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Abstract

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to
H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed directed or undirected graph H
and an input graph D, the problem of verifying whether there exists a homomorphism
of D to H has been studied in a large number of papers. We study an optimization
version of this decision problem. Our optimization problem is motivated by a real-
world problem in defence logistics and was introduced recently by the authors and M.
Tso.

Suppose we are given a pair of digraphs D, H and a cost ci(u) for each u ∈ V (D) and
i ∈ V (H). The cost of a homomorphism f of D to H is

∑
u∈V (D) cf(u)(u). Let H be

a fixed digraph. The minimum cost homomorphism problem for H, MinHOMP(H), is
stated as follows: For input digraph D and costs ci(u) for each u ∈ V (D) and i ∈ V (H),
verify whether there is a homomorphism of D to H and, if it does exist, find such a
homomorphism of minimum cost. In our previous paper we obtained a dichotomy clas-
sification of the time complexity of MinHOMP(H) when H is a semicomplete digraph.
In this paper we extend the classification to semicomplete k-partite digraphs, k ≥ 3,
and obtain such a classification for bipartite tournaments.

1 Introduction

In our terminology and notation, we follow [1, 5]. In this paper, directed (undirected)
graphs have no parallel arcs (edges) or loops. The vertex (arc) set of a digraph G is
denoted by V (G) (A(G)). The vertex (edge) set of an undirected graph G is denoted by
V (G) (E(G)). A digraph D obtained from a complete k-partite (undirected) graph G by
replacing every edge xy of G with arc xy, arc yx, or both xy and yx, is called a semicomplete
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k-partite digraph (or, semicomplete multipartite digraph when k is immaterial). The partite
sets of D are the partite sets of G. A semicomplete k-partite digraph D is semicomplete if
each partite set of D consists of a unique vertex. A k-partite tournament is a semicomplete
k-partite digraph with no directed cycle of length 2. Semicomplete k-partite digraphs and
its subclasses mentioned above are well-studied in graph theory and algorithms, see, e.g.,
[1].

For introductions to homomorphisms in directed and undirected graphs, see [1, 12, 14].
For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if
uv ∈ A(D) implies f(u)f(v) ∈ A(H). A homomorphism f of D to H is also called an
H-coloring of D, and f(x) is called a color of x for every x ∈ V (D). We denote the set of
all homomorphisms from D to H by HOM(D, H).

For a fixed digraph H, the homomorphism problem HOMP(H) is to verify whether, for
an input digraph D, there is a homomorphism of D to H (i.e., whether HOM(D, H) 6= ∅).
The problem HOMP(H) has been studied for several families of directed and undirected
graphs H, see, e.g., [12, 14]. The well-known result of Hell and Nešetřil [13] asserts that
HOMP(H) for undirected graphs is polynomial time solvable if H is bipartite and it is
NP-complete, otherwise.

Such a dichotomy classification for all digraphs is unknown and only partial classifica-
tions have been obtained; see [14]. For example, Bang-Jensen, Hell and MacGillivray [3]
showed that HOMP(H) when H is a semicomplete digraph is polynomial time solvable if
H has at most one cycle and HOMP(H) is NP-complete, otherwise. Bang-Jensen and Hell
[2] proved that if a bipartite tournament H is a core, then HOMP(H) is polynomial time
solvable when H has at most one cycle and HOMP(H) is NP-hard when H has at least
two cycles. (A digraph H is a core if H does not contain no proper subdigraph H ′ such
that there are both an H ′-coloring of H and an H-coloring of H ′.)

The authors of [9] introduced an optimization problem on H-colorings for undirected
graphs H, MinHOMP(H) (defined below). The problem is motivated by a problem in
defence logistics (see [9]) and can be viewed (see [9]) as an important special case of the
valued constraint satisfaction problem recently introduced in [4]. In our previous paper
[7], we obtained a dichotomy classification for the time complexity of MinHOMP(H) when
H is a semicomplete digraph. In this paper, we extend that classification to obtain a
dichotomy classification for semicomplete k-partite digraphs H, k ≥ 3. We also obtain a
classification of the complexity of MinHOMP(H) when H is a bipartite tournament. The
case of arbitrary semicomplete bipartite digraphs is significantly more complicated and
was recently solved in [8]. Another difficult solved case is that of undirected graphs (or,
equivalently, of symmetric digraphs) [6]. A digraph D is symmetric if xy ∈ A(D) implies
yx ∈ A(D). The general case of arbitrary digraphs remains a very hard and interesting
open problem.

Suppose we are given a pair of digraphs D,H and a real cost ci(u) for each u ∈ V (D)
and i ∈ V (H). The cost of a homomorphism f of D to H is

∑
u∈V (D) cf(u)(u). For a

fixed digraph H, the minimum cost homomorphism problem MinHOMP(H) is formulated
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as follows. For an input digraph D and costs ci(u) for each u ∈ V (D) and i ∈ V (H), verify
whether HOM(D, H) 6= ∅ and, if HOM(D, H) 6= ∅, find a homomorphism in HOM(D,H)
of minimum cost.

For a digraph G, if xy ∈ A(G), we say that x dominates y and y is dominated by x
(denoted by x→y). The out-degee d+

G(x) (in-degree d−G(x)) of a vertex x in G is the number
of vertices dominated by x (that dominate x). For sets X,Y ⊂ V (G), X→Y means that
x→y for each x ∈ X, y ∈ Y , but no vertex of Y dominates a vertex in X. A set X ⊆ V (G)
is independent if no vertex in X dominates a vertex in X. A k-cycle, denoted by ~Ck, is a
directed simple cycle with k vertices. A digraph H is an extension of a digraph D if H can
be obtained from D by replacing every vertex x of D with a set Sx of independent vertices
such that if xy ∈ A(D) then uv ∈ A(H) for each u ∈ Sx, v ∈ Sy.

The underlying graph U(G) of a digraph G is the undirected graph obtained from G
by disregarding all orientations and deleting one edge in each pair of parallel edges. A
digraph G is connected if U(G) is connected. The components of G are the subdigraphs
of G induced by the vertices of components of U(G). A digraph G is strongly connected
if there is a path from x to y for every ordered pair of vertices x, y ∈ V (G). A strong
component of G is a maximal induced strongly connected subdigraph of G. A digraph G′ is
the converse of a digraph G if G′ is obtained from G by reversing orientations of all arcs.

The rest of the paper is organized as follows. In Section 2, we give all polynomial
time solvable cases of MinHOMP(H) when H is semicomplete k-partite digraph, k ≥ 3,
or a bipartite tournament. Section 3 is devoted to a full dichotomy classification of the
time complexity of MinHOMP(H) when H is a semicomplete k-partite digraph, k ≥ 3. A
classification of the same problem for H being a bipartite tournament is proved in Section
4.

2 Polynomial Time Solvable Cases

In this section, we will apply the following theorem which was proved in [7] using a powerful
result from [4].

Theorem 2.1 Let H be a digraph and let there exist an ordering π(1), π(2), . . . , π(p) of the
vertices of H satisfying the following Min-Max property: For any pair π(i)π(k), π(j)π(s)
of arcs in H, we have π(min{i, j})π(min{k, s}) ∈ A(H) and π(max{i, j})π(max{k, s}) ∈
A(H). Then MinHOMP(H) is polynomial time solvable.

The Min-Max property is closely related to a property of digraphs that has long
been of interest [11]. We say that a digraph H has the X-underbar property if its ver-
tices can be ordered π(1), π(2), . . . , π(p) so that π(i)π(r), π(j)π(s) ∈ A(H) implies that
π(min{i, j})π(min{r, s}) ∈ A(H). It is interesting that the X-underbar property is suf-
ficient to ensure that the list homomorphism problem for H has a polynomial solution
[14].

3



Let TTp denote the acyclic tournament on p ≥ 1 vertices. Let p ≥ 3 and let TT−p be
a digraph obtained from TTp by deleting the arc from the vertex of in-degree zero to the
vertex of out-degree zero. In [7], we proved the following result for TTp using Theorem 2.1.
Thus, our proof is only for TT−p .

Lemma 2.2 The problems MinHOMP(TTp) and MinHOMP(TT−p ) are polynomial time
solvable for p ≥ 1 and p ≥ 3, respectively.

Proof: Let V (TT−p ) = {π(1), π(2), . . . , π(p)} and let A(TT−p ) = {pi(i)π(j) : 1 ≤
i < j ≤ p, j − i < p − 1}. Let π(i)π(k) and π(j)π(s) be distinct arcs in TT−p . Ob-
serve that π(min{i, j})π(min{k, s}) 6= π(1)π(p) and π(max{i, j})π(max{k, s}) 6= π(1)π(p).
Thus, π(min{i, j})π(min{k, s}) and π(max{i, j})π(max{k, s}) are arcs in TT−p . Therefore,
MinHOMP(TT−p ) is polynomial time solvable by Theorem 2.1. ¦

Lemma 2.3 Suppose that MinHOMP(H) is polynomial time solvable. Then, for each
extension H ′ of H, MinHOMP(H ′) is also polynomial time solvable.

Proof: Recall that we can obtain H ′ from H by replacing every vertex i ∈ V (H) with a
set Si of independent vertices. Consider an H ′-coloring h′ of an input digraph D. We can
reduce h′ into an H-coloring of D as follows: if h′(u) ∈ Si, then h(u) = i.

Let u ∈ V (D). Assign min{cj(u) : j ∈ Si} to be a new cost ci(u) for each i ∈ V (H).
Observe that we can find an optimal H-coloring h of D with the new costs in polynomial
time and transform h into an optimal H ′-coloring of D with the original costs using the
obvious inverse of the reduction described above. ¦

In [7], we proved that MinHOMP(H) is polynomial time solvable when H = ~Cp, p ≥ 2.
Combining this results with Lemmas 2.2 and 2.3, we immediately obtain the following:

Theorem 2.4 If H is an extension of TTp (p ≥ 1), ~Cp (p ≥ 2) or TT−p (p ≥ 3), then
MinHOMP(H) is polynomial time solvable.

It seems that it is not possible to prove the following result by a straightforward appli-
cation of Theorem 2.1. Nevertheless, our proof uses Theorem 2.1 in a somewhat indirect
way via Lemma 2.2.

Theorem 2.5 Let H be an acyclic bipartite tournament. Then MinHOMP(H) is polyno-
mial time solvable.

Proof: Let V1, V2 be the partite sets of H, let D be an input digraph and let ci(x) be the
costs, i ∈ V (H), x ∈ V (D). Observe that if D is not bipartite, then HOM(D, H) = ∅, so
we may assume that D is bipartite. We can check whether D is bipartite in polynomial
time. Let U1, U2 be the partite sets of D.
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To prove that we can find a minimum cost H-coloring of D in polynomial time, it
suffices to show that we can find a minimum cost H-coloring f of D such that f(U1) ⊆ V1

and f(U2) ⊆ V2. Indeed, if D is connected, to find a minimum cost H-coloring of D we
can choose from a minimum cost H-coloring f with f(U1) ⊆ V1 and f(U2) ⊆ V2 and a
minimum cost H-coloring h of D with h(U1) ⊆ V2 and h(U2) ⊆ V1. If D is not connected,
we can find a minimum cost H-coloring of each component of D separately.

To force f(U1) ⊆ V1 and f(U2) ⊆ V2 for each H-coloring f , it suffices to modify the
costs such that it is too expensive to assign any color from Vj to a vertex in U3−j , j = 1, 2.
Let M = |V (D)| ·max{ci(x) : i ∈ V (H), x ∈ V (D)} + 1 and replace ci(x) by ci(x) + M
for each pair x ∈ Uj , i ∈ V3−j , j = 1, 2.

Observe that the vertices of H can be ordered i1, i2, . . . , ip such that ik is an arbitrary
vertex of in-degree zero in H − {i1, i2, . . . , ik−1} for every k ∈ {1, 2, . . . , p}. Thus, H is a
subdigraph of TTp with vertices i1, i2, . . . , ip (isit ∈ A(TTp) if and only if s < t). Observe
that

{f ∈ HOM(D, H) : f(Uj) ⊆ Vj , j = 1, 2} = {f ∈ HOM(D, TTp) : f(Uj) ⊆ Vj , j = 1, 2}.

Thus, to solve MinHOMP(H) with the modified costs it suffices to solve MinHOMP(TTp)
with the same costs (this will solve MinHOMP(H) under the assumption f(Uj) ⊆ Vj). We
can solve the latter in polynomial time by Lemma 2.2. ¦

3 Classification for semicomplete k-partite digraphs, k ≥ 3

The following lemma allows us to prove that MinHOMP(H) is NP-hard when MinHOMP(H ′)
is NP-hard for an induced subdigraph H ′ of H.

Lemma 3.1 [7] Let H ′ be an induced subdigraph of a digraph H. If MinHOMP(H ′) is
NP-hard, then MinHOMP(H) is also NP-hard.

The following lemma is the NP-hardness part of the main result in [7].

Lemma 3.2 Let H be a semicomplete digraph containing a cycle and let H 6∈ {~C2, ~C3}.
Then MinHOMP(H) is NP-hard.

The following lemma was proved in [10]. The digraph H1 from the lemma is depicted
in Fig. 1 (a).

Lemma 3.3 Let H1 be a digraph obtained from ~C3 by adding an extra vertex dominated by
two vertices of the cycle and let H be H1 or its converse. Then HOMP(H) is NP-complete.

We need two more lemmas for our classification. The digraph H ′ from the next lemma
is depicted in Fig. 1 (b).

5



- - -¾- - - - - -+ R̂ /ª

w
K

À
(a) (b) (c)

Figure 1: Graphs used in Lemmas 3.3, 3.4 and 3.5

Lemma 3.4 Let H ′ be given by V (H ′) = {1, 2, 3, 4}, A(H ′) = {12, 23, 34, 14, 24} and let
H be H ′ or its converse. Then MinHOMP(H) is NP-hard.

Proof: Let H = H ′. We reduce the maximum independence set problem (MISP) to
MinHOMP(H). Let G be an arbitrary graph without isolated vertices. We construct a di-
graph D from G as follows: every vertex of G belongs to D and, for each pair x, y of adjacent
vertices of G, we add to D new vertices uxy and vxy together with arcs uxyx, uxyvxy, vxyy.
(No edge of G is in D.) Let n be the number of vertices in D. Let x, y be an adjacent
pair of vertices in G. We set c3(x) = c3(y) = ci(uxy) = ci(vxy) = 1 for i = 1, 2, 3,
c4(x) = c4(y) = n + 1 and cj(x) = cj(y) = c4(uxy) = c4(vxy) = n2 + n + 1 for j = 1, 2.

Consider a mapping f : V (D)→V (H) such that f(z) = 4 for each z ∈ V (G) and
f(uxy) = 1, f(vxy) = 2 for each pair x, y of adjacent vertices of G. Observe that f is an
H-coloring of D of cost smaller than n2 + n + 1.

Consider now a minimum cost H-coloring h of D. Let x, y be a pair of adjacent vertices
in G. Due to the values of the costs, h can assign x, y only colors 3 and 4 and uxy, vxy only
colors 1,2,3. The coloring can assign uxy either 1 or 2 as otherwise vxy must be assigned
color 4. If uxy is assigned 1, then vxy, y, x must be assigned 2, (3 or 4) and 4, respectively.
If uxy is assigned 2, then vxy, y, x must be assigned 3,4 and (3 or 4), respectively. In
both cases, only one of the vertices x and y can receive color 3. Since h is optimal, the
maximum number of vertices in D that it inherited from G must be assigned color 3. This
number is the maximum number of independent vertices in G. Since MISP is NP-hard, so
is MinHOMP(H). ¦

The digraph H from the next lemma is depicted in Fig. 1 (c).

Lemma 3.5 Let H be given by V (H) = {1, 2, 3, 4}, A(H) = {12, 23, 31, 34, 41}. Then
MinHOMP(H) is NP-hard.

Proof: We will reduce the maximum independent set problem to MinHOMP(H). However
before we do this we consider a digraph Dgadget(u, v) defined as follows (see Fig. 2):
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Figure 2: Gadget for Lemma 3.5

V (Dgadget(u, v)) = {x, y, u′, u, v′, v, z1, z2, . . . , z12} and

A(Dgadget(u, v)) = {xy, xz1, yz1, z6u
′, u′u, z11v

′, v′v, z1z2, z2z3, z3z4, . . . , z11z12, z12z1}
Observe that in any homomorphism f of Dgadget(u, v) to H we must have f(z1) = 1 since

vertices x, y, z1 can only map to 3,4,1, respectively. This implies that (f(z1), f(z2), . . . , f(z12))
has to coincide with one of the following two sequences:

(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3) or (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4).

If the first sequence is the actual one, then we have f(z6) = 3, f(u′) ∈ {1, 4}, f(u) ∈
{1, 2}, f(z11) = 2, f(v′) = 3 and f(v) ∈ {1, 4}. If the second sequence is the actual one,
then we have a symmetrical situation f(z6) = 2, f(u′) = 3, f(u) ∈ {1, 4}, f(z11) = 3,
f(v′) ∈ {1, 4} and f(v) ∈ {1, 2}. Notice that we cannot assign color 2 to both u and v in
a homomorphism.

Let G be a graph. Construct a digraph D as follows. Start with V (D) = V (G) and, for
each edge uv ∈ E(G), add a distinct copy of Dgadget(u, v) to D (notice that u and v are not
copied but shared among gadgets). Note that the vertices in V (G) form an independent
set in D and that |V (D)| = |V (G)|+ 16|E(G)|.

Let all costs ci(t) = 1 for t ∈ V (D) apart from cj(p) = 2 for all p ∈ V (G) and j ∈ {1, 4}.
Clearly, a minimum cost H-coloring h of D must aim at assigning as many vertices of V (G)
in D a color different from 1 and 4. However, if pq is an edge in G, by the arguments above,
h cannot assign color 2 to both p and q; h can assign color 2 to either p or q (or neither).
Thus, a minimum cost homomorphism of D to H corresponds to a maximum independent
set in G and vise versa (the vertices of a maximum independent set are assigned color 2
and all other vertices in V (G) are assigned color 1). ¦
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Theorem 3.6 Let H be a semicomplete k-partite digraph, k ≥ 3. If H is an exten-
sion of TTk, ~C3 or TT−k+1, then MinHOMP(H) is polynomial time solvable. Otherwise,
MinHOMP(H) is NP-hard.

Proof: Since H is a semicomplete k-partite digraph, k ≥ 3, if H has a cycle, then there
can be three possibilities for the length of a shortest cycle in H: 2,3 or 4. Thus, we consider
four cases: the above three cases and the case when H is acyclic.

Case 1: H has a 2-cycle C. Let i, j be vertices of C. The vertices i, j together with
a vertex from a partite set different from those where i, j belong to form a semicomplete
digraph with a 2-cycle. Thus, by Lemmas 3.1 and 3.2, MinHOMP(H) is NP-hard.

Case 2: A shortest cycle C of H has three vertices (C = ijli). If H has at least four
partite sets, then MinHOMP(H) can be shown to be NP-hard similarly to Case 1. Assume
that H has three partite sets and that MinHOMP(H) is not NP-hard. Let V1, V2 and V3 be
partite sets of H such that i ∈ V1, j ∈ V2 and l ∈ V3. Consider a vertex s ∈ V1 outside C. If
s is dominated by j and l or dominates j and l, then MinHOMP(H) is NP-hard by Lemmas
3.1 and 3.3, a contradiction. If j→s→l, then MinHOMP(H) is NP-hard by Lemmas 3.1
and 3.5, a contradiction. Thus, l→s→j. Similar arguments show that l→V1→j. Consider
p ∈ V2. Similar arguments show that p→V1→j and moreover V3→V1→j. Again, similarly
we can prove that V3→V1→V2, i.e., H is an extension of ~C3.

Case 3: A shortest cycle C of H has four vertices (C = ijsti). Since C is a shortest
cycle, i, s belong to the same partite set, say V1, and j, t belong to the same partite set, say
V2. Since H is not bipartite, there is a vertex l belonging to a partite set different from V1

and V2. Since H has no cycle of length 2 or 3, either l dominates V (C) or V (C) dominates
l. Consider the first case (l→V (C)) as the second one can be tackled similarly. Let H ′ be
the subdigraph of H induced by the vertices l, i, j, s. Observe now that MinHOMP(H) is
NP-hard by Lemmas 3.1 and 3.4.

Case 4: H has no cycle. Assume that MinHOMP(H) is not NP-hard, but H is not
an extension of an acyclic tournament. The last assumption implies that there is a pair
of nonadjacent vertices i, j and a distinct vertex l such that i→l→j. Let s be a vertex
belonging to a partite set different from the partite sets which i and l belong to. Without
loss of generality, assume that at least two vertices in the set {i, j, l} dominate s. If all
three vertices dominate s, then by Lemmas 3.1 and 3.4, MinHOMP(H) is NP-hard, a
contradiction. Since H is acyclic, we conclude that {i, l}→s→j. Let V1 be the partite
set of i and j. Similar arguments show that for each vertex t ∈ V (H) − V1, i→t→j. By
considering a vertex p ∈ V1−{i, j} and using arguments similar to the ones applied above,
we can show that either p→(V (H) − V1) or (V (H) − V1)→p. This implies that we can
partition V1 into V ′

1 and V ′′
1 such that V ′

1→(V (H)− V1)→V ′′
2 . This structure of H implies

that there is no pair a, b of nonadjacent vertices in V (H)− V1 such that a→c→b for some
vertex c ∈ V (H) since otherwise the problem is NP-hard by Lemmas 3.1 and 3.4. Thus,
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the subdigraph H − V1 is an extension of an acyclic tournament and, therefore, H is an
extension of TT−k+1. ¦

4 Classification for bipartite tournaments

The following lemma can be proved similarly to Lemma 3.3.

Lemma 4.1 Let H1 be given by V (H1) = {1, 2, 3, 4, 5}, A(H1) = {12, 23, 34, 41, 15, 35}
and let H be H1 or its converse. Then MinHOMP(H) is NP-hard.

Now we can obtain a dichotomy classification for MinHOMP(H) when H is a bipartite
tournament.

Theorem 4.2 Let H be a bipartite tournament. If H is acyclic or an extension of a
4-cycle, then MinHOMP(H) is polynomial time solvable. Otherwise, MinHOMP(H) is
NP-hard.

Proof: If H is an acyclic bipartite tournament or an extension of a 4-cycle, then
MinHOMP(H) is polynomial time solvable by Theorems 2.5 and 2.4. We may thus assume
that H has a cycle C, but H is not an extension of a cycle. We have to prove that
MinHOMP(H) is NP-hard.

Let C be a shortest cycle of H. Since H is a bipartite tournament, we have |V (C)| = 4.
Thus, we may assume, without loss of generality, that C = i1i2i3i4i1, where i1, i3 belong
to a partite set V1 of H and i2, i4 belong to the other partite set V2 of H.

We may assume that any vertex in V1 dominates either i2 or i4 and is dominated by the
other vertex in {i2, i4}, as otherwise we are done by Lemmas 4.1 and 3.1. Analogously any
vertex in V2 dominates exactly one of the vertices in {i1, i3}. Therefore, we may partition
the vertices in H into the following four sets.

J1 = {j1 ∈ V1 : i4→j1→i2} J2 = {j2 ∈ V2 : i1→j2→i3}
J3 = {j3 ∈ V1 : i2→j3→i4} J4 = {j4 ∈ V2 : i3→j4→i1}

If q2q1 ∈ A(H), where qj ∈ Jj for j = 1, 2 then we are done by Lemmas 4.1 and 3.1
(consider the cycle q1i2i3i4q1 and the vertex q2 which dominates both q1 and i3). Thus,
J1→J2 and analogously we obtain that J2→J3→J4→J1, so H is an extension of a cycle, a
contradiction. ¦

Acknowledgement We are very thankful to both referees for several valuable suggestions
and to Martin Green, Pavol Hell and Eun Jung Kim for useful discussions of the paper.
Research of Gutin and Rafiey was supported in part by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778.

9



References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer-Verlag, London, 2000.

[2] J. Bang-Jensen and P. Hell, The effect of two cycles on the complexity of colourings
by directed graphs. Discrete Appl. Math. 26 (1990), 1–23.

[3] J. Bang-Jensen, P. Hell and G. MacGillivray, The complexity of colouring by semi-
complete digraphs. SIAM J. Discrete Math. 1 (1988), 281–298.

[4] D. Cohen, M. Cooper, P. Jeavons and A. Krokhin, A maximal tractable class of soft
constraints. J. Artif. Intell. Res. 22 (2004), 1-22.

[5] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, 1979.

[6] G. Gutin, P. Hell, A. Rafiey and A. Yeo, Dichotomy for Minimum Cost Graph Homo-
morphisms. To appear in Europ. J. Combin.

[7] G. Gutin, A. Rafiey and A. Yeo, Minimum Cost and List Homomorphisms to Semi-
complete Digraphs. Discrete Applied Math. 154 (2006), 890–897.

[8] G. Gutin, A. Rafiey and A. Yeo, Minimum Cost Homomorphisms to Semicomplete
Bipartite Digraphs. Submitted.

[9] G. Gutin, A. Rafiey, A. Yeo and M. Tso, Level of repair analysis and minimum cost
homomorphisms of graphs. Discrete Appl. Math. 154 (2006), 881–889.

[10] W. Gutjahr, Graph colourings, PhD Thesis, Free University Berlin, 1991.

[11] W. Gutjahr, E. Welzl and G. Woeginger, Polynomial graph-colorings. Discrete Appl.
Math. 35 (1992), 29–45.

[12] P. Hell, Algorithmic aspects of graph homomorphisms, in ‘Survey in Combinatorics
2003’, London Math. Soc. Lecture Note Series 307, Cambridge U. Press, 2003, 239 -
276.
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