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Abstract

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to
H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed digraph H, the homomorphism
problem is to decide whether an input digraph D admits a homomorphism to H or
not, and is denoted as HOM(H).

An optimization version of the homomorphism problem was motivated by a real-
world problem in defence logistics and was introduced in [13]. If each vertex u ∈ V (D)
is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is∑

u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomor-
phism problem for H and denote it as MinHOM(H). The problem is to decide, for
an input graph D with costs ci(u), u ∈ V (D), i ∈ V (H), whether there exists a
homomorphism of D to H and, if one exists, to find one of minimum cost.

Although a complete dichotomy classification of the complexity of MinHOM(H)
for a digraph H remains an unsolved problem, complete dichotomy classifications for
MinHOM(H) were proved when H is a semicomplete digraph [10], and a semicomplete
multipartite digraph [12, 11]. In these studies, it is assumed that the digraph H is
loopless. In this paper, we present a full dichotomy classification for semicomplete
digraphs with possible loops, which solves a problem in [9].

1 Introduction, Terminology and Notation

For directed (undirected) graphs G and H, a mapping f : V (G)→V (H) is a homo-
morphism of G to H if uv is an arc (edge) implies that f(u)f(v) is an arc (edge). A
homomorphism f of G to H is also called an H-coloring of G, and f(x) is called the
color of the vertex x in G. We denote the set of all homomorphisms from G to H by
HOM(G,H).
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Let H be a fixed directed or undirected graph. The homomorphism problem, HOM(H),
for H asks whether a directed or undirected input graph G admits a homomorphism to
H. The list homomorphism problem, ListHOM(H), for H asks whether a directed or
undirected input graph G with lists (sets) Lu ⊆ V (H), admits a homomorphism f to H
in which f(u) ∈ Lu for each u ∈ V (G).

Suppose G and H are directed (or undirected) graphs, and ci(u), u ∈ V (G), i ∈ V (H)
are nonnegative costs. The cost of a homomorphism f of G to H is

∑
u∈V (G) cf(u)(u). If H

is fixed, the minimum cost homomorphism problem, MinHOM(H), for H is the following
optimization problem. Given an input graph G, together with costs ci(u), u ∈ V (G),
i ∈ V (H), find a minimum cost homomorphism of G to H, or state that none exists.

The minimum cost homomorphism problem was introduced in [13], where it was mo-
tivated by a real-world problem in defence logistics. We believe it offers a practical and
natural model for optimization of weighted homomorphisms. The problem’s special cases
include the list homomorphism problem [15, 18] and the general optimum cost chromatic
partition problem, which has been intensively studied [14, 19, 20], and has a number of
applications [21, 23].

If a directed (undirected) graph G has no loops, we call G loopless. If a directed
(undirected) graph G has a loop at every vertex, we call G reflexive. When we wish to
stress that a family of digraphs may contain digraphs with loops, we will speak of digraphs
with possible loops (w.p.l.) For an undirected graph H, V (H) and E(H) denote its vertex
and edge sets, respectively. For a digraph H, V (H) and A(H) denote its vertex and arc
sets, respectively.

In this paper, we give a complete dichotomy classification of the complexity of MinHOM(H)
when H is a semicomplete digraph with possible loops. A dichotomy of MinHOM(H) when
H is a tournament w.p.l. was established in [9], but it is much easier to prove than the
more general dichotomy obtained in this paper. A full dichotomy of MinHOM(H) for H
being a (general) digraph has not been settled yet and is considered to be a very difficult
open problem. Nonetheless, dichotomy have been obtained for special classes of digraphs
such as semicomplete digraphs and semicomplete multipartite digraphs; see [10, 11, 12].
All these previous studies, apart from [7, 9], deal only with loopless digraphs.

It is usually assumed when we study the structure of a digraph that it has no loops.
This is often a natural assumption since many properties of loopless digraphs can readily
be extended to general digraphs w.p.l. as the loops do not affect the important part of
the structure of a digraph in the majority of cases. When we investigate homomorphisms
of undirected/directed graphs, the situation is different. The homomorphism problem
HOM(H) is trivially polynomial time solvable when H has a loop, since we may simply
map all the vertices of the input (directed) graph to the vertex having a loop. However,
if we wish to get a dichotomy of MinHOM(H) or ListHOM(H), it is not that simple. For
example, in [8], it turns out that the class of proper interval graphs is exactly the class
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of graphs for which MinHOM(H) is polynomial time solvable (assuming, as usual, that
P 6= NP ), provided that H is reflexive. On the other hand, if we assume that H is loopless,
MinHOM(H) is polynomial time solvable if and only if H is a proper interval bigraph.
It is often the case that, even if we succeeded in obtaining a dichotomy classification
of MinHOM(H) for reflexive and loopless H separately, it is an another issue to have a
dichotomy classification for H with possible loops.

Complete dichotomy classifications of ListHOM(H) and MinHOM(H), for an undi-
rected graph H w.p.l., have been achieved, see [3, 4, 5] and [8]. For a directed graph with
possible loops, the study has just begun and there are only a few results proved [9]. In
[6], the authors prove some partial results on complexity of ListHOM(H) when H is a
reflexive digraph. Especially, it is conjectured that (unless P=NP) for a reflexive digraph
H, ListHOM(H) is polynomial time solvable if and only if H has a proper ordering. Here,
we say that a reflexive digraph H has a proper ordering if its vertices can be ordered so
that whenever xy, x′y′ ∈ A(H), min(x, x′)min(y, y′) is also in A(H). Unfortunately, the
conjecture remains unconfirmed even for the case of reflexive semicomplete digraphs.

In the first version of this paper we conjectured that (unless P=NP) for a reflex-
ive digraph H, MinHOM(H) is polynomial time solvable if and only if H has a Min-
Max ordering, i.e., its its vertices can be ordered so that whenever xy, x′y′ ∈ A(H),
min(x, x′)min(y, y′) and max(x, x′)max(y, y′) are also in A(H). This conjecture was re-
cently proved in [7] using several results, methods and approaches of this paper. Using
the main result of [7] one can reduce the length of this paper by shortening Section 2.
However, [7] uses some results of Section 2 which therefore must remain in the paper and,
in subsequent sections, we use structural results proved in Section 2 but cannot be imme-
diately obtained from the main result of [7]. As a result, the reduction is not significant
in terms of paper length. Since we wish to keep the paper self-contained, we have decided
not to use the main result of [7] in our paper.

In the rest of this section, we give additional terminology and notation. In the
subsequent sections, we first prove a full dichotomy classification of the complexity of
MinHOM(H) when H is a reflexive semicomplete digraph. Using this result, we shall
further present a full dichotomy classification of MinHOM(H) when H is a semicomplete
digraph with possible loops.

For a digraph D, if xy ∈ A(D), we say that x dominates y and y is dominated by x,
denoted by x → y. Furthermore, if xy ∈ A(D) and yx /∈ A(D), then we say that x strictly
dominates y and y is strictly dominated by x, denoted by x 7→ y. For sets X, Y ⊆ V (G),
X → Y means that x → y for each x ∈ X, y ∈ Y . Also, for sets X, Y ⊆ V (G), X 7→ Y
means that xy ∈ A(D) but yx /∈ A(D) for each x ∈ X, y ∈ Y . For xy ∈ A(D), we call
xy an asymmetric arc if yx /∈ A(D), and a symmetric arc if yx ∈ A(D). A digraph D is
symmetric if each arc of D is symmetric. For a digraph H, Hsym denotes the symmetric
subdigraph of H, i.e., a digraph with V (Hsym) = V (H) and A(Hsym) = {uv, vu ∈ A(H)}.
Note that any vertex u of V (Hsym) has a loop if and only if u has a loop in H. We call a

3



directed graph D an oriented graph if all arcs of D are asymmetric.

For a digraph D, let D[X] denote a subdigraph induced by X ⊆ V (D). For any pair
of vertices of a directed graph D, we say that u and v are adjacent if u → v or v → u, or
both. The underlying graph U(D) of a directed graph D is the undirected graph obtained
from D by disregarding all orientations and deleting one edge in each pair of parallel
edges. A directed graph D is connected if U(D) is connected. The components of D are
the subdigraphs of D induced by the vertices of components of U(D).

By a directed path (cycle) we mean a simple directed path (cycle) (i.e., with no self-
crossing). We assume that a directed cycle has at least two vertices. In particular, a loop
is not a cycle. A directed cycle with k vertices is called a directed k-cycle and denoted by
~Ck. Let K∗

n denote a complete digraph with a loop at each vertex, i.e., a reflexive complete
digraph.

An empty digraph is a digraph with no arcs. A loopless digraph D is a tournament
(semicomplete digraph) if there is exactly one arc (at least one arc) between every pair of
vertices. We will consider semicomplete digraphs with possible loops (w.p.l.), i.e., digraphs
obtained from semicomplete digraphs by appending some number of loops (possibly zero
loops). A k-partite tournaments (semicomplete k-partite digraph) is a digraph obtained
from a complete k-partite graph by replacing every edge xy with one of the two arcs xy, yx
(with at least one of the arcs xy, yx). An acyclic tournament on p vertices is denoted by
TTp and called a transitive tournament. The vertices of a transitive tournament TTp can
be labeled 1, 2, . . . , p such that ij ∈ A(TTp) if and only if 1 ≤ i < j ≤ p. By TT−p (p ≥ 2),
we denote TTp without the arc 1p. For an acyclic digraph H, an ordering u1, u2, . . . , up is
called acyclic if ui→uj implies i < j.

Let H be a digraph. The converse of H is the digraph obtained from H by replacing
every arc xy with the arc yx. For a pair X,Y of vertex sets of a digraph H, we define
X × Y = {xy : x ∈ X, y ∈ Y }. Let H be a loopless digraph with vertices x1, x2, . . . , xp

and let S1, S2, . . . , Sp be digraphs. Then the composition H[S1, S2, . . . , Sp] is the digraph
obtained from H by replacing xi with Si for each i = 1, 2, . . . , p. In other words,

V (H[S1, S2, . . . , Sp]) = V (S1) ∪ V (S2) ∪ . . . ∪ V (Sp) and

A(H[S1, S2, . . . , Sp]) = ∪{V (Si)× V (Sj) : xixj ∈ A(H), 1 ≤ i 6= j ≤ p} ∪ (∪p
i=1A(Si)).

If every Si is an empty digraph, the composition H[S1, S2, . . . , Sp] is called an extension
of H.

The intersection graph of a family F = {S1, S2, . . . , Sn} of sets is the graph G with
V (G) = F in which Si and Sj are adjacent if and only if Si ∩ Sj 6= ∅. Note that by
this definition, each intersection graph is reflexive. A graph isomorphic to the intersection
graph of a family of intervals on the real line is called an interval graph. If the intervals
can be chosen to be inclusion-free, the graph is called a proper interval graph.
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Figure 1: Obstuctions: ~C3 and R

2 Classification for Reflexive Semicomplete Digraphs

In this section, we describe a dichotomy classification of the complexity of MinHOM(H)
when H is a reflexive semicomplete digraph. Let R be a reflexive digraph with V (R) =
{1, 2, 3} and A(R) = {12, 23, 32, 31, 11, 22, 33}. Let ~C∗

3 denote a reflexive directed cycle on
three vertices. (See Figure 1.) The main dichotomy classification of this section is given
in the following theorem.

Theorem 2.1 Let H be a reflexive semicomplete digraph. If H does not contain either
R or ~C∗

3 as an induced subdigraph, and U(Hsym) is a proper interval graph (possibly with
more than one component), then MinHOM(H) is polynomial time solvable. Otherwise,
MinHOM(H) is NP-hard.

2.1 NP-hard cases of MinHOM(H)

The following lemma is an obvious basic observation often used to obtain dichotomies.
This lemma is certainly applicable for a digraph H w.p.l.

Lemma 2.2 [10] Let H ′ be an induced subdigraph of a digraph H. If MinHOMP(H ′) is
NP-hard, then MinHOMP(H) is also NP-hard.

The following assertion was proved in [9].

Lemma 2.3 Let a digraph H be obtained from ~Ck, k ≥ 3, by adding at least one loop.
Then MinHOM(H) is NP-hard.

The following lemma shows that for a digraph H obtained from ~C3 by adding some
loops and backward arcs, i.e., arcs of the form (i, i− 1), MinHOM(H) is NP-hard.
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Lemma 2.4 Let H be a digraph with V (H) = {1, 2, 3} and A(H) = {12, 23, 32, 31, 22, 33}∪
B, where B ⊆ {11}. Then MinHOM(H) is NP-hard (See Figure 1.)

Proof: Let G be a loopless digraph with p vertices. Construct a bipartite digraph D as
follows: V (D) = {x1, x2 : x ∈ V (G)} and A(D) = {x1x2 : x ∈ V (G)} ∪ {x2y1 : xy ∈
A(G)}. Set c1(x1) = 0, c2(x2) = 3, c2(x1) = c1(x2) = 4p + 1 and c3(x1) = c3(x2) = 2 for
each x ∈ V (G).

Clearly, h(x1) = h(x2) = 3 for each x ∈ V (D) defines a homomorphism h of D to H.
Let f be a minimum cost homomorphism of D to H. It follows from the fact that the cost
of h is 4p that f(x2) 6= 1 and f(x1) 6= 2 for each x ∈ V (G). Thus, for every arc x1x2 of D
we have three possibilities of coloring: (a) f(x1) = 1, f(x2) = 2; (b) f(x1) = f(x2) = 3; (c)
f(x1) = 3, f(x2) = 2. Because of the three choices and the structure of H, if f(x1) = 3 and
f(x2) = 2, we can recolor x2 so that f(x2) = 3, decreasing the cost of f , a contradiction.
Thus, (c) is impossible for f .

Let f(x1) = f(y1) = 1, where x, y are distinct vertices of G. If xy ∈ A(G), then
x2y1 ∈ A(D), which is a contradiction since f(x2) = 2. Thus, x and y are non-adjacent in
G. Hence, I = {x ∈ V (G) : f(x1) = 1} is an independent set in G. Observe that the cost
of f is 4p− |I|.

Conversely, if I is an independent set in G, we obtain a homomorphism g of D to H
by fixing g(x1) = 1, g(x2) = 2 for x ∈ I and g(x1) = g(x2) = 3 for x ∈ V (G)− I. Observe
that the cost of g is 4p−|I|. Hence a homomorphism g of D to H is of minimum cost if and
only if the corresponding independent set I is of maximum size in G. Since the maximum
size independent set problem is NP-hard, MinHOM(H) is NP-hard as well. Observe that
the validity of the proof does not depend on whether vertex 1 has a loop or not. ¦

Corollary 2.5 Let H be a reflexive semicomplete digraph. If H contains either R or ~C∗
3

as an induced subdigraph, MinHOM(H) is NP-hard.

Proof: It is straightforward to see that Lemmas 2.3 and 2.4 imply the NP-hardness of
MinHOM(~C∗

3 ) and MinHOM(R), respectively. The above statement follows directly from
Lemma 2.2. ¦

The following theorem is from [8].

Theorem 2.6 Let H be a reflexive graph. If H is a proper interval graph (possibly with
more than one component), then the problem MinHOM(H) is polynomial time solvable.
In all other cases, the problem MinHOM(H) is NP-hard.

Suppose that H is a semicomplete digraph and that U(Hsym) is not a proper interval
graph. That is, at least one component of U(Hsym) is not a proper interval graph. Then
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MinHOM(U(Hsym)) is polynomial time reducible to MinHOM(H) since an input graph
G of MinHOM(U(Hsym)) can be transfomed into an input digraph G∗ of MinHOM(H)
by replacing each edge xy of G by a symmetric arc xy of G∗. Hence, if U(Hsym) is not a
proper interval graph, MinHOM(H) is NP-hard by Theorem 2.6. Together with Corollary
2.5, this proves the claim for the NP-hardness part of Theorem 2.1.

Theorem 2.7 Let H be a reflexive semicomplete digraph. If H contains either R or ~C∗
3

as an induced subdigraph, or U(Hsym) is not a proper interval graph, then MinHOM(H)
is NP-hard.

2.2 Polynomial time solvable cases of MinHOM(H)

Let H be a digraph and let v1, v2, . . . , vp be an ordering of V (H). Let e = vivr and
f = vjvs be two arcs in H. The pair vmin{i,j}vmin{s,r} (vmax{i,j}vmax{s,r}) is called the
minimum (maximum) of the pair e, f . (The minimum (maximum) of two arcs is not
necessarily an arc.) An ordering v1, v2, . . . , vp is a Min-Max ordering of V (H) if both
minimum and maximum of every two arcs in H are in A(H). Two arcs e, f ∈ A(H) are
called a non-trivial pair if {e, f} 6= {g′, g′′}, where g′ (g′′) is the minimum (maximum) of
e, f. Clearly, to check that an ordering is Min-Max, it suffices to verify that the minimum
and maximum of every non-trivial pair of arcs are arcs, too.

The following theorem was proved in [10] for loopless digraphs. In fact, the same proof
is valid for digraphs with possible loops.

Theorem 2.8 Let H be a digraph and let an ordering 1, 2, . . . , p of V (H) be a Min-Max
ordering, i.e., for any pair ik, js of arcs in H, we have min{i, j}min{k, s} ∈ A(H) and
max{i, j}max{k, s} ∈ A(H). Then MinHOM(H) is polynomial time solvable.

In this subsection, we assume that H is a reflexive semicomplete digraph which contains
neither R nor ~C∗

3 , and for which U(Hsym) is a proper interval graph (possibly with more
than one component), unless we mention otherwise. In this subsection, we will show
that H has a Min-Max ordering, and, thus, MinHOM(H) is polynomial time solvable by
Theorem 2.8.

There is a useful characterization of proper interval graphs [16, 22].

Theorem 2.9 A reflexive graph H is a proper interval graph if and only if its vertices
can be ordered v1, v2, . . . , vn so that i < j < k and vivk ∈ E(H) imply that vivj ∈ E(H)
and vjvk ∈ E(H).

Let H be a digraph and let v1, v2, . . . , vp be an ordering of V (H). We call vivj a forward
arc (with respect to the ordering) if i < j, and a backward arc if i > j. The following
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lemma shows that if H satisfies a certain condition, then the vertices of H can ordered so
that every arc is either forward or symmetric.

Lemma 2.10 Let H be a reflexive semicomplete digraph and suppose H does not contain
R as an induced subdigraph and suppose that U(Hsym) is a connected proper interval
graph. Then the vertices of H can be ordered v1, v2, . . . , vn such that i < j < k and
vivk ∈ A(Hsym) imply that vivj ∈ A(Hsym) and vjvk ∈ A(Hsym) and furthermore, for
every pair of vertices vi and vj with i < j, we have vi → vj.

Proof: Since U(Hsym) is a proper interval graph, the vertices of H can be ordered
v1, . . . , vn such that i < j < k and vivk ∈ A(Hsym) imply that vivj ∈ A(Hsym) and
vjvk ∈ A(Hsym) by Theorem 2.9. Observe that if vivj is a symmetric arc with i < j,
then for each `, k with i < ` < k < j we have v`vk is a symmetric arc. Note also that
vivi+1 for each i = 1, . . . , n − 1 is a symmetric arc, since otherwise Hsym has more that
one component, contradicting the connectivity assumption.

We wish to prove that if v` → vk for some ` < k, then vi → vj for each i < j. We prove
it using a sequence of claims.

Claim 1. If vi 7→ vj for some j > i, then vi → {vi+1, . . . , vn}.
Proof: If vivk ∈ A(Hsym) for each k > i, there is nothing to prove. Thus, we may
assume without loss of generality that there exists a vertex vk such that vk 7→ vi. By an
observation above, all arcs between vi and vt for each t ≥ min{j, k} are asymmetric. Thus,
there is an index m ≥ min{j, k} such that either vi 7→ vm and vm+1 7→ vi or vm 7→ vi and
vi 7→ vm+1. Recall that that vmvm+1 is a symmetric arc. Hence, H[{vi, vm, vm+1}] ∼= R, a
contradiction.

A similar argument leads to the symmetric statement below.

Claim 1′. If vj 7→ vi for some j < i, then {v1, . . . , vi−1} → vi.

Claim 2. We have either {v1, . . . , vi−1} → vi → {vi+1, . . . , vn} or {vi+1, . . . , vn} →
vi → {v1, . . . , vi−1}.
Proof: Suppose to the contrary that there are two vertices vj , vk with j < i < k such
that vi 7→ vj , vi 7→ vk in H. (The case for which vj 7→ vi, vk 7→ vi in H can be treated in
a similar manner.) Then vjvk is not a symmetric arc since otherwise, vjvi and vivk must
be symmetric arcs by the property of the ordering. Hence, only one of vjvk and vkvj is an
arc of H. In either case, we have a contradiction by Claims 1 or 1′.

Claim 3: If v` → vk for some ` < k, then vi → vj for each i < j.

Proof: Suppose to the contrary that there exist two vertices vj and vi such that vj 7→ vi

and i < j. If any two of the four vertices vi, vj , v` and vk are identical, we have a
contradiction by Claim 1, 1′ or 2. Thus, we may assume that these vertices are all distinct.
We have the following cases.
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(a) Let i < `. Then we have i < ` < k. If vivk is a symmetric arc, the arc v`vk must
be symmetric by the property of the ordering, a contradiction. Hence, only one of vivk

and vkvi is an arc of H. If vi 7→ vk, we have a contradiction by Claim 1 for vertex vi and
if vk 7→ vi, we have a contradiction by Claim 1′ for vertex vk.

(b) Let ` < i. Then we have ` < i < j. If v`vj is a symmetric arc, then vivj must be
a symmetric arc by the property of the ordering, contradiction. Hence, only one of vjv`

and v`vj is an arc of H. In either case, we have a contradiction by Claims 1 or 1′.

By Claim 3, either v1, v2, . . . , vn or its reversal satisfies the required property. ¦

Consider a reflexive semicomplete digraph H. Suppose that H does not contain either
R or ~C∗

3 as an induced subdigraph and U(Hsym) is a proper interval graph. Note that
each isolated vertex in U(Hsym) forms a trivial proper interval graph in itself.

Suppose that Hsym is not connected. If each component of Hsym is trivial, it is clear
that H has a Min-Max ordering since H is a reflexive transitive tournament (H does not
contain ~C∗

3 ). Hence we may assume that at least one component of Hsym is nontrivial. Let
Hsym

i and Hsym
j be two distinct components of Hsym and at least one of them, say Hsym

j ,
is a nontrivial component containing more than one vertex. Clearly, the arcs between
Hsym

i and Hsym
j are all asymmetric.

Let u be a vertex of Hsym
i , and let v and w be two distinct vertices in Hsym

j . Without
loss of generality, we may assume that u 7→ v. If w 7→ u, there must exist adjacent vertices
p and q on a path from v to w in Hsym

j such that u 7→ p and q 7→ u. Then we have
H[{u, p, q}] ∼= R, a contradiction. With a similar argument, it is easy to see that all arcs
between two components Hsym

i and Hsym
j are oriented in the same direction with respect

to the components. Furthermore, since H is ~C∗
3 -free, the components of Hsym can be

ordered Hsym
1 ,Hsym

2 , . . . ,Hsym
l so that for each pair of vertices u ∈ Hsym

i and v ∈ Hsym
j

with i < j, we have u 7→ v. This implies the following:

Corollary 2.11 Let H be a reflexive semicomplete digraph and suppose H does not con-
tain either R or ~C∗

3 as an induced subdigraph and suppose that U(Hsym) is a proper interval
graph. Then the components of Hsym can be ordered Hsym

1 ,Hsym
2 , . . . , Hsym

l such that if
u ∈ Hsym

i , v ∈ Hsym
j and i < j, then we have u 7→ v.

We shall call the ordering of the components of Hsym described in Corollary 2.11 an
acyclic ordering of the the components of Hsym. Now, with Lemma 2.10, we have the
following lemma.

Lemma 2.12 Let H be a reflexive semicomplete digraph and suppose H does not contain
either R or ~C∗

3 as an induced subdigraph and U(Hsym) is a proper interval graph. Then
the vertices of H can be ordered v1, . . . , vn so that i < j < k and vivk ∈ A(Hsym) imply
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that vivj ∈ A(Hsym) and vjvk ∈ A(Hsym) and furthermore, for every pair of vertices vi

and vj from V (H) with i < j, we have vi → vj.

Proof: Let Hsym
1 ,Hsym

2 , . . . , Hsym
l be the acyclic ordering of the components of Hsym. By

Lemma 2.10, we have an ordering vi
1, v

i
2, . . . , v

i
|V (Hsym

i )| of V (Hsym
i ), for each i = 1, . . . , l,

such that every asymmetric arc is forward. Then the ordering

v1
1, v

1
2, . . . , v

1
|V (Hsym

1 )|, v
2
1, v

2
2, . . . , v

2
|V (Hsym

2 )|, . . . , v
l
1, v

l
2, . . . , v

l
|V (Hsym

l )|

of the vertices of H satisfies the condition, completing the proof. ¦

The following proposition was proved in [8]. Observe that for the symmetric subdigraph
Hsym, the ordering of the vertices of H described in Lemma 2.12 satisfies the condition of
the proposition below.

Proposition 2.13 A reflexive graph H has a Min-Max ordering if and only if its vertices
can be ordered v1, v2, . . . , vn so that i < j < k and vivk ∈ E(H) imply that vivj ∈ E(H)
and vjvk ∈ E(H).

Lemma 2.14 Let H be a reflexive semicomplete digraph. If H does not contain either R
or ~C∗

3 as an induced subdigraph, and U(Hsym) is a proper interval graph, then H has a
Min-Max ordering.

Proof: Let v1, . . . , vn be the ordering of V (H) as described in Lemma 2.12. We will
show that this is a Min-Max ordering of V (H).

Let vivj and vkvl be a non-trivial pair of H. If i ≤ j and k ≤ l, it is easy to see
that both the minimum and maximum of vivj and vkvl are in A(H). If i > j and k > l,
vivj and vkvl are symmetric arcs of Hsym. Since they are a non-trivial pair, the vertices
vi, vj , vk and vl belong to the same component of Hsym by the proof of Lemma 2.12. Then
the minimum and the maximum of vivj and vkvl are also in A(Hsym) by Lemma 2.10.

Now suppose that i ≤ j and k > l. Note that vkvl is a symmetric arc. Hence if i = j,
then the vertices vi, vk and vl belong to the same component of Hsym, and, thus, the
minimum and the maximum of vivj and vkvl are in A(Hsym) by Lemma 2.10. If i 6= j, we
need to consider the following four cases covering all possibilities for non-trivial pairs:

(a) i ≤ l < j ≤ k. Then vmin{i,k}vmin{j,l} = vivl ∈ A(H) as i ≤ l. Also, since vlvk is a
symmetric arc, vmax{i,k}vmax{j,l} = vkvj is a symmetric arc by Lemma 2.12.

(b) l < i < j ≤ k. Then, since vlvk is a symmetric arc, vmax{i,k}vmax{j,l} = vkvj and
vmin{i,k}vmin{j,l} = vivl are symmetric arcs by Lemma 2.12.

(c) l < i < k < j. Then, vmax{i,k}vmax{j,l} = vkvj ∈ A(H) as k < j. Also, since vlvk is
a symmetric arc, vmin{i,k}vmin{j,l} = vivl is a symmetric arc by Lemma 2.12.
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(d) i ≤ l < k < j. Then vmin{i,k}vmin{j,l} = vivl ∈ A(H) and vmax{i,k}vmax{j,l} = vkvj ∈
A(H) as i ≤ l and k < j. ¦

Theorem 2.15 Let H be a reflexive semicomplete digraph. If H does not contain ei-
ther R or ~C∗

3 as an induced subdigraph, and U(Hsym) is a proper interval graph, then
MinHOM(H) is polynomial time solvable.

Proof: This is a direct consequence of Lemmas 2.14 and 2.8. ¦

Corollary 2.16 Suppose P 6= NP . Let H be a reflexive semicomplete digraph. Then
MinHOM(H) is polynomial time solvable if and only if H has a Min-Max ordering.

Proof: This is a direct consequence of Lemma 2.14 and Theorem 2.7.

3 Classification for Semicomplete Digraphs with Possible
Loops

In this section, we describe a dichotomy classification for MinHOM(H) when H is a
semicomplete digraph with possible loops. Let W be a digraph with V (W ) = {1, 2}
and A(W ) = {12, 21, 22}. Let R′ be a digraph with V (R′) = {1, 2, 3} and A(R′) =
{12, 23, 32, 31, 22, 33}. (See Figure 2)

Given a semicomplete digraph H w.p.l., let L = L(H) and I = I(H) denote the
maximal induced subdigraphs of H which are reflexive and loopless, respectively. When
H = L, we have obtained a dichotomy classification for reflexive semicomplete digraph in
Section 2. When H = I, we also have a dichotomy classification by the following theorem
from [10].

Theorem 3.1 For a semicomplete digraph H, MinHOM(H) is polynomial time solvable
if H is acyclic or H = ~Ck for k =2 or 3, and NP-hard, otherwise.

In this section, we will show that the following dichotomy classification holds when H
is a semicomplete digraph w.p.l.

Theorem 3.2 Let H be a semicomplete digraph with possible loops. If one of the following
holds, then MinHOM(H) is polynomial time solvable. Otherwise, it is NP-hard.

(i) The digraph H = ~Ck for k =2 or 3.

(ii-a) The digraph L does not contains either R or ~C∗
3 as an induced subdigraph, and

U(Lsym) is a proper interval graph; I is a transitive tournament; H does not contain either
W , R′ or ~C3 with at least one loop as an induced subdigraph.

11
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Figure 2: Obstuctions: W , R′ and the obstruction from Lemma 3.6

or equivalently,

(ii-b) The digraph H = TTk[S1, S2, . . . , Sk] where Si for each i = 1, . . . , k is either a
single vertex without a loop, or a reflexive semicomplete digraph which does not contain R
as an induced subdigraph and for which U(Ssym

i ) is a connected proper interval graph.

Through subsections 3.1 and 3.2, we will consider only the polynomiality condition (ii-
a) in Theorem 3.2. We first prove the NP-hardness part of Theorem 3.2 in subsection 3.1.
In subsection 3.2, a proof for the polynomial solvable case is given. Finally in subsection
3.3, we will prove the equivalence of condition (ii-a) and (ii-b) in Theorem 3.2.

3.1 NP-hard cases of MinHOM(H)

The following two lemmas were proved in [9].

Lemma 3.3 MinHOM(W ) is NP-hard.

Lemma 3.4 Let H ′ be a digraph obtained from ~Ck = 12 . . . k1, k ≥ 2, by adding an extra
vertex k + 1 dominated by at least two vertices of the cycle and let H ′′ is the digraph
obtained from H ′ by adding the loop at vertex k + 1. Let H be H ′ or its converse or H ′′

or its converse. Then MinHOM(H) is NP-hard.

Observe that MinHOM(R′) is NP-hard by Lemma 2.4. The following result was proved
in [2].

Theorem 3.5 Let H be a (loopless) semicomplete digraph with at least two directed cycles.
Then the problem of checking whether a digraph D has an H-coloring is NP-complete.

Lemma 3.6 Let H be a digraph with V (H) = {1, 2, 3} and A(H) = {12, 21, 23, 31, 33}.
Then MinHOM(H) is NP-hard. (See Figure 2)
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Proof: We will reduce the maximum independent set problem to MinHOM(H). Be-
fore we do this we consider a digraph D∗(u, v) defined as follows. Here we set e = uv:

V (D∗(u, v)) = {ue, u, ve, v, xe
1, x

e
2, . . . , x

e
6}

A(D∗(u, v)) = {xe
1x

e
2, x

e
2x

e
3, . . . , x

e
5x

e
6, x

e
6x

e
1, x

e
4u

e, ueu, xe
5v

e, vev}

Let G be a graph with p vertices. Construct a digraph D as follows: Start with V (D) =
V (G) and, for each edge e = uv ∈ E(G), add a distinct copy of D∗(u, v) to D. Note that
the vertices in V (G) form an independent set in D and that |V (D)| = |V (G)|+ 8|E(G)|.

Given an edge e = uv ∈ E(G), we fix the costs as follows: Let c1(xe
1) = 0 and

ci(xe
1) = p + 1 for each i = 2, 3. Let ci(xe

j) = 0 for each i = 1, 2, 3 and j = 2, . . . , 6
apart from c3(xe

4) = c3(xe
5) = p + 1. Also, ci(ue) = ci(ve) = 0 for each i = 1, 2, 3,

c2(u) = c2(v) = 0, c1(u) = c1(v) = 1 and c3(u) = c3(v) = p + 1.

Consider a mapping h of V (D) to V (H) as follows: h(xe
i ) = 1 if i is odd, h(xe

i ) = 2 if
i is even, h(ue) = 3, h(ve) = 2 for each e ∈ E(G) and h(u) = 1 for each u ∈ V (G). It is
easy to check that h defines a homomorphism of D to H and the cost of h is p. Let f be
a minimum cost homomorphism of D to H. It follows from the fact that the cost of h is
p that f(xe

1) = 1, f(xe
4), f(xe

5) ∈ {1, 2} for each e ∈ E(G), and f(u) ∈ {1, 2} for each each
u ∈ V (G). Moreover, due to the structure of D∗(u, v) and the costs, for each e ∈ E(G),
(f(xe

1), . . . , f(xe
6)) must coincide with one of the following two sequences: (1,2,1,2,1,2) or

(1,2,3,1,2,3).

If the first sequence is the actual one, then we have f(xe
4) = 2, f(ue) ∈ {1, 3}, f(u) ∈

{1, 2} and f(xe
5) = 1, f(ve) = 2, f(v) = 1. If the second sequence is the actual one, we

have f(xe
4) = 1, f(ue) = 2, f(u) = 1 and f(xe

5) = 2, f(ve) ∈ {1, 3}, f(v) ∈ {1, 2}. So
in both cases we can assign both u and v color 1. Furthermore, by choosing the right
sequence we can color one of u and v with color 2 and the other with color 1. Notice that
f cannot assign color 2 to both u and v.

Clearly, f must assign as many vertices of V (G) in D color 2. However, if uv is an
edge in G, by the argument above, f cannot assign color 2 to both u and v. Hence,
I = {u ∈ V (G) : f(u) = 2} is an independent set in G. Observe that the cost of f is
p− |I|.

Conversely, if I ′ is an independent set in G, we obtain a homomorphism g of D to H
by fixing g(u) = 2 for u ∈ I ′, g(u) = 1 for u /∈ I ′. We can choose an appropriate sequence
for xe

1, . . . , x
e
6 for each edge e ∈ E(G) and fix the assignment of ue and ve accordingly by

the above argument. Observe that the cost of g is p− |I ′|. Hence the cost of a minimum
homomorphism f of D to H is p − α, where α is the size of the maximum independent
set in G. Since the maximum size independent set problem is NP-hard, MinHOM(H) is
NP-hard as well. ¦
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Lemma 3.7 Let H be a digraph with V (H) = {1, 2, 3} and A(H) = {12, 21, 23, 31}∪B1∪
B2, where B1 is either {11, 22} or ∅ and B2 is either {33} or ∅. Then MinHOM(H) is
NP-hard.

Proof: Consider the following three cases.

Case 1: B1 = ∅ and B2 = ∅. Then MinHOM(H) is NP-hard by Theorem 3.5.

Case 2: B1 = ∅ and B2 = {33}. Then MinHOM(H) is NP-hard by Lemma 3.6

Case 3: B1 = {11, 22}. Then MinHOM(H) is NP-hard by Lemma 2.4. ¦

Consider a strong semicomplete digraph w.p.l. H on three vertices. We want to
obtain all polynomial cases for H. If H does not have a 2-cycle, MinHOM(H) is NP-hard
if (and only if) at least one of its vertices has a loop by Lemma 2.3. Note that we have
a polynomial case if H is ~C3. Suppose that H has at least one 2-cycle. If there are two
or more 2-cycles, MinHOM(H) is NP-hard by Theorem 3.5 and Lemma 3.3 unless H is
reflexive. Note that in the reflexive case, MinHOM(H) is polynomial time solvable since
H has a Min-Max ordering.

Now suppose that H has only one 2-cycle. For MinHOM(H) to be not NP-hard, both
or neither of the two vertices forming the 2-cycle must have loops simultaneously since
otherwise, MinHOM(H) is NP-hard by Lemma 3.3. Now by Lemma 3.7, MinHOM(H) is
still NP-hard.

Let K∗
3 − e be a digraph obtained by removing a nonloop arc from K∗

3 . The above
observation can be summarized by the following statement.

Corollary 3.8 Let H be a strong semicomplete digraph w.p.l. on three vertices. If H is ei-
ther ~C3, K∗

3 or K∗
3−e, MinHOM(H) is polynomial time solvable. Otherwise, MinHOM(H)

is NP-hard.

For a semicomplete digraph w.p.l. H, if either MinHOM(L) or MinHOM(I) is NP-
hard, MinHOM(H) is NP-hard by Lemma 2.2. (Recall that L = L(H) and I = I(H) de-
note the maximal induced subdigraphs of H which are reflexive and loopless, respectively.)
Also, if H contains ~C3 with at least one loop as an induced subdigraph, MinHOM(H) is
NP-hard by Lemmas 2.3 and 2.2. Suppose MinHOM(H) is not NP-hard. Then Lemma
3.3 indicates that for any pair of vertices u ∈ V (L) and v ∈ V (I), either u → v or v → u,
not both, as otherwise MinHOM(H) is NP-hard. With these observations and Lemma
3.4, the following statement is easily derived.

Lemma 3.9 Let H be a semicomplete digraph. If one of the following condition holds,
MinHOM(H) is NP-hard.

(a) I contains a cycle and I 6= ~Ck for k =2 or 3.
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(b) L contains either R or ~C∗
3 as an induced subdigraph, or U(Lsym) is not a proper

interval graph.

(c) I = ~Ck for k =2 or 3, and L is nonempty.

(d) H contains W , R′ or ~C3 with at least one loop as an induced subdigraph.

Proof: If condition (a) holds, MinHOM(H) is NP-hard by Theorem 3.1 and Lemma
2.2. If condition (b) holds, MinHOM(H) is NP-hard by Theorem 2.1 and Lemma 2.2.
If condition (d) holds, MinHOM(H) is NP-hard by Lemmas 3.3, 2.4, 2.3 and 2.2. The
only remaining part is to prove that the condition (c) is sufficient for MinHOM(H) to be
NP-hard.

If I = ~C2 and u is a vertex of L, then we may assume that either u dominates both
vertices of I, or u is dominated by one of V (I) and dominates the other without loss of
generality. In the former case, MinHOM(H) is NP-hard by Lemma 3.4. In the latter
case, MinHOM(H) is NP-hard by Lemma 3.6. If I = ~C3 and u is a vertex with a loop,
MinHOM(H) is NP-hard by Lemma 3.4. ¦

In fact, Lemma 3.9 proves the NP-hardness part in Theorem 3.2. This can be seen
as follows. Suppose that MinHOM(H) is not NP-hard. Recall that the polynomiality
conditions of Theorem 3.2 are: (i) H = ~Ck for k =2 or 3, or (ii-a) L does not contain
either R or ~C∗

3 as an induced subdigraph, and U(Lsym) is a proper interval graph, I is a
transitive tournament, and H does not contain either W , R′ or ~C3 with at least one loop
as an induced subdigraph.

Suppose that a semicomplete digraph w.p.l. H has an loopless cycle. Then condition
(ii-a) does not hold, and for condition (i) to be violated, either one of (a) and (c) in Lemma
3.9 must hold. On the other hand, suppose that the loopless part I of H is a transitive
tournament. Then condition (i) does not hold, and for condition (ii-a) to be violated, one
of (b) and (d) in Lemma 3.9 must hold.

Corollary 3.10 Let H be a semicomplete digraph with possible loops. If none of the
following holds, then MinHOM(H) is NP-hard.

(a) The digraph H = ~Ck for k =2 or 3.

(b) The digraph L does not contains either R or ~C∗
3 as an induced subdigraph, and

U(Lsym) is a proper interval graph; I is a transitive tournament; H does not contain
either W , R′ or ~C3 with at least one loop as an induced subdigraph.

3.2 Polynomial time solvable cases of MinHOM(H)

If condition (i) in Theorem 3.2 holds for a semicomplete digraph w.p.l. H, MinHOM(H) is
clearly polynomial time solvable by Theorem 3.1. Although ~C3 does not have a Min-Max

15



ordering, there is a simple algorithm which solves MinHOM(H) in polynomial time when
H = ~Ck, k ≥ 2, see [10, 9].

The equivalence of the conditions (ii-a) and (ii-b) will be shown in the last subsection.
Therefore, we only need to prove that when H satisfies the condition (ii-a) in Theorem 3.2,
MinHOM(H) is polynomial time solvable. We claim that H has a Min-Max ordering in
this case. Before showing this claim, we prove that the ordering described in Lemma 2.12
for a reflexive semicomplete digraph can be extended to a semicomplete digraph w.p.l. if
condition (ii-a) in Theorem 3.2 is satisfied.

Lemma 3.11 Let H be a semicomplete digraph with possible loops. Suppose that L does
not contain either R or ~C∗

3 as an induced subdigraph, and U(Lsym) is a proper interval
graph. Also suppose that I is a transitive tournament and H does not contain either W ,
R′ or ~C3 with at least one loop as an induced subdigraph. Then the vertices of H can be
ordered v1, . . . , vn so that for every pair of vertices vi and vj with i < j, we have vi → vj.

Proof: Let Lsym
1 , . . . , Lsym

l be the acyclic ordering of the components of Lsym. Let

w1, w2, . . . , wq = v1
1, v

1
2, . . . , v

1
|V (Lsym

1 )|, . . . , v
i
1, v

i
2, . . . , v

i
|V (Lsym

i )|, . . . , v
l
1, v

l
1, . . . , v

l
|V (Lsym

l )|

be the ordering of V (L) as described in Lemma 2.12. Let u1, . . . , up be the acyclic ordering
of V (I), i.e., ui→uj implies i < j. We will prove the statement by showing that the
subdigraph induced by V (Lsym

i ) can be ’inserted’ into an appropriate position among the
acyclic ordering of V (I) without creating a cycle, thus by constructing an ordering of
V (H) satisfying the asserted property.

Observe that any arc whose end vertices are from I and L each is asymmetric. Oth-
erwise, the end vertices of such arch induce a digraph W , a contradiction.

First, we claim that given a vertex u of I and a component Lsym
i , we have either

u 7→ V (Lsym
i ) or V (Lsym

i ) 7→ u. If Lsym
i is a trivial component consisting of a single

vertex, the claim follows directly. So, assume that |V (Lsym
i )| ≥ 2 and there exists two

vertices v, v′ of Lsym
i such that u 7→ v and v′ 7→ u. Then, since Lsym

i is connected, there is
a path in Lsym

i linking v and v′. We can find two adjacent vertices s, t on this path such
that u 7→ s and t 7→ u. However, then H[{u, s, t}] ∼= R′, a contradiction.

Secondly, we claim that for each component Lsym
i (possibly trivial), the vertices of

Lsym
i can be ‘inserted’ into an appropriate position so that the ordering of V (I)∪V (Lsym

i )
satisfies the required property. (Here, the ordering within V (Lsym

i ) remains unchanged.)
That is, either V (I) 7→ V (Lsym

i ) or V (Lsym
i ) 7→ V (I), or there exist an integer 1 ≤ j < p

such that for all k ≤ j, we have uk 7→ V (Lsym
i ) and for all k > j, we have V (Lsym

i ) 7→ uk.
If V (I) 7→ V (Lsym

i ) or V (Lsym
i ) 7→ V (I), the ordering u1, . . . , up followed by or following

the ordering of V (Lsym
i ) trivially satisfies the required property. Thus, we may assume

that u 7→ V (Lsym
i ) and V (Lsym

i ) 7→ u′ for some u, u′ ∈ V (I).
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Suppose that there are two vertices uj and uj′ of I with j′ < j such that uj 7→
V (Lsym

i ) and V (Lsym
i ) 7→ uj′ . Then uj′ , uj together with a vertex of Lsym

i form ~C3 with
a loop, contradicting the assumption. Hence, if uj 7→ V (Lsym

i ) for some uj ∈ V (I), then
uj′ 7→ V (Lsym

i ) for each j′ < j. Similarly, if V (Lsym
i ) 7→ uj for some uj ∈ V (I), then

V (Lsym
i ) 7→ uj′ for each j′ > j. By taking the maximum j such that uj 7→ V (Lsym

i )

and inserting V (Lsym
i ) between uj and uj+1 while preserving the ordering within

V (Lsym
i ), we are done with the claim. From now on, we will say that V (Lsym

i ) is in-
serted after uj if uj 7→ V (Lsym

i ) and V (Lsym
i ) 7→ uj+1 when uj+1 exists, and V (Lsym

i ) is
inserted before uj if V (Lsym

i ) 7→ uj and uj−1 7→ V (Lsym
i ) when uj−1 exists.

Note that if any two components Lsym
i and Lsym

j of Lsym are inserted before/after the
same vertex of I, we will keep their relative order unchanged.

Now let us show that the insertion of all V (Lsym
i )’s does not change their relative

order in L. That is, if V (Lsym
i ) is inserted after uj , then each component Lsym

i′ for i′ > i
is inserted after uj′ , where j′ ≥ j and if Lsym

i is inserted before uj , then each component
Lsym

i′ for i′ < i is inserted before uj′ , where j′ ≤ j.

Suppose to the contrary that there are two components Lsym
i and Lsym

i′ with i < i′

such that V (Lsym
i ) is inserted after uj and V (Lsym

i′ ) is inserted before uj′ with j′ ≤ j.
Then, by the above argument, V (Lsym

i′ ) 7→ uj . However, a vertex from V (Lsym
i ), a vertex

from V (Lsym
i′ ) and uj induce ~C3 with two loops, contradicting the assumption. Hence, if

V (Lsym
i ) is inserted after uj , then V (Lsym

i′ ) for i′ > i is inserted after uj′ , where j′ ≥ j.
Similarly, we can show that if V (Lsym

i ) is inserted before uj , then V (Lsym
i′ ) for i′ < i is

inserted before uj′ , where j′ ≤ j.

It is straightforward from the above construction that the resulting ordering satisfies
the required property. ¦

Now we are ready to prove that H has a Min-Max ordering when H satisfies the
condition (ii-a) in Theorem 3.2.

Lemma 3.12 Let H be a semicomplete digraph with possible loops. Suppose that L con-
tains neither R nor ~C∗

3 as an induced subdigraph, and U(Lsym) is a proper interval graph.
Also suppose that I is a transitive tournament and H does not contain either W , R′ or
~C3 with at least one loop as an induced subdigraph. Then MinHOM(H) has a Min-Max
ordering.

Proof: Consider an ordering v1, . . . , vn of the vertices of H as described in Lemma
3.11. We will show that this is a Min-Max ordering of V (H). Note that the induced
ordering of V (I) is an acyclic ordering and the induced ordering of V (L) is a Min-Max
ordering for Lsym as described in Lemma 2.12.

Let vivj and vkvl be any nontrivial pair of arcs of H. Observe that if both arcs are in
A(L), then the minimum and the maximum of them are also in A(L) since the induced
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ordering of V (L) is a Min-Max ordering for L. Moreover, if both arcs are forward arcs,
i.e. i < j and k < l, then we have either i < k < l < j or k < i < j < l. In either case, it
follows from Lemma 3.11 that the minimum and the maximum of them are in A(H).

Hence what we need to consider is the case where vkvl is not a forward arc. If vkvl

is a loop, then i < k = l < j. It follows from Lemma 3.11 that the minimum and the
maximum of the two arcs are in A(H) in this case. Let vkvl be a backward arc, i.e., k > l.
Clearly, vkvl ∈ A(L). Then there are two remaining cases to consider.

Case 1: vivj ∈ A(I).

Then we have one of the following options: (a) i < l < j < k, (b) i < l < k < j,
(c) l < i < k < j, (d) l < i < j < k. However, in (a), vl 7→ vj and vj 7→ vk, which is
a contradiction since vk, vl belong to the same component of Lsym, and vj has to either
dominate or to be dominated by each component of Lsym. With a similar argument,
case (c) and case (d) are impossible. By Lemma 3.11, in case (b), the minimum and the
maximum of vivj and vkvl are in A(H).

Case 2: vivj ∈ A(H) \ (A(I) ∪A(L)).

Since vivj ∈ A(H) \ (A(I) ∪ A(L)), exactly one of vi and vj has a loop. Assume that
vj has a loop. The case for which vi has a loop can be treated in a similar manner.

Then we have one of the following options: (a) i < l < j ≤ k, (b) i < l < k < j, (c)
l < i < k ≤ j, (d) l < i < j < k. However, if (c) is the case, vl → vi and vi → vk, which
is a contradiction since vk, vl belong to the same component of Lsym and vi has to either
dominate or be dominated by each component of Lsym. With a similar argument, case
(d) is impossible.

Let (a) be the case. Note that vk and vl belong to the same component of Lsym.
By the property of the ordering (see the proof of Lemma 3.11), vj belongs to the same
component of Lsym with vk and vl. Since the ordering of the vertices in this component
satisfies the condition in Lemma 2.9, vlvk ∈ A(Lsym) and l < j ≤ k imply that vkvj =
vmax{i,k}vmax{j,l} ∈ A(Lsym). By Lemma 3.11, vivl = vmin{i,k}vmin{j,l} ∈ A(H).

Let (b) be the case. By Lemma 3.11, both the minimum and the maximum of the two
arcs are in A(H). ¦

Theorem 3.13 Let H be a semicomplete digraph with possible loops. If one of the fol-
lowings holds, then MinHOM(H) is polynomial time solvable.

(a) The digraph H = ~Ck for k =2 or 3.

(b) The digraph L does not contains either R or ~C∗
3 as an induced subdigraph, and

U(Lsym) is a proper interval graph; I is a transitive tournament; H does not contain
either W , R′ or ~C3 with at least one loop as an induced subdigraph.

Proof: Consider the following cases.
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Case 1: The condition (a) holds. Then, there is a polynomial time algorithm for
MinHOM(H). We give the algorithm for the sake of completeness. We consider H = ~Ck

with an arbitrary integer k ≥ 2. We assume that the input digraph D is connected since
otherwise, the algorithm can be applied to each component of D and we can sum up the
costs of homomorphisms of each component to H.

Choose a vertex x of D, and assign it color 1. For any vertex y with color i, we assign
all the in-neighbors of y color i − 1 and all the out-neighbors of y color i + 1, where the
operation is taken modulo k. It is easy to see that no vertex of D is assigned a pair of
conflicting colors if and only if D has a ~Ck-coloring. Furthermore, cyclicly permutating
the colors of V (D) does not affect the existence of a homomorphism of D to H. Hence, we
can assign x color 2, . . . , k, modify the assignment of other vertices of D accordingly, and
compute the cost of homomorphism respectively. We finally accept an assignment which
leads to the minimum cost.

Case 2: The condition (b) holds. Then by Lemma 3.12 and Theorem 2.8, MinHOM(H)
is polynomial time solvable. ¦

Corollary 3.14 Let H be a semicomplete digraph w.p.l. Then MinHOM(H) is polynomial
time solvable if H = ~Ck for k =2 or 3, or H has a Min-Max ordering. Otherwise,
MinHOM(H) is NP-hard.

3.3 Proving that (ii-a) and (ii-b) of Theorem 3.2 are equivalent

In this subsection, we will prove that (ii-a) and (ii-b) in Theorem 3.2 are equivalent.

It follows from the proof of Lemma 3.11 that the condition (ii-a) implies (ii-b). Indeed,
from the construction of the ordering in the proof of Lemma 3.11, H is a composition
digraph, i.e., H = TTp+l[S1, S2, . . . , Sp+l] where Si for each i = 1, . . . , p + l is one of the
two types: (a) a single vertex without a loop, (b) a reflexive semicomplete digraph which
does not contain R as an induced subdigraph, and for which U(Ssym

i ) is a connected
proper interval graph. Here, p is the number of vertices in V (I) and l is the number of
components (possibly trivial) of Lsym.

Lemma 3.16 given below shows that the converse is also true, accomplishing the equiv-
alence of (ii-a) and (ii-b) in Theorem 3.2.

For further reference, we give a well-known theorem that characterizes proper interval
graphs in terms of forbidden subgraphs. We will start with some definitions. A graph G
is called a claw if V (G) = {x1, x2, x3, y} and E(G) = {x1y, x2y, x3y}. A graph G with
V (G) = {x1, x2, x3, y1, y2, y3} is called a net if E(G) = {x1x2, x2x3, x3x1, y1x1, y2x2, y3x3},
and a tent if E(G) = {x1x2, x2x3, x3x1, y1x2, y1x3, y2x1, y2x3, y3x1, y3x2}.

Theorem 3.15 [16] A graph G is a proper interval graph if and only if it does not contain
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a cycle of length at least four, a claw, a net, or a tent as an induced subgraph.

Lemma 3.16 Let H = TTk[S1, S2, . . . , Sk] where Si for each i = 1, . . . , k is either a single
vertex without a loop, or a reflexive semicomplete digraph which does not contain R as an
induced subdigraph and for which U(Ssym

i ) is a connected proper interval graph. Then, H

is a semicomplete digraph w.p.l. such that L does not contain either R or ~C∗
3 as an induced

subdigraph, and U(Lsym) is a proper interval graph, I is a transitive tournament and H
does not contain either W , R′ or ~C3 with at least one loop as an induced subdigraph.

Proof: Clearly, H is a semicomplete digraph w.p.l. and I is a transitive tournament.
Furthermore, the absence of W , R′ or ~C3 with one or two loops in H follows from the
transitive tournament structure of H.

Therefore, it remains to show that L does not contain ~C∗
3 as an induced subdigraph. To

the contrary, suppose that there are vertices u, v, w ∈ V (L) such that H[{u, v, w}] ∼= ~C∗
3

(u 7→ v 7→ w 7→ u). Then u, v and w must belong to the same component Si. Since
Ssym

i is connected, there exist paths between any pair of vertices in {u, v, w}. Define
µ(u, v, w) = min{dist(u, v), dist(u,w),dist(v, w)}, where dist(x, y) is the length of a short-
est path between x and y in Ssym

i .

Choose a triple u, v, w in Si such that H[{u, v, w}] ∼= ~C∗
3 (u 7→ v 7→ w 7→ u) and

µ(u, v, w) is minimal. Assume that dist(u, v) = µ(u, v, w). Consider a shortest a path
P = u(= u0), u1, . . . , up(= v) between u and v in Ssym

i . Observe that dist(u, v) ≥ 2. Let
av (aw) be an arc between v and u1 (between w and u1). If both av and aw are symmetric,
then u, v, w and u1 form a claw in Ssym

i , which is impossible by Theorem 3.15. Hence, at
most one of av and aw is symmetric.

If av is symmetric, then aw must be asymmetric and we have either H[{u,w, u1}] ∼= R
or H[{v, w, u1}] ∼= R, a contradiction. Similarly, if aw is symmetric, we have either
H[{u, v, u1}] ∼= R or H[{w, v, u1}] ∼= R, also a contradiction. Hence, both av and aw are
asymmetric. Suppose that u1 7→ w. Then H[{u, u1, w}] ∼= ~C∗

3 , a contradiction. Hence,
w 7→ u1. Similarly, u1 7→ v. Thus, u1, v, w is a triple with H[{u1, v, w}] ∼= ~C∗

3 such that
µ(u1, v, w) < µ(u, v, w), a contradiction to the choice of u, v, w.

Thus, L does not contain ~C∗
3 as an induced subdigraph, which completes the proof. ¦

4 Further Research

We obtained a dichotomy classification for reflexive semicomplete digraphs and semicom-
plete digraphs w.p.l. This solves the question raised in our previous paper [9]. The
obtained results imply that given a (loopless) semicomplete digraph H, for MinHOM(H)
to be polynomial time solvable, H should be a very simple directed cycle or it has to be
acyclic.
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The problem of obtaining a dichotomy classification for semicomplete k-partite di-
graphs, k ≥ 2, w.p.l. remains still open. In fact, even settling a dichotomy for k-partite
tournaments seems to be not easy. Actually, for a k-partite tournament w.p.l. H, a com-
plete dichotomy of MinHOM(H) has been obtained in [9] provided that H has a cycle.
The acyclic case appears to be much harder.
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