
Minimum Leaf Out-branching and Related Problems∗

Gregory Gutin† Igor Razgon‡ Eun Jung Kim§

Abstract

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB)
is the problem of finding in D an out-branching with the minimum possible
number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is
polynomial-time solvable for acyclic digraphs. In general, MinLOB is NP-
hard and we consider three parameterizations of MinLOB. We prove that
two of them are NP-complete for every value of the parameter, but the
third one is fixed-parameter tractable (FPT). The FPT parametrization is
as follows: given a digraph D of order n and a positive integral parameter k,
check whether D contains an out-branching with at most n−k leaves (and
find such an out-branching if it exists). We find a problem kernel of order
O(k2) and construct an algorithm of running time O(2O(k log k)+n6), which
is an ‘additive’ FPT algorithm. We also consider transformations from two
related problems, the minimum path covering and the maximum internal
out-tree problems into MinLOB, which imply that some parameterizations
of the two problems are FPT as well.

1 Introduction

We say that a subgraph T of a digraph D is an out-tree if T is an oriented tree
with only one vertex s of in-degree zero (called the root). The vertices of T of
out-degree zero are called leaves and all other vertices internal vertices. If T is
a spanning out-tree, i.e. V (T) = V (D), then T is called an out-branching of D.
Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is
the problem of finding an out-branching with the minimum possible number of
leaves in D. We denote this minimum by `min(D) and if D has no out-branching,
we write `min(D) = 0. Notice that not every digraph D has an out-branching.
It is not difficult to see that D has an out-branching (i.e., `min(D) > 0) if and
only if D has just one strongly connected component without incoming arcs [2].

∗Preliminary extended abstract of this paper appears in the proceedings of AAIM’08 [14].
†Department of Computer Science, Royal Holloway, University of London, Egham, Surrey

TW20 0EX, UK, gutin@cs.rhul.ac.uk
‡Department of Computer Science, University College Cork, Ireland, i.razgon@cs.ucc.ie
§Department of Computer Science, Royal Holloway, University of London, Egham, Surrey

TW20 0EX, UK, eunjung@cs.rhul.ac.uk

1

Since the last condition can be checked in linear time [2], we may often assume
that `min(D) > 0.

The underlying graph UG(D) of a digraph D is obtained from D by omitting
all orientation of arcs and by deleting one edge from each resulting pair of
parallel edges. For a digraph D, an independent set (vertex cover respectively)
of D is an independent set (vertex cover respectively) of UG(D). We denote the
union of (in-) out-neighbors of vertices in X by (N−(X)) N+(X) and N(X) =
N+(X) ∪N−(X).

We first study MinLOB restricted to acyclic digraphs (abbreviated MinLOB-
DAG). MinLOB-DAG was considered in US patent [7], where its application to
the area of database systems was described. Demers and Downing [7] also sug-
gested a heuristic approach to MinLOB-DAG. However no argument or assertion
has been made to provide the validity of their approach and to investigate its
computational complexity. Using another approach, we give a simple proof in
Section 2 that MinLOB-DAG can be solved in polynomial time.

Since MinLOB generalizes the hamiltonian directed path problem, MinLOB
is NP-hard. In this paper, we introduce three parameterizations of MinLOB: (a)
`min(D) ≤ k (k ≥ 1), (b) `min(D) ≤ n/k (k ≥ 2), (c) `min(D) ≤ n − k (k ≥ 1),
where n is the number of vertices in D and k is the parameter. We show that
(a) and (b) are NP-complete for every value of the parameter, but (c) is fixed-
parameter tractable and has an algorithm of complexity O(2O(k log k) + n6). We
also show the existence of a quadratic kernel for the parameterized problem (c).
These results are considered in section (3)-(5). The problem (c) was studied
by Prieto and Sloper [19, 20] for undirected graphs (i.e. symmetric digraphs),
where the authors obtained an FPT algorithm of complexity O(22.5k log knO(1))
and a quadratic kernel.

In the minimum path covering problem (MinPC), given a digraph D, our aim
is to find the minimum number of vertex-disjoint directed paths, pc(D), covering
all vertices of D. It is well-known that MinPC is polynomial time solvable
for acyclic digraphs, pc(D) ≤ α(D) for every digraph D (the Gallai-Milgram
theorem), and pc(D) = α(D) for every transitive acyclic digraph D (Dilworth’s
theorem) [2]. In first part of Section 6, we describe a simple transformation from
MinPC into MinLOB which implies that the parameterized problem pc(D) ≤
n − k is fixed-parameter tractable, where n is the number of vertices in D and
k is the parameter.

Observe that MinLOB can be reformulated as a problem of finding an out-
branching with maximum number of internal vertices. However, while the prob-
lem of finding an out-tree with minimum number of leaves in a digraph D is
trivial (a vertex is an out-tree), the problem of finding an out-tree with maxi-
mum number of internal vertices (abbreviated MaxIOT) is not trivial; in fact, it
is NP-hard (as it also generalizes the hamiltonian directed path problem). The
second part of Section 6 is devoted to the latter problem. Further research is

2

discussed in Section 7.
We recall some basic notions of parameterized complexity here, for a more

in-depth treatment of the topic we refer the reader to [6, 11, 18].
A parameterized problem Π can be considered as a set of pairs (I, k) where

I is the problem instance and k (usually an integer) is the parameter. Π is called
fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in
time O(f(k)|I|c), where |I| is the size of I, f(k) is a computable function, and
c is a constant independent from k and I. Let Π be a parameterized problem.
A reduction R to a problem kernel (or kernelization) is a many-to-one trans-
formation from (I, k) ∈ Π to (I ′, k′) ∈ Π′, such that (i) (I, k) ∈ Π if and only
if (I ′, k′) ∈ Π, (ii) k′ ≤ k and |I ′| ≤ g(k) for some function g and (iii) R is
computable in time polynomial in |I| and k. In kernelization, an instance (I, k)
is reduced to another instance (I ′, k′), which is called the problem kernel ; |I ′| is
the size of the kernel.

It is easy to see that a decidable parameterized problem is FPT if and only if
it admits a kernelization (cf. [11, 18]); however, the problem kernels obtained by
this general result have impractically large size. Therefore, one tries to develop
kernelizations that yield problem kernels of smaller size. The survey of Guo and
Niedermeier [12] on kernelization lists some problem for which polynomial size
kernels and exponential size kernels were obtained. Notice that due to kernel-
ization we can obtain so-called an additive FPT algorithm, i.e., an algorithm of
running time O(nO(1) + g(k)), where g(k) is independent of n, which is often
significantly faster than its ‘multiplicative’ counterpart.

All digraphs in this paper are finite with no loops or parallel arcs. We use
terminology and notation of [2]; in particular, for a digraph D, V (D) and A(D)
denote its vertex and arc sets. The symbols n and m will denote the number of
vertices and arcs in the digraph under consideration.

2 MinLOB-DAG

Let D be an acyclic digraph. We may assume that D has a unique vertex r of
in-degree 0 as otherwise D has no out-branchings. Let V = V (D) and V ′ = {v′ :
v ∈ V }. Let us define a bipartite graph B of D with partite sets X and X ′ as
follows: X = V , X ′ = V ′ \ {r′} and E(B) = {xy′ : x ∈ X, y′ ∈ X ′, xy ∈ A(D)}.

Consider the following algorithm for finding a minimum leaf out-branching
T in an input acyclic digraph D. The algorithm outputs T if it exists and ‘NO’,
otherwise.

MINLEAF

1. if the number of vertices with in-degree 0 equals 1 then
r ← the vertex of in-degree 0 else return ‘NO’

3

2. construct the bipartite graph B of D

3. find a maximum matching M in B

4. M∗ ← M

5. for all y′ ∈ X ′ not covered by M do
M∗ ← M∗ ∪ {an arbitrary edge incident with y′}

6. A(T) ← ∅
7. for all xy′ ∈ M∗ do A(T) ← A(T) ∪ {xy}
8. return T

Theorem 2.1. Let D be an acyclic digraph. Then MINLEAF returns a mini-
mum leaf out-branching if one exists, or returns ‘NO’ otherwise in time O(m +
n1.5

√
m/ log n).

Proof. We start with proving the validity of the algorithm. Observe that an
acyclic digraph has an out-branching if and only if there exists only one vertex
of in-degree zero. Hence Step 1 returns ‘NO’ precisely when `min(D) = 0.

Let M be the maximum matching obtained in Step 2, let V (M) be the set
of vertices of B covered by M , and let Z = X \ V (M) and Z ′ = X ′ \ V (M).

First we claim that Z is the set of the leaves of T , the out-branching of D
obtained in the end of Step 7. Consider the edge set M∗ obtained at the end of
Step 5. First observe that for each vertex y′ ∈ Z ′, there exists an edge of E(B)
which is incident with y′ since r is the only vertex of in-degree zero and thus
no vertex of Z ′ is isolated. Moreover, all neighbors of y′ are covered by M due
to the maximality of M . It follows that M∗ ⊇ M covers all vertices of X ′ and
leaves Z uncovered. Notice that r is covered by M . Indeed there exists a vertex
u such that r is the only in-neighbor of u in D. Hence if r was not covered by
M then u′ would not be covered by M either, which means we could extend M
by ru′, a contradiction.

Consider T which has been obtained in the end of Step 7. Clearly d−T (v) = 1
for all v ∈ V (D)\{r} due to the construction of M∗. Moreover D does not have
a cycle, which means that T is connected and thus is an out-branching. Finally
no vertex of Z has an out-neighbor in T while all the other vertices have an
out-neighbor. Now the claim holds.

Conversely, whenever there exists a minimum leaf out-branching T of D
with the leaf set Z, we can build a matching in B which covers exactly X \ Z
among the vertices of X. Indeed, simply reverse the process of building an out-
branching T from M∗ described at Step 7. If some vertex x ∈ X has more than
one neighbor in X ′, eliminate all but one edge incident with x.

Secondly we claim that T obtained in MINLEAF(D) is of minimum number
of leaves. Suppose to the contrary that the the attained out-branching T is not
a minimum leaf out-branching of D. Then a minimum leaf out-branching can
be used to produce a matching of B that covers more vertices of X than M

4

does using the argument in the preceding paragraph, a contradiction. Hence
MINLEAF(D) returns a min leaf out-branching T at Step 8.

Finally we analyze the computational complexity of MINLEAF(D). Each
step of MINLEAF(D) takes at most O(m) time except for Step 3. The com-
putation time required to perform Step 3 is the same as that of solving the
maximum cardinality matching problem on a bipartite graph. The last problem
can be solved in time O(|V (B)|1.5

√
|E(B)|/ log |V (B)|) [1]. Hence, the algo-

rithm requires at most O(m + n1.5
√

m/ log n) time.

3 Parameterizations of MinLOB

The following is a natural way to parameterize MinLOB.

MinLOB Parameterized Naturally (MinLOB-PN)
Instance: A digraph D.
Parameter: A positive integer k.
Question: Is `min(D) ≤ k ?

Clearly, this problem is NP-complete already for k = 1 as for k = 1 MinLOB-
PN is equivalent to the hamiltonian directed path problem. Let v be an arbi-
trary vertex of D. Transform D into a new digraph Dk by adding k vertices
v1, v2, . . . , vk together with the arcs vv1, vv2, . . . , vvk. Observe that D has a
hamiltonian directed path terminating at v if and only if `min(Dk) ≤ k. Since
the problem is NP-complete of checking whether a digraph has a hamiltonian
directed path terminating at a prescribed vertex, we conclude that MinLOB-PN
is NP-complete for every fixed k.

Clearly, `min(D) ≤ n − 1 for every digraph D of order n > 1. Consider a
different parameterizations of MinLOB.

MinLOB Parameterized Below Guaranteed Value (MinLOB-
PBGV)
Instance: A digraph D of order n with `min(D) > 0.
Parameter: A positive integer k.
Question: Is `min(D) ≤ n− k ?
Solution: An out-branching B of D with at most n− k leaves or the
answer ‘NO’ to the above question.

Note that we consider MinLOB-PBGV as a search problem, not just as a
decision problem. In the next section we will prove that MinLOB-PBGV is
fixed-parameter tractable. We will find a problem kernel of order O(k · 2k)
and construct an additive FPT algorithm of running time O(2O(k log k) + n3).
To obtain our results we use notions and properties of vertex cover and tree
decomposition of underlying graphs and Las Vergnas’ theorem on digraphs.

5

The parametrization MinLOB-PBGV is of the type below a guaranteed value.
Parameterizations above/below a guaranteed value were first considered by Ma-
hajan and Raman [17] for the problems Max-SAT and Max-Cut; such parameter-
izations have lately gained much attention, cf. [9, 13, 15, 16, 18] (it worth noting
that Heggernes, Paul, Telle, and Villanger [16] recently solved the longstanding
minimum interval completion problem, which is a parametrization above guar-
anteed value). For directed graphs there have been only a couple of results on
problems parameterized above/below a guaranteed value, see [3, 10].

Let us denote by ~K1,p−1 the star digraph of order p, i.e., the digraph with
vertices 1, 2, . . . , p and arcs 12, 13, . . . , 1p. Our success with MinLOB-PBGV
may lead us to considering the following stronger (than MinLOB-PBGV) para-
meterizations of MinLOB.

MinLOB Parameterized Strongly Below Guaranteed Value
(MinLOB-PSBGV)
Instance: A digraph D of order n with `min(D) > 0.
Parameter: An integer k ≥ 2.
Question: Is `min(D) ≤ n/k ?

Unfortunately, MinLOB-PSBGV is NP-complete for every fixed k ≥ 2. To
prove this consider a digraph D of order n and a digraph H obtained from D
by adding to it the star digraph ~K1,p−1 on p = bn/(k − 1)c vertices (V (D) ∩
V (~K1,p−1) = ∅) and appending an arc from vertex 1 of ~K1,p−1 to an arbitrary
vertex y of D. Observe that `min(H) = p− 1 + `min(D, y), where `min(D, y) is
the minimum possible number of leaves in an out-branching rooted at y, and
that 1

k |V (H)| = p + ε, where 0 ≤ ε < 1. Thus, `min(H) ≤ 1
k |V (H)| if and only if

`min(D, y) = 1. Hence, the hamiltonian directed path problem with fixed initial
vertex (vertex y in D) can be reduced to MinLOB-PSBGV for every fixed k ≥ 2
and, therefore, MinLOB-PSBGV is NP-complete for every k ≥ 2.

4 Quadratic Kernel for MinLOB-PBGV

In this section we introduce a reduction rule for the MinLOB-PBGV problem.
Using the reduction rule we present a polynomial time algorithm that either
yields an out-branching with at most n − k leaves or produces a kernel whose
size is bounded by a quadratic function of k.

Let T be an out-branching of a given digraph D and let (u, v) ∈ A(D)\A(T).
We define the 1-change for (u, v) as the operation to add the arc (u, v) to T and
remove the existing arc (p(v), v) from T , where p(v) is the parent (i.e. in-
neighbor) of v in T . We say an out-branching is minimal if no 1-change for an
arc of A(D) \ A(T) leads to an out-branching with more internal vertices, or
equivalently, less leaves. For distinct vertices x, y, we write x <T y if there is a

6

path from x to y in T . An arc (y, x) ∈ A(D) \ A(T) is T -backward if x <T y.
The following is a simple observation on a minimal out-branching.

Lemma 4.1. Let T be an out-branching of D. Then T is minimal if and only
if for every arc (u, v) ∈ A(D) \A(T) which is not T -backward arc, the vertex u
is internal or d+(p(v)) = 1.

Proof. Suppose the 1-change for (u, v) ∈ A(D) \ A(T) yields an out-branching
with less leaves. It is easy to see that (u, v) is not T -backward, u is a leaf and
d+(p(v)) ≥ 2. Conversely if there is an arc (u, v) ∈ A(D) \ A(T) which is not
T -backward, u is a leaf and d+(p(v)) ≥ 2 then 1-change for (u, v) produces an
out-branching in which the number number of leaves is strictly decreased.

Lemma 4.2. Given a digraph D, we can either build a minimal out-branching
T with at most n − k leaves or obtain a vertex cover of size at most 2k − 2 in
O(n2m) time.

Proof. Let T be a minimal out-branching. If T has at most n− k leaves, we are
done. Suppose it is not. We claim that the set U = {u ∈ V (D) : u is internal
in T} ∪ {u ∈ V (D) : u is a leaf in T and d+(p(u)) = 1} is a vertex cover of D.
Since the set of internal vertices cover all arcs which are not between the leaves,
it suffices to show that every arc (u, v) between two leaves u and v is covered
by U . The last statement follows from the fact that T is minimal and Lemma
4.1. What remains is to observe that the number of internal vertices is at most
k − 1 and the number of leaves which is the only child of its parent is at most
k − 1 as well.

Now we consider the time complexity of the algorithm. The construction
of an out-branching T of D takes O(n + m) time. Whether T is minimal can
be checked in O(nm) time since for every arc (u, v) ∈ A(D) \ A(T) we test
the conditions of Lemma 4.1. Let L be the list of arcs (u, v) ∈ A(D) \ A(T)
which violates the minimality of T , i.e. such that u is a leaf and d+(p(v)) ≥ 2.
Whenever L 6= ∅, choose (u, v) ∈ L and transform T by replacing the arc
(p(v), v) by (u, v). Accordingly we update the list L as follows: (1) erase all arcs
whose tail is u, which takes O(m) time (2) erase all arcs whose head is v, which
takes O(m) time (3) add to L arcs of the form (x, y) where x is a leaf of the
subtree rooted at v and y is a vertex with d+(p(y)) ≥ 2 on the unique path from
the root of T to p(v). This takes O(nm) time. The validation of the update
with (1)-(3) can be easily verified. Since any out-branching has at least one leaf
and we decrease the number of leaves of T by 1 at each transformation, after
at most n such transformations we obtain an out-branching where no further
transformation can be done. This will be our minimal out-branching. When the
minimal out-branching has more than n− k leaves, we can construct the vertex
cover U as above in O(n) time.

7

It follows from Lemma 4.2 that we can find either an out-branching which
certifies a positive answer for the MinLOB-PBGV problem or a vertex cover of
D of size at most 2k − 2. In the second case, we can remove some redundant
vertices from the large independent set of size at least n− (2k − 2) and obtain
an instance of smaller size. The crown structure plays the fundamental role in
this reduction.

Definition 4.3. A crown in a graph G is a pair (H, C), where H ⊆ V (G) and
C ⊆ V (G) with H ∩ C = ∅ such that the following conditions hold:

(a) The set of neighbors of vertices in C is precisely H, i.e. H = N(C),
(b) C = Cm ∪ Cu is an independent set, and
(c) There is a perfect matching between Cm and H.

A crown structure is a relatively new idea that allows us to have powerful
reduction rules. Its applications have been wide and successful, which includes
a linear-size kernel for the vertex cover problem [5, 8].

Given a digraph D, let U be a vertex cover of D. Modify U by including in
it the vertex of in-degree 0 if one exists. Let W = V (D) \ U and observe that
W is an independent set. Finding an out-branching with at most n − k leaves
can be reformulated as the problem of finding an out-branching with at least
k internal vertices. Herein we define the internal number of D as the largest
possible number of internal vertices of an out-branching of D.

In order to accommodate a crown structure to MinLOB-PBGV problem we
create an auxiliary model which is similar to those considered in [8, 20]. Note
that our model is more refined as we deal with directed graphs unlike [8, 20]
which consider only undirected graphs. Given a directed graph D with U and
W as above, we build the (undirected) bipartite graph B as follows.

• V (B) = U ′ ∪W , where U ′ = N−(W) ∪ (U × U)

• E(B) = {{xy, w} : xy ∈ U × U,w ∈ W, (x,w) ∈ A(D), (w, y) ∈ A(D)} ∪
{{x,w} : x ∈ U,w ∈ W, (x,w) ∈ A(D)}

Observe that no vertex of W in B is isolated since every vertex of W is of
in-degree at least one in D.

Lemma 4.4. If B contains a crown (H, C = Cm∪Cu) with C ⊆ W and Cu 6= ∅,
then the internal number of D equals the internal number of D − Cu.

Proof. We can extend an out-branching T of D−Cu by appending an arc (x,w) ∈
A(D), where w ∈ Cu and x is any in-neighbor of w. The attachment of such an
arc does not decrease the number of internal vertices of T . This shows that the
internal number of D is not smaller than that of D − Cu.

Let a crown (H,C = Cm ∪ Cu) with C ⊆ W and a perfect matching M
between H and Cm are given. We start with the following claim.

8

Claim 1. Let croot be the root of T . If croot ∈ C, we can modify the per-
fect matching M into M ′ between H and C ′

m ⊆ C so that croot ∈ C ′
m and

{ux, croot} ∈ M for some pair vertex ux ∈ U × U .

Proof of Claim 1. Suppose this is not the case. Recall that croot is of in-
degree at least 1 since we excluded any vertex of in-degree 0 from W . Let
u be an in-neighbor of croot in D and x be a child of croot in T . Note that
{u, croot}, {ux, croot} ∈ E(B) and thus u, ux ∈ H.

There are two cases and for each case we can obtain a new perfect matching
as follows. Firstly if croot ∈ Cu, simply exchange it with a vertex c ∈ Cm

which is matched to the pair vertex ux by M . This exchange is justified since
{ux, croot} ∈ E(B). Secondly suppose croot ∈ Cm but it is matched to a vertex
u ∈ N−(W). Since (u, croot), (croot, x) ∈ A(D), we have the pair vertex ux
in U ′ and moreover it is in H. Hence we can find c ∈ Cm which is matched
to the pair vertex ux and by exchanging it with croot we have a new perfect
matching. This is possible as we have {ux, croot} ∈ E(B) and (u, c) ∈ A(D),
thus {u, c} ∈ E(B).

Due to Claim 1, when croot ∈ C we may always assume that croot ∈ Cm and
furthermore that {ux, croot} ∈ M for some pair vertex ux ∈ (U × U). Notice
that x is not necessarily a child of croot in T .

We shall show that the internal number of D − Cu is not smaller than the
internal number of D. To see this suppose T is an out-branching of D and
consider the subgraph F = T − C obtained from T by deleting the vertices of
C. Obviously F is a union of out-trees, say F1, . . . , Fl. We will add the vertices
of Cm and a set of arcs so that we obtain an out-branching of D − Cu with as
many internal vertices as in T at the end of this process.

Recalling that C ⊆ W is an independent set, it is straightforward to see any
vertex c ∈ C falls into one of the three types: (a) c is a leaf in T hanging to
some vertex of F (b) c is an internal vertex in T which has both a parent and
children in F (c) c is the root croot of T and it has at least one in-neighbor in
V (D).

Let c1, . . . , ct ∈ C be the vertices that are of type (b) in T . Consider ci,
1 ≤ i ≤ t. If ci comes under type (b), let Hi = {fpfq ∈ U × U : (fp, ci) ∈
A(T), (ci, fq) ∈ A(T)}. We denote

⋃
1≤i≤t Hi by Hint. For the vertex croot ∈ C,

let Hcroot = {fpx ∈ U ×U : (fp, croot) ∈ A(D) \A(T), (croot, x) ∈ A(T)}. We set
Hroot = ∅ if croot /∈ C. Note that both Hint and Hroot belong to H.

The following procedure defines how to construct an out-tree T ′′ from F .
We initialize T ′ ← F and Cint ← ∅.

1. For every fpfq ∈ Hint

1.1 let Hi be the unique set containing fpfq.
1.2 let cpq ∈ Cm be the vertex with {fpfq, cpq} ∈ M
1.3 T ′ ← T ′ + cpq + (fp, cpq) + (cpq, fq).

9

1.4 Cint ← Cint ∪ cpq.

2. T ′′ ← T ′.

3. If croot /∈ C, return T ′′.

4. If croot /∈ Cint

4.1 T ′′ ← T ′′ + croot.
4.2 for each child x of croot in T , T ′′ ← T ′′ + (croot, x).
4.3 return T ′′.

5. Otherwise
5.1 let fpfq ∈ Hint be the vertex with {fpfq, croot} ∈ M .
5.2 let x be the child of croot in T with x ≤T ′′ fp.
5.3 let cx ∈ Cm be the vertex with {fpx, cx} ∈ M .
5.4 T ′′ ← T ′′ + cx + (cx, x).
5.5 for each child y 6= x of croot in T (if any)
5.5.1 let cy ∈ Cm be the vertex with {fpy, cy} ∈ M
5.5.2 T ′′ ← T ′′ + cy + (fp, cy) + (cy, y).
5.6 return T ′′

Claim 2. Step 1 is valid and T ′ at step 2 is a union of out-trees.

Proof of Claim 2. For each fpfq ∈ Hint, the vertex fq ∈ V (F) appears as
the second element of the pair vertex in Hint at most once. The uniqueness
of Hi 3 fpfq then follows (step 1.1). Moreover by the construction of Hi,
{fpfq, ci} ∈ E(B) and thus fpfq ∈ N(C) = H, where the last equality follows
by the definition of crown. Hence fpfq is uniquely matched to a vertex cpq ∈ Cm

by M (step 1.2). Also {fpfq, cpq} ∈ E(B) implies (fp, cpq), (cpq, fq) ∈ A(D),
which implies that T ′ can be properly constructed (step 1.3).

Now observe that any second element fq of a pair vertex fpfq ∈ Hint is a
root of an out-tree in F . Thus for each component Fq of F , T ′ contains at most
one arc entering into its root. Moreover, fp <T ′ fq if and only if fp <T fq, which
means there is no directed cycle in T ′. Witnessing that all the other vertices
have at most one arc entering into it, we conclude T ′ at step 2 is a union of
out-trees.

We claim that the above procedure returns an out-tree T ′′

Claim 3. Step 3-5 are valid and T ′′ is an out-tree.

Proof of Claim 3. First consider the case when T ′′ is returned at step 3. With
Claim 2, it is enough to show that T ′ is connected. Let two components Fp and
Fq in F be connected by ci in T . Since croot /∈ C, the vertex ci is of type (b)
and thus there exist fp ∈ Fp and the root fq of Fq such that (fp, ci) ∈ A(T),
(ci, fq) ∈ A(T). By the construction of Hint, we have fpfq ∈ Hi ⊆ Hint and

10

the vertex cpq ∈ Cm with {fpfq, cpq} ∈ M connects Fp and Fq in T ′ during the
performance of step 1. Hence T ′ is connected.

If T ′′ is not returned at step 3, we have croot ∈ C. It is important to observe
that in this case, the roots of the out-trees in T ′ at step 2 are exactly the children
of croot in T . This is because the root of an out-tree in F has an incoming arc
in T ′ if and only if its parent in T is of type (b).

Secondly suppose that T ′′ is returned at step 4. Then croot does not partic-
ipate in T ′ and croot in T ′′ is of in-degree 0. By the observation in the second
paragraph, T ′′ is an out-tree.

Thirdly suppose that T ′′ is returned at step 5. In this case croot has been
included as an internal vertex to connect two out-trees in step 1, and the arcs
(fp, croot) and (croot, fq) have been included in T ′, where fpfq is the pair vertex
found in step 5.1. We want to check that cx and the arc (cx, x) in line 5.3 can
be properly picked up. Indeed, the pair vertex fpx belongs to Hroot ⊆ H and
there exists a vertex cx which is matched to the pair fpx. By the construction
of B, the arc (cx, x) exists as well. Hence at the end of step 5.4, T ′′ is a union
of out-trees whose roots are cx and the children of croot in T other than x.

If d+
T (croot) = 1, T ′′ consists of a single out-tree whose root is cx. Else if

d+
T (croot) ≥ 2, let y be a child of croot in T and y 6= x. Since (fp, croot), (croot, y) ∈

A(D), we have the pair vertex fpy in Hroot ⊆ H and fpy is uniquely matched
to a vertex cy. The edge {fpy, cy} implies the existence of the two arcs (fp, cy),
(cy, y), hence we can perform step 5.5 properly. Since the vertex fp is contained
in the out-tree rooted at cx ∈ Cm, the addition of these arcs does not create
a cycle. As a result we start at the step 5.5 with |d+

T (croot)| out-trees in the
beginning and each time we carry out step 5.5.2, the number of out-trees in T ′′

decreases by 1. Therefore at the end of step 5.5, we end up with a single out-tree
T ′′ rooted at cx.

During the construction of T ′′, we added at least one vertex cpq for each
internal vertex ci of type (b) as an internal vertex of T ′′. Also we added at
least one vertex as the root or an internal vertex of T ′′ if croot ∈ C. Hence
the number of internal vertices in C for T ′′ is at least as large as the number
of internal vertices in C for T . Therefore what remains is to see that every
vertex f of F which is internal in T can be made to remain internal. The only
case we need to consider is a vertex f ∈ V (F) whose children in T are leaves
and all belong to C. Suppose f is a leaf in T ′. Since f ∈ N(C) = H, we can
uniquely determine a vertex cf ∈ Cm such that {f, cf} belongs to the perfect
matching M . By the construction of T ′′ in the above argument, the vertex cf

is not contained in T ′′ for each such vertex f ∈ V (F) and thus, we may add cf

and an arc (f, cf) to T ′′ while keeping T ′′ as an out-tree. After this procedure
each such vertex f is an internal vertex in T ′′, and thus T ′′ has as many internal
vertices as T .

For any vertex c of Cm which does not participate in T ′ constructed so far,

11

we simply add it to T ′′ with the arc (f, c) ∈ A(D). Therefore T ′′ is an out-
branching of D − Cu with as many internal vertices as T . This completes the
proof.

In light of Lemma 4.4, we have a reduction rule below.

Reduction rule 1. Given a digraph D with a vertex cover U of D and W =
V (D)\U , construct the associated bipartite graph B. If B has a crown (H, C =
Cm ∪ Cu) with Cu 6= ∅, remove the vertices of Cu from D.

We need the following theorem to prove our kernelization lemma.

Theorem 4.5. [8] Any graph G with an independent set I, where |I| ≥ 2n
3 , has

a crown (H, C), where H ⊆ N(I), C ⊆ I and Cu 6= ∅, that can be found in time
O(nm) given I.

Lemma 4.6 (Kernelization Lemma). Let D be irreducible. If |V (D)| > 8k2+6k
then D has an out-branching with at least k internal vertices.

Proof. Suppose that D is reduced with |V (D)| > 8k2 + 6k, and that D does
not have an out-branching with at least k internal vertices. Since the internal
number of D is the same as the internal number of the original digraph, we may
assume that D has an out-branching T .

For |U | < 2k, we have |W | = |V (D) \ U | > 8k2 + 4k and |U ′| < 2k + 4k2.
Then |W | ≥ 2|V (B)|

3 which means we have a crown (H,C = Cm ∪ Cu) of D
with C ⊆ W and Cu 6= ∅ by Theorem 4.5. This is a contradiction to that D is
reduced.

Proceeding from what has been discussed above, we give a polynomial time
algorithm which computes a quadratic kernel for the MinLOB-PBGV problem.

KERNELIZATION

1. Build an out-branching T rooted at r by depth-first search.

2. Transform T into a minimal out-branching using 1-change.

3. If the number of leaves of T is at most n− k, return ’YES’.

4. Otherwise Reduce by Rule 1 if possible. If this is not possible,
return the instance (it is irreducible).
Let T be the new out-branching obtained by the construction
in the proof of Lemma 4.4.
Transform T into a minimal out-branching using 1-change.
Go to line 3.

12

Step 1-3 take O(n2m) time by Lemma 4.2. At step 4, we can construct
the bipartite graph B in time O(n3), and V (B) and E(B) are bounded by
n + 2k + 4k2 = O(n2) and m + 4k2n = O(n3) respectively. Due to Theorem
4.5, in O(n5) time we can reduce the instance by Rule 1 or declare the instance
irreducible. Since the size of an instance is strictly decreased at each step of the
reduction, we conclude that the algorithm KERNELIZATION runs in O(n6)
time.

5 Solving MinLOB-PBGV

In order to achieve a better running time we provide an alternative way of
showing the fixed-parameter tractability of the MinLOB-PBGV problem based
on the notion of tree decomposition.

A tree decomposition of an (undirected) graph G is a pair (X,U) where U is
a tree whose vertices we will call nodes and X = {Xi : i ∈ V (U)} is a collection
of subsets of V (G) (called bags) such that

1.
⋃

i∈V (U) Xi = V (G),

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi,
and

3. for each v ∈ V (G) the set of nodes {i : v ∈ Xi} form a subtree of U .

The width of a tree decomposition ({Xi : i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompo-
sitions of G. We use the notation tw(G) to denote the treewidth of a graph
G.

By a tree decomposition of a digraph D we will mean a tree decomposition
of the underlying graph UG(D). Also, tw(D) = tw(UG(D)).

Theorem 5.1. There is an polynomial time algorithm that, given an instance
(D, k) of the MinLOB-PBGV problem, either finds a solution or establishes a
tree decomposition of D of width at most 2k − 2.

Proof. By Lemma 4.2, there is a polynomial time algorithm which either finds
a solution or specifies a vertex cover C of D of size at most 2k − 2. Let I =
{v1, . . . , vs} = V (D) \C. Consider a star U with nodes x0, x1, . . . , xs and edges
x0x1, x0x2, . . . , x0xs. Let X0 = C and Xi = X0 ∪ {vi} for i = 1, 2, . . . , s and
let Xj be the bag corresponding to xj for every j = 0, 1, . . . , s. Observe that
({X0, X1, . . . , Xs}, U) is a tree decomposition of D and its width is at most
2k − 2.

Theorem 5.1 shows that an instance (D, k) of the MinLOB-PBGV problem
can be reduced to another instance with treewidth O(k). Using standard dy-
namic programming techniques we can solve this instance in time 2O(k log k)nO(1).

13

We can further accelerate the solution procedure using kernelization. If we first
find the kernel and then establish the tree decomposition, the resulting algorithm
will run in time 2O(k log k) + n6. Now we have the following result.

Theorem 5.2. The MinLOB-PBGV problem can be solved by an additive FPT
algorithm of running time O(2O(k log k) + n6).

6 Related Problems

In this section we consider transformations from MinPC and MaxIOT introduced
in Section 1 into MinLOB. We start from MinPC.

For a digraph D, let pc(D) be the minimum number of vertex-disjoint di-
rected paths in D. We have the following:

Proposition 6.1. Let D = (V, A) be a digraph and let D̂ be the digraph obtained
from D by adding a new vertex s and all possible arcs from s to V . Then
pc(D) = `min(D̂).

Proof. Since a collection of p disjoint directed paths in D covering V (D) corre-
sponds to an out-branching of D̂ with p leaves, we have pc(D) ≥ `min(D̂). Let B
be an out-branching of D̂ with p leaves. We say that a vertex x of B is branching
if d+

B(x) > 1. Consider a maximal directed path Q of B not containing branch-
ing vertices. Observe that B − V (Q) has p− 1 leaves. Thus, we can decompose
the vertices of B into p disjoint directed paths. Deleting the vertex s from this
collection of paths, we see that pc(D) ≤ `min(D̂). Thus, pc(D) = `min(D̂).

Fixed-parameter tractability of MinLOB-PBGV and Proposition 6.1 imply
that the parameterized problem pc(D) ≤ n− k is FPT, too.

For a digraph D and a vertex v in D, let Dv denote the subgraph of D
obtained from the subgraph of D induced by all vertices reachable from v by
deleting all arcs entering v. The following result allows us to reduce MaxIOT
to MinLOB.

Proposition 6.2. Let D be a digraph and let S be the set of vertices belonging
to all strongly connected components of D without incoming arcs. Let Bv be an
out-branching of Dv of minimum number of leaves, and let s be a vertex of S
such that `min(Bs) ≤ `min(Bv) for each v ∈ S. Then Bs is a maximum internal
out-tree of D.

Proof. Let T be a solution to MaxIOT for D with maximum possible number
of leaves and let r be the root of T . Observe that r ∈ S as otherwise we would
be able to extend T to an out-tree T ′ with more internal vertices such that the
root of T ′ is in S. Observe also that T is an out-branching of Dr as otherwise
we would be able to extend T to an out-branching T ′ of Dr such that T ′ has

14

more either leaves or internal vertices than T . Clearly, `min(Br) ≤ `min(Bv) for
each v ∈ S.

Together with the above-proved results, Proposition 6.2 implies that Max-
IOT for acyclic digraphs is polynomially-time solvable and that the problem
of finding an out-tree with at least k internal vertices in an arbitrary digraph
D is FPT. Recall that the problem of finding an out-branching with at least
k internal vertices has a quadratic kernel. However, the problem of finding an
out-tree with at least k internal vertices does not have a polynomial-size kernel
unless PH=Σ3

p. This easily follows from Lemmas 1-3 in [4].

7 Further Research

We have proved that MinLOB-PBGV is FPT. It would be interesting to check
whether MinLOB-PBGV admits significantly more efficient FPT algorithms,
i.e., algorithms of complexity O(cknO(1)), where c is a constant. Another inter-
esting question is whether MinLOB-PBGV admits a linear-size kernel or not.

Acknowledgements Research of Gutin and Kim was supported in part
by an EPSRC grant. Part of the paper was written when Razgon was visiting
Department of Computer Science, Royal Holloway, University of London. The
research of Razgon at the Department of Computer Science, University College
Cork was supported by Science Foundation Ireland Grant 05/IN/I886.

References

[1] H. Alt, N. Blum, K. Melhorn, and M. Paul, Computing of maximum cardi-
nality matching in a bipartite graph in time O(n1.5

√
m/ log n). Inf. Proc.

Letters 37 (1991) 237–240.

[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms
and Applications. Springer, 2000; freely available online at
www.cs.rhul.ac.uk/books/dbook/

[3] J. Bang-Jensen and A. Yeo, The minimum spanning strong subdigraph
problem is fixed parameter tractable. To appear in Discrete Applied Math.

[4] H.L. Bodlaender, R.G. Downey, M.R. Fellows and D. Hermelin, On prob-
lems without polynomial kernels. Technical report UU-CS-2007-046 (2007),
Utrecht University.

[5] B. Chor, M. Fellows and D. Juedes, Linear Kernels in Linear Time, or How
to Save k Colors in O(n2) steps. Proc. WG’2004 (2004).

15

[6] R.G. Downey and M.R. Fellows, Parameterized Complexity , Springer, 1999.

[7] A. Demers and A. Downing, Minimum leaf spanning tree. US Patent no.
6,105,018, August 2000.

[8] M. Fellows, P. Heggernes, F. Rosamond, C. Sloper and J.A. Telle, Finding
k-disjoint triangles in an arbitrary graph. Proc. WG’2004 (2004).

[9] H. Fernau, Parameterized Algorithmics: A Graph-theoretic Approach. Ha-
bilitation thesis, U. Tübingen, 2005.

[10] H. Fernau, Parameterized Algorithmics for Linear Arrangement Problems.
Manscript, July 2005.

[11] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[12] J. Guo and R. Niedermeier, Invitation to Data Reduction and Problem
Kernelization. ACM SIGACT News 38 (2007), 31–45.

[13] G. Gutin, A. Rafiey, S. Szeider and A. Yeo, The Linear Arrangement Prob-
lem Parameterized Above Guaranteed Value. Theory of Computing Systems
41 (2007), 521–538.

[14] G. Gutin, I. Razgon and E.J. Kim, Minimum Leaf Out-Branching Problems.
Proc. AAIM’08 LNCS 5034 (2008), 235–246.

[15] G. Gutin, S. Szeider and A. Yeo, Fixed-Parameter Complexity of Minimum
Profile Problems. To appear in Algorithmica.

[16] P. Heggernes, C. Paul, J.A. Telle, and Y. Villanger, Interval completion
with few edges. Proc. STOC 2007 - 39th ACM Symposium on Theory of
Computing, 374 – 381.

[17] M. Mahajan and V. Raman, Parameterizing above guaranteed values:
MaxSat and MaxCut. J. Algorithms 31 (1999), 335–354.

[18] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford Univer-
sity Press, 2006.

[19] E. Prieto and C. Sloper, Either/Or: Using Vertex Cover Structure in de-
sigining FPT-algorithms - The Case of k-Internal Spanning Tree, Proc.
WADS’2003 LNCS 2748 (2003), 465–483.

[20] E. Prieto and C. Sloper, Reducing To Independent Set Structure - The
Case of k-Internal Spanning Tree, Nordic Journal of Computing 15 (2005),
308–318.

16

