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Abstract

Given a digraph D, the Minimum Leaf Out-Branching problem (Min-

LOB) is the problem of finding in D an out-branching with the min-

imum possible number of leaves, i.e., vertices of out-degree 0. Gutin,

Razgon and Kim (2008) proved that MinLOB is polynomial time solv-

able for acyclic digraphs which are exactly the digraphs of directed

path-width (DAG-width, directed tree-width, respectively) 0. We in-

vestigate how much one can extend this polynomiality result. We prove

that already for digraphs of directed path-width (directed tree-width,

DAG-width, respectively) 1, MinLOB is NP-hard. On the other hand,

we show that for digraphs of restricted directed tree-width (directed

path-width, DAG-width, respectively) and a fixed integer k, the prob-
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lem of checking whether there is an out-branching with at most k leaves

is polynomial time solvable.

Keywords: Out-branchings, leaves, directed tree-width, DAG-width,

computational complexity

1 Introduction

A digraph T is an out-tree if T is an oriented tree with only one vertex s

of in-degree zero (called the root). The vertices of T of out-degree zero are

called leaves and all other vertices of T are called nonleaves. The vertex of

in-degree zero is called the root of T and all vertices of out-degree at least 2

are called branching vertices. If an out-tree T is a spanning subgraph of a

digraph D, i.e. V (T ) = V (D), then T is called an out-branching of D.

Given a digraph D, the Minimum Leaf Out-Branching problem (Min-

LOB) is the problem of finding in D an out-branching with the minimum

possible number of leaves. Notice that not every digraph D has an out-

branching. It is not difficult to see that D has an out-branching if and only

if D has just one strong connectivity component without incoming arcs [1].

Since the last condition can be checked in linear time [1], we may often

assume that a digraph D has an out-branching.

The MinLOB problem on acyclic digraphs has applications in the area of

database systems, see the patent [4], where a heuristic to solve the MinLOB

problem on acyclic digraphs was suggested. Gutin, Razgon and Kim [5]

showed that the MinLOB problem for acyclic digraphs is, in fact, polynomial

time solvable. Since MinLOB extends the Hamilton path problem, MinLOB
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for all digraphs is NP-hard, but standard dynamic programming techniques

allow one to have a polynomial time algorithm for digraphs whose underlying

graph is of bounded tree-width [5].

In this paper we investigate how much we can extend the polynomiality

result for acyclic digraphs. Notice that acyclic digraphs are the digraphs

of directed path-width (directed tree-width, DAG-width, respectively) 0.

We prove that already for digraphs of directed path-width (directed tree-

width, DAG-width, respectively) 1, MinLOB is NP-hard. This is in sharp

contrast to the fact that the Hamilton path problem (the most important

special case of MinLOB) is polynomial time solvable for digraphs of bounded

directed path-width (directed tree-width, DAG-width, respectively). This

fact follows from Theorem 2.3 and the inequalities on the width parameters

used in the proof of Theorem 3.2.

On the other hand, we show that for digraphs of bounded directed tree-

width (directed path-width, DAG-width, respectively) and a fixed integer

k, the problem of checking whether there is an out-branching with at most

k leaves is polynomial time solvable.

We consider directed path-width, directed tree-width and DAG-width

as they appear to be the most studied directed width parameters, but our

results hold for other width parameters such as elimination width and Kelly-

width [6] (the results for Kelly-width have to be modified by 1 taking into

consideration that Kelly-width equals elimination-width plus 1).
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2 Three Directed Decompositions

DAG-width was introduced independently by Berwanger et al. [3] and Ob-

drzalek [8]. A DAG-decomposition (DAGD) of a digraph D is a pair (H, χ)

where H is an acyclic digraph and χ = {Wh : h ∈ V (H)} is a family of

subsets (called bags) of V (D) satisfying the following three properties: (a)

V (D) =
⋃

h∈V (H) Wh, (b) if (u, v) ∈ A(D), then there exist h1, h2 ∈ V (H)

(it is possible that h1 = h2) such that u ∈ Wh1 , v ∈ Wh2 and there is a di-

rected (h1, h2)-path in H, (c) for all h, h′, h′′ ∈ V (H), if h′ lies on a directed

path from h to h′′, then Wh ∩ Wh′′ ⊆ Wh′ . The width of a DAGD (H, χ)

is maxh∈V (H) |Wh| − 1. The DAG-width of a digraph D (dagw(D)) is the

minimum width over all possible DAGDs of D.

A directed path decomposition (DPD) [2] is a special case of DAGD when

H is a directed path. The directed path-width of a digraph D (dpw(D)) is

defined as the DAG-width above, but DAGDs are replaced by DPDs.

Directed tree-width was introduced by Johnson, Robertson, Seymour

and Thomas [7]. Let Z be a set of vertices of a digraph D. A set S ⊆
V (D) − Z is Z-normal if every directed walk that leaves and again enters

S must traverse a vertex of Z. For vertices r, r′ of an out-tree T we write

r ≤ r′ if there is a path from r to r′ or r = r′. An arboreal decomposition of

a digraph D is a triple (R,X, W ), where R is an out-tree (not a subgraph

of D), X = {Xe : e ∈ A(R)} and W = {Wr : r ∈ V (R)} are families of

sets of vertices of D that satisfy two conditions: (1) {Wr : r ∈ V (R)} is a

partition of V (D) into nonempty sets, and (2) for each e = (r′, r′′) ∈ A(R)

the set
⋃{Wr : r ∈ V (R), r ≥ r′′} is Xe-normal. The width of (R, X,W )
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is the least integer w such that for all r ∈ V (R), |Wr ∪
⋃

e∼r Xe| ≤ w + 1,

where e ∼ r means that r is head or tail of e. The directed tree-width of D,

dtw(D), is the least integer w such that D has an arboreal decomposition

of width w.

The following lemma is well-known [2, 3, 7, 8] and easy to prove using

just the definitions above.

Lemma 2.1 Let D be a digraph. For d ∈ {dag, dt, dp}, we have dw(D) = 0

if and only if D is acyclic.

Lemma 2.2 For a digraph D, we have dtw(D) ≤ dpw(D).

Proof: Let Y1, Y2, . . . , Yk be the bags in a DPD of D. We may assume

that all bags are distinct. Define an arboreal decomposition of D, where the

arborescence is the directed path 12 . . . k, as follows: W1 = Y1, Wi = Yi\Yi−1

for each i = 2, 3, . . . , k and if e = (i, i+1) we let Xe = Yi∩Yi+1. This arboreal

decomposition is of the same width as the DPD and we are done. 2

One of the main algorithmic results in [7] is on the following linkage

problem. Let

σ = (s1, t1, s2, t2, . . . , sp, tp)

be a sequence of 2p vertices of a digraph D, (vertices in σ are not necessarily

distinct). A hamiltonian σ-linkage of D is a collection of p directed paths

P1, P2, . . . , Pp such that V (P1) ∪ . . . ∪ V (Pp) = V (D), Pi starts at si and

terminates at ti, 1 ≤ i ≤ p, and (V (Pi) \ {si, ti})∩ (V (Pj) \ {sj , tj}) = ∅ for

all 1 ≤ i < j ≤ p. In the hamiltonian linkage problem, given σ we are to

check whether there is a hamiltonian σ-linkage of D.
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Theorem 2.3 [7] For every fixed positive integer p and every fixed nonneg-

ative integer w the hamiltonian linkage problem with input sequence σ of

2p vertices for digraphs of directed tree-width at most w is polynomial time

solvable.

3 New Results on MinLOB

If P is a directed path and vertices a, b are, in that order, on P , then we

denote the a− b-segment of P by P [a, b], and by P [b, ∗] we mean the b− t-

segment of P , where t is the terminal vertex of P .

Theorem 3.1 MinLOB is NP-hard for digraphs of directed path-width (di-

rected tree-width, DAG-width, respectively) 1.

Proof: We prove the theorem by reduction of 3SAT to MinLOB. We use the

following gadget H, the digraph with vertex set V (H) = {x1, y1, z1, x2, y2, z2}
and arc set A(H) = {x1y1, y1z1, z1x1, x1x2, y1y2, z1z2, x2z2, z2y2, y2x2}. It is

easy to verify that H has the following properties:

(i) there exists a hamiltonian (x1, x2)-linkage Px of H,

(ii) there exists a hamiltonian (x1, x2, y1, y2)-linkage of H,

(iii) there exists an hamiltonian (x1, x2, y1, y2, z1, z2)-linkage of H,

(iv) if Px is a hamilton path of H starting at x1 then Px ends in x2,

(v) if Px and Py are vertex disjoint paths in H starting at x1 and y1, respec-

tively, which go through all vertices of H, then either Px ends in x2 and Py

ends in y2, or Px ends in y2 and Py ends in z1.

Analogous statements hold for each permutation of x, y, z.
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Consider an instance I of 3SAT with variables v1, v2, . . . , vk and clauses

C1, C2, . . . , Cp. Construct a digraph D = D(I) as follows: For each clause

Cj let Hj be a copy of H. If C = α + β + γ, where α, β, and γ are literals,

denote the vertices of Hj by α1(Hj), β1(Hj), γ1(Hj), α2(Hj), β2(Hj), γ2(Hj).

(Occasionally, when we do not wish to specify the variables α, β, γ, we denote

the vertices simply by x1(Hj), . . . , z2(Hj).) We also introduce a vertex ui

for each variable vi and a root vertex r. So

V (D) = {r, u1, u2, . . . , uk} ∪
p⋃

j=1

V (Hj),

and D is a graph of order 6p + k + 1.

The arc set of D consists of
⋃p

j=1 E(Hj), arcs rui for i = 1, 2, . . . , k and

the arcs in the sets Arc(v1), Arc(v1), . . . ,Arc(vk), Arc(vk) defined as follows.

Consider a variable vi. Let Cj1 , Cj2 , . . . , Cjs , with j1 < j2 < . . . < js, be

the clauses containing vi as literal. Then the set Arc(vi) contains the arcs

uiv
i
1(Hj1), vi

2(Hj1)v
i
1(Hj2), vi

2(Hj2)v
i
1(Hj3), . . . , vi

2(Hjs−1)v
i
1(Hjs). Similarly

let Ch1 , Ch2 , . . . , Cht , with h1 < h2 < . . . < ht, be the clauses containing vi as

literal. Then the set Arc(vi) contains the arcs uivi
1(Hh1), vi

2(Hh1)vi
1(Hh2),

vi
2(Hh2)vi

1(Hh3),. . . , vi
2(Hht−1)vi

1(Hht). This completes the construction

of D.

We prove that

dtw(D) = dagw(D) = dpw(D) = 1 (1)
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Since D is not acyclic, by Lemma 2.1, every width parameter in (1) is

positive and, by Lemma 2.2, it is enough to show that dpw(D) ≤ 1. It can

be easily checked that the following bags form a DPD of D of width 1:

{r}, {u1}, {u2}, . . . , {uk},

{z1(H1), y1(H1)}, {y1(H1), x1(H1)}, {x2(H1), y2(H1)}, {y2(H1), z2(H1)},

. . . , {z1(Hp), y1(Hp)}, {y1(Hp), x1(Hp)}, {x2(Hp), y2(Hp)}, {y2(Hp), z2(Hp).

We now show that D has an out-branching with exactly k leaves if and only

if I is satisfiable.

Given a valid truth assignment to v1, . . . , vk we construct an out-branching

B of D with k leaves as follows. Root B at r. Let ru1, ru2, . . . , ruk ∈ E(B).

If variable vi has truth value TRUE then add all arcs in Arc(vi) to A(B).

Then these arcs, together with suitably (i.e., according to properties (i), (ii)

and (iii) of H) chosen vi
1(Hj)− vi

2(Hj) paths through those Hj which corre-

spond to the Cj containing vi as a literal, yield a path P (vi) starting at ui.

Similarly, if variable vi has truth value FALSE then add all arcs in Arc(vi)

and suitably chosen vi
1(Hj)−vi

2(Hj) paths to A(B) and obtain a path P (vi)

starting at ui. Since these k paths, attached to the vertices u1, . . . , uk, go

through all vertices in V (D), B is an out-branching of D with exactly k

leaves.

Given an out-branching B with exactly k leaves of D, we derive an

assignment of truth values to the variables v1, . . . , vk that satisfies each

clause Cj and thus I. We note that B must be rooted at r since d−D(r) = 0
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and that rui ∈ A(B) for i = 1, 2, . . . , k since d−D(ui) = 1. So d+
T (r) = k,

hence the subtree of T rooted at ui is a path Pi for i = 1, 2, . . . , k.

Consider a subgraph Hj of D. A path Pi that intersects with Hj is said to

be Hj-compatible if Pi enters Hj at x1 and leaves at x2, or it enters Hj at y1

and leaves at y2, or it enters Hj at z1 and leaves at z2. We now show that B

can be modified, without changing the number of leaves, so that whenever a

path Pi and a gadget Hj intersect, Pi is Hj-compatible. Consider a fixed Hj .

First assume that Pi is the only path that intersects Hj . By property (iv)

Pi is Hj-compatible. Next assume that two paths, Ph and Pi say, intersect

Hj and that they enter Hj in, say, x1 and y1, respectively. By property

(v) either Ph and Pi are Hj-compatible, or Pi ends in z1 and Ph ends in

y2. In the latter case let P ′
h be the union of Ph[uh, x1] and the path x1, x2,

and let P ′
i be the union of Pi[ui, y1], the path y1, z1, z2, y2 and Ph[y2, ∗], and

replace Ph and Pi by P ′
h and P ′

i . Finally assume that three paths Pg, Ph, Pi

intersect Hj . Then a similar construction yields Hj-compatible paths P ′
g, P

′
h

and P ′
i . Clearly, replacing Pg, Ph, Pi by P ′

g, P
′
h, P ′

i if necessary does not

change the number of leaves of B, nor does it create any incompatibilities.

Hence repeating this step for all Hj eventually yields an out-branching in

which every path Pi that intersects a gadget Hj is Hj-compatible.

Note that vertex ui has two out-neighbors in D, vi
1(Hj1) and vi

1(Hh1),

where Cj1 (Ch1) is the first clause to contain vi (vi) as a literal, and that T

contains at most one of these arcs. If the first arc of Pi is uiv
i
1(Hj1) then

we assign the value TRUE to vi, if the first arc of Pi is uivi
1(Hh1) then we

assign the value FALSE to vi, and if Pi has no arc we assign an arbitrary

truth value to vi. It remains to show that this satisfies I.
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Fix an arbitrary clause Cj and consider Hj . There is at least one path

Pi of the out-branching B that intersects with Hj . Assume that the first arc

of Pi is, say, uiv
i
1(Hj1) (for uivi

1(Hh1) the proof is analogous) and that P

passes through Hj1 ,Hj2 , . . . before reaching Hj . Since Pi is compatible with

Hj1 ,Hj2 , . . . ,Hj , it enters Hj1 ,Hj2 , . . . , Hj in vi
1(Hj1), v

i
1(Hj2), . . . , v

i
1(Hj).

Hence clauses Cj1 , Cj2 , . . . , Cj contain vi as a literal. But since we assigned

the value TRUE to vi, clause Cj is satisfied. Since Cj was arbitrary, all

clauses and thus I are satisfied. 2

Theorem 3.2 Let d ∈ {dag,dt, dp}. For every fixed positive integer k and

every fixed nonnegative integer w, we can check, in polynomial time, whether

a digraph D with dw(D) ≤ w has an out-branching with at most k leaves.

Proof: Let D be a digraph. By Lemma 2.2, if dpw(D) ≤ k then dtw(D) ≤
k. It is shown in [3] that if dagw(D) ≤ k then dtw(D) ≤ 3k + 1.

Thus, we may assume that D is of directed tree-width at most w, for

some integer w, and let B be an out-branching in D with at most k leaves.

Let X(B) be the set consisting of the root, the leaves and the branching

vertices of B. It is not difficult to show that |X(B)| ≤ 2k. Now contract

each directed path of B between two vertices of X(B) into an arc (between

the vertices of X(B)) and observe that we have obtained an out-tree B′ with

exactly |X(B)| vertices. We call B′ the contraction of B.

Now let Y ⊆ V (D), |Y | ≤ 2k, and let T be an out-branching in D[Y ]

with arcs A(T ) = {(s1, t1), (s2, t2), . . . , (s|Y |−1, t|Y |−1)}. Using the algorithm

of Theorem 2.3 with input (s1, t1, s2, t2, . . . , s|Y |−1, t|Y |−1), we can check, in

polynomial time, whether D contains an out-branching B∗ whose contrac-
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tion is T .

Thus, to find an out-branching in D with minimum number of leaves, we

can use the following procedure. We generate all subsets of V (D) with at

most 2k vertices and, for each such subset Y , we generate all out-branchings

T in D[Y ]. For each T we use the algorithm of Theorem 2.3 to verify whether

D has an out-branching whose contraction is T . Finally, we find a minimum

leaf out-branching among all the outputs of the algorithm.

Observe that for each Y , by Cayley’s formula on the number of span-

ning trees in a complete graph, there are at most |Y ||Y |−1 out-branchings

of D[Y ] and that there are less than |V (D)|2k+1 sets Y with |Y | ≤ 2k.

Thus, in our procedure, we use the algorithm of Theorem 2.3 less than

|V (D)|2k+1 · (2k)2k−1 times, which shows that the running time of the pro-

cedure is polynomial. 2
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