvj ∈ S̄, x ∈ X. By deleting vjx we find a path P in D〈U [Vi, Vj ]〉 that starts at x ∈ Vi

and ends at vj with length at least m. Then the cycle PC[vj+1, vi−1]x is of length more
than n, a contradiction.

By direct duality, the claim on cycles in Dji follows. 2

Observe that if D is not an extended tournament, then there exist partite sets Vi, Vj

such that Vi ⇀↽ Vj .

Theorem 3.11 Let D be a strong n-partite tournament. Suppose D is not an extended
tournament. Let V1, V2, . . . , Vn be partite sets of D and let D have a cycle v1v2 . . . vnv1,
where vi ∈ Vi, i = 1, 2, . . . , n. Choose a pair Vi, Vj with the property Vi ⇀↽ Vj and let
|Vj | ≤ |Vi|. Choose a pair x, y ∈ Vi such that y→vj→x. Then D has no cycle of length
more than n if and only if the following conditions hold:

(a) For every pair Vs, Vt with the property Vs ⇀↽ Vt, we have min{|Vs|, |Vt|} = 1;

(b) U [Vj , Vi−1]→x and y→U [Vi+1, Vj ];

(c) U [Vi+1, Vj−1] ← U [Vj+1, Vi−1];

(d) The digraphs Dij , Dji defined in Lemma 3.10 have no cycles of length more than
the number of their partite sets.

Proof: The condition (a) is necessary by Lemma 3.7; (b) follows from Lemmas 3.5 and
3.8; (c) and (d) follow from Lemmas 3.9 and 3.10, respectively.

We will now prove that (a)-(d) are sufficient. By (a), |Vj | = 1. Let A = U [Vj , Vi],
B = U [Vi, Vj ]. By (c), every path that starts from B − Vi − Vj and enters into A contains
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the singleton partite set Vj . This implies that no cycle in D can go through B − Vi − Vj

and A more than once.

Assume that D has a cycle C ′ of length more than n. By (d), C ′ is entirely in neither
D〈B〉 nor D〈A〉. Now let P ′ be the part of C ′ in D〈A〉. Clearly, P ′ is a path whose first
vertex is vj . Observe that, by the first part of (b) (U [Vj , Vi−1]→x), if the terminal vertex
of P ′ is not in Vi, then P ′ does not contain x. If the terminal vertex of P ′ is in Vi, then,
by (d), the length of P ′ is less than the number of partite sets in D〈A〉. If the terminal
vertex of P ′ is not in Vi, then P ′′ = P ′x is a path by (b). By (d), the length of P ′′ and
thus of P ′ is less than number of partite sets in D〈A〉.

Thus, in either case, the length of P ′ is less than number of partite sets in D〈A〉.
Analogously, one can prove the corresponding result for D〈B〉. The above arguments
show that the length of C ′ is not more than n, a contradiction. 2

Theorem 3.12 One can check whether a strong n-partite tournament D on p vertices,
n ≥ 3, has a longest cycle of length n in time O(np3).

Proof: Let V1, V2, . . . , Vn be partite sets of D. One can easily check whether D is an
extended tournament in time O(p2). If D is an extended tournament, using Theorem 3.3,
we can verify whether the length of a longest cycle in D is n in time O(p3). So, we may
assume that D is not an extended tournament.

The proof of Lemma 3.1 can be easily converted into a recursive procedure that either
finds out that D has a cycle of length at least n + 1 or constructs an n-cycle in D. The
total time required by the procedure is at most O(p3).

Now we may assume that, in time O(p3), we have constructed an n-cycle C = v1v2 . . . vnv1

such that vi ∈ Vi, i = 1, . . . , n, found a pair Vi, Vj with the property Vi ⇀↽ Vj and |Vj | = 1,
and chosen a pair x, y ∈ Vi such that y→vj→x. By the previous theorem, it remains to
show that the conditions (a)-(d) can be checked in time O(np3). In fact, the conditions
(a),(b) and (c) can be verified in time O(p2). To check (d), we can check whether some of
the digraphs Dij and Dji are extended tournaments. For all extended tournaments we can
use Theorem 3.3. For others, we find special pairs of partite sets and check the conditions
(a), (b) and (c) before ’splitting’ the digraphs into smaller ones to verify (d) for each of
them.

Due to Vi−1→Vi→Vi+1, each of Dij and Dji has less partite sets than D has and, thus,
the number of levels (or parallel ’splittings’) at which we need to verify the condition (d)
is at most O(n). Prior to checking (d), we will have spent O(p3) time, which means the
total amount of time required is at most O(np3). 2
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