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Abstract

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if
uv ∈ A(D) implies f(u)f(v) ∈ A(H). Let H be a fixed directed or undirected graph. The
homomorphism problem for H asks whether a directed or undirected input graph D admits
a homomorphism to H. The list homomorphism problem for H is a generalization of the
homomorphism problem for H, where every vertex x ∈ V (D) is assigned a set Lx of possible
colors (vertices of H).

The following optimization version of these decision problems generalizes the list ho-
momorphism problem and was introduced in [16], where it was motivated by a real-world
problem in defence logistics. Suppose we are given a pair of digraphs D,H and a positive
integral cost ci(u) for each u ∈ V (D) and i ∈ V (H). The cost of a homomorphism f of D to
H is

∑
u∈V (D) cf(u)(u). For a fixed digraph H, the minimum cost homomorphism problem

for H is stated as follows: For an input digraph D and costs ci(u) for each u ∈ V (D) and
i ∈ V (H), verify whether there is a homomorphism of D to H and, if one exists, find such a
homomorphism of minimum cost.

We obtain dichotomy classifications of the computational complexity of the list homo-
morphism and minimum cost homomorphism problems, when H is a semicomplete digraph
(digraph in which there is at least one arc between any two vertices). Our dichotomy for
the list homomorphism problem coincides with the one obtained by Bang-Jensen, Hell and
MacGillivray in 1988 for the homomorphism problem when H is a semicomplete digraph:
both problems are polynomial solvable if H has at most one cycle; otherwise, both problems
are NP-complete. The dichotomy for the minimum cost homomorphism problem is different:
the problem is polynomial time solvable if H is acyclic or H is a cycle of length 2 or 3;
otherwise, the problem is NP-hard.

1 Introduction

For excellent introductions to homomorphisms in directed and undirected graphs, see [20, 22]. In
this paper, directed (undirected) graphs have no parallel arcs (edges) or loops. The vertex (arc)
set of a digraph G is denoted by V (G) (A(G)). The vertex (edge) set of an undirected graph G
is denoted by V (G) (E(G)). For a digraph G, if xy ∈ A(G), we say that x dominates y and y is
dominated by x. A k-cycle, denoted by ~Ck, is a directed simple cycle with k vertices. A digraph
is acyclic if it has no cycle. A digraph D is semicomplete if, for each pair x, y of distinct vertices
either x dominates y or y dominates x or both. A tournament is a semicomplete digraph with
no 2-cycle. Semicomplete digraphs and, in particular, tournaments are well-studied in graph
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theory and algorithms [4]. A digraph G′ is the dual of a digraph G if G′ is obtained from G by
reversing the orientation of all arcs.

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if
uv ∈ A(D) implies f(u)f(v) ∈ A(H). A homomorphism f of D to H is also called an H-
coloring of D, and f(x) is called the color of the vertex x in D. We denote the set of all
homomorphisms from D to H by HOM(D,H). Let H be a fixed digraph. The homomorphism
problem for H, HOMP(H), asks whether there is a homomorphism of an input digraph D to
H (i.e., whether HOM(D, H) 6= ∅). In the list homomorphism problem for H, LHOMP(H),
we given an input digraph D and a set (called a list) Lv ⊆ V (H) for each v ∈ V (D). Our aim
is to check whether there is a homomorphism f ∈ HOM(D,H) such that f(v) ∈ Lv for each
v ∈ V (D).

The problems HOMP(H) and LHOMP(H) have been studied for several families of directed
and undirected graphs H, see, e.g., [20, 22]. A well-known result of Hell and Nešetřil [21]
asserts that HOMP(H) for undirected graphs is polynomial time solvable if H is bipartite
and it is NP-complete, otherwise. Feder, Hell and Huang [11] proved that LHOMP(H) for
undirected graphs is polynomial time solvable if H is a bipartite graph whose complement is
a circular arc graph (a graph isomorphic to the intersection graph of arcs on a circle), and
LHOMP(H) is NP-complete, otherwise. Such a dichotomy classification is not known for the
homomorphism problems HOMP(H) when H is a digraph and only partial classifications have
been obtained; see [22]. For example, Bang-Jensen, Hell and MacGillivray [5] showed that
HOMP(H) for semicomplete digraphs H is polynomial time solvable if H has at most one
cycle and HOMP(H) is NP-complete, otherwise. Nevertheless, Bulatov [7] managed to prove
that each list homomorphism problem LHOMP(H) is polynomial time solvable or NP-complete.
Such a dichotomy result for HOMP(H) has been conjectured, see, e.g., [20, 22]. If this conjecture
holds, it will imply that the well-known Constraint Satisfaction Problem Dichotomy Conjecture
of Feder and Vardi also holds [12].

The authors of [16] introduced an optimization problem, MinHOMP(H), on H-colorings of
undirected graphs H. The problem is motivated by a problem in defence logistics. Suppose
we are given a pair of digraphs D, H and a positive integral cost ci(u) for each u ∈ V (D) and
i ∈ V (H). The cost of a homomorphism f of D to H is

∑
u∈V (D) cf(u)(u). For a fixed digraph

H, the minimum cost homomorphism problem MinHOMP(H) is stated as follows: For an input
digraph D and costs ci(u) for each u ∈ V (D) and i ∈ V (H), verify whether HOM(D,H) 6= ∅
and, if HOM(D,H) 6= ∅, find a homomorphism in HOM(D,H) of minimum cost. The problem
MinHOMP(H) generalizes LHOMP(H) (and, thus, HOMP(H)): assign ci(u) = 1 if i ∈ Lu and
ci(u) = 2, otherwise. Then a list homomorphism with respect to lists Lu, u ∈ V (D), exists if
and only if there is a homomorphism of D to H of cost |V (D)|.

In this paper, we obtain dichotomy classifications for the time complexity of LHOMP(H) and
MinHOMP(H) when H is a semicomplete digraph. Our classification for LHOMP(H) coincides
with that for HOMP(H) [5] described earlier. However, for MinHOMP(H) the classification is
different: the problem is polynomial time solvable when H is either an acyclic tournament or
a 2-cycle or a 3-cycle. Otherwise, MinHOMP(H) is NP-hard. This implies that even when H
is a unicyclic semicomplete digraph on at least four vertices, MinHOMP(H) is NP-hard (unlike
HOMP(H) and LHOMP(H)).

Cohen, Cooper, Jeavons and Krokhin [8, 9] considered an optimization version of the well-
known constraint satisfaction problem (CSP), the valued CSP (abbreviated VCSP). Special
cases of VCSP were studied in several other papers including [10], where weighted Max CSP
is investigated. The problem VCSP and some of its special cases generalize MinHOMP(H).
We consider VCSP in the next section and demonstrate that an important result on VCSP
describing some polynomial cases can be applied to MinHOMP(H). However, since VCSP is a
proper generalization of MinHOMP(H) we could not possibly use NP-hardness results proved
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for VCSP. Moreover, many of these NP-hardness results are for some special cases of VCSP that
do not generalize MinHOMP(H).

VCSP extends another optimization problem on H-colorings, the minimum graph homo-
morphism problem, introduced in [1]. However, the authors of [1] considered only reflexive
undirected graphs H, i.e., graphs in which every vertex of H has a loop, and the costs are
assigned only to edges of H. Thus, MinHOMP(H) and the minimum graph homomorphism
problem from [1] are rather different problems. Another related but different homomorphism
problem on weighted graphs is investigated in [15].

The maximum cost homomorphism problem MaxHOMP(H) is the same problem as MinHOMP(H),
but instead of minimization we consider maximization. Let M be a constant larger than
any cost ci(u), u ∈ V (D), i ∈ V (H). Then the cost c′i(u) = M − ci(u) is positive for
each u ∈ V (D), i ∈ V (H). Due to this transformation, the problems MinHOMP(H) and
MaxHOMP(H) are equivalent. Notice that allowing negative or zero costs would not make
MinHOMP(H) and MaxHOMP(H) more difficult: we can easily transform this more general
case to the positive costs one by adding a large constant M ′ to each cost. This transformation
does not change optimal solutions.

The rest of the paper is organized as follows. In Section 2, we consider two approaches that
can be used for proving that MinHOMP(H) is polynomial time solvable for some digraphs H.
Using the approaches we give two proofs that MinHOMP(H) is polynomial time solvable when
H is an acyclic tournament. The dichotomy classifications LHOMP(H) and MinHOMP(H)
when H is a semicomplete digraph are proved in Sections 3 and 4, respectively. We conclude
the paper by posing some open problems.

2 Polynomial solvable cases of MinHOMP(H)

In this section, we consider two approaches for proving that MinHOMP(H) is polynomial time
solvable for certain digraphs H. Using the approaches, we give two proofs that MinHOMP(H)
is polynomial time solvable for acyclic tournaments.

The first approach was developed recently within the framework of valued constraint sat-
isfaction, see [8, 9] and our short description of the framework below. It makes use of sub-
modular function minimization. The second approach is an extension of an approach developed
in [16]. For H belonging to a special family H of digraphs, we can transform MaxHOMP(H)
into the problem of finding a maximum cost independent set in a special family F(H) of undi-
rected graphs. If the last problem is polynomial time solvable (when, for example, F(H) con-
sists of perfect graphs, 2P2-free graphs, claw-free graphs or graphs of other special classes, see
[2, 3, 6, 14, 24]), then the second approach is useful. The proof of Theorem 2.6 using the first
approach is significantly shorter than that using the second approach. However, we present both
approaches as we know of cases when only the second approach applies. Moreover, the second
approach may lead to faster algorithms than the first approach, see Remark 2.7.

The first approach is based on some results for the valued constraint satisfaction problem
(VCSP) [8, 9]. Let Z be the set consisting of of all nonnegative integers and ∞, and let Φ be
a set of functions φ : W r(φ)→Z, where r(φ) is the arity of φ. An instance I of VCSP(Φ) is a
triple (V, W,C), where V is a finite set of variables, which are to be assigned values from the
set W , and C is a set of (valued) constraints. Each element of C is a pair c = (σ, φ), where σ is
a |σ|-tuple of variables and φ : W |σ|→Z is a (cost) function, φ ∈ Φ. An assignment for I is a
mapping s from V to W . The cost of s is defined as follows:

cI(s) =
∑

((v1,...,vm),φ)∈C

φ(s(v1), . . . , s(vm)).
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An optimal solution of I is an assignment s of minimum cost.

Let W be a totally ordered set. A binary function φ : W 2→Z is called submodular if, for
all x, y, u, v ∈ W , we have

φ(min{x, u}, min{y, v}) + φ(max{x, u}, max{y, v}) ≤ φ(x, y) + φ(u, v).

The following theorem is the main ’positive’ result in [9].

Theorem 2.1 For each Φ consisting of some unary functions and some binary submodular
functions, VCSP(Φ) can be solved in time O(|V |3|W |3).

We will use this theorem to provide the basic result of our first approach.

Theorem 2.2 Let H be a digraph and let there exist a labeling 1, 2, . . . , p of the vertices of
H satisfying the following property (SM): For any pair (i, k), (j, s) of arcs in H, we have
(min{i, j}, min{k, s}) ∈ A(H) and (max{i, j}, max{k, s}) ∈ A(H). Then MinHOMP(H) is poly-
nomial time solvable.

Proof: Let 1, 2, . . . , p be a labelling of vertices of H satisfying the property (SM). The property
ensures that the binary function φ, defined by φ(i, j) = 0 if ij ∈ A(H) and φ(i, j) = ∞ otherwise,
is submodular. We will reduce MinHOMP(H) to VCSP(Φ), where Φ satisfies the conditions
of Theorem 2.1. Let φu(i) = ci(u) for all u ∈ V (D) and i ∈ V (H). Let V = V (D) and
W = V (H). An assignment is an arbitrary function f from V (D) to V (H). Let C = C ′ ∪ C ′′,
where C ′ = {(u, φu) : u ∈ V (D)} (for a fixed u, φu is a unary function from V (H) to Z)
and C ′′ = {((u, v), φuv) : uv ∈ A(D)}, where each φuv = φ. Since each φuv is submodular,
Φ = {φu : u ∈ V (D)} ∪ {φuv : uv ∈ A(D)} satisfies the conditions of Theorem 2.1.

Let I be an instance of the above-constructed VCSP(Φ). It remains to observe that, if an
assignment f is an H-coloring of D, then

cI(f) =
∑

u∈V (D)

φu(f(u)) +
∑

uv∈A(D)

φuv(f(u), f(v)) =
∑

u∈V (D)

cf(u)(u),

which is the cost of f in MinHOMP(H) (an integer), and if f is not an H-coloring, then
cI(f) = ∞. Thus, by solving VCSP(Φ) we will determine whether HOM(H) 6= ∅, and find an
optimal h ∈ HOM(H), if HOM(H) 6= ∅. ¦

A labeling 1, 2, . . . , p of the vertices of H satisfies the X-underbar property if for any pair
(i, k), (j, s) of arcs in H, we have (min{i, j}, min{k, s}) ∈ A(H). This property was introduced
in [18] where it was used to prove that HOMP(H) is polynomial time solvable when H is an
oriented path. So, it would be natural to call the property (SM) the X-bar & X-underbar
property.

The second approach is based on Theorem 2.3 below. This idea (part (i)) can be traced back
at least as far as [19], see Exercise 7 in Chapter 2 of [22]. It appears that Theorem 2.6 is the
first nontrivial application of Theorem 2.3.

The homomorphic product of digraphs D and H is an undirected graph D ⊗ H defined as
follows: V (D⊗H) = {ui : u ∈ V (D), i ∈ V (H)}, E(D⊗H) = {uivj : uv ∈ A(D), ij /∈ A(H)}∪
{uiuj : u ∈ V (D), i 6= j ∈ V (H)}. Let µ = max{cj(v) : v ∈ V (D), j ∈ V (H)}. We define the
cost of ui, c(ui) = ci(u) + µ|V (D)|. For a set X ⊆ V (D ⊗H), we define c(X) =

∑
x∈X c(x).

Theorem 2.3 Let D and H be digraphs.
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(i) There is a homomorphism of D to H if and only if the number of vertices in a largest
independent set of D ⊗H equals |V (D)|.

(ii) If HOM(D, H) 6= ∅, then a homomorphism h ∈ HOM(D, H) is of maximum cost if and
only if I = {xh(x) : x ∈ V (D)} is an independent set of maximum cost in D ⊗H.

Proof: Let h : D→H be a homomorphism. Consider I = {xh(x) : x ∈ V (D)}. Suppose that
xh(x)yh(y) is an edge in D ⊗ H. Then either xy ∈ A(D) and h(x)h(y) /∈ A(H) or yx ∈ A(D)
and h(y)h(x) /∈ A(H). Either case contradicts the fact that h is a homomorphism. Thus, I is
an independent set in D ⊗H.

Observe that each independent set in D ⊗H contains at most one vertex in each set Sx =
{xi : i ∈ V (H)}, x ∈ V (D). Let I = {xf(x) : x ∈ V (D)} be an independent set in D ⊗ H
with |V (D)| vertices. Consider the mapping f : x 7→ f(x). Assume xy ∈ A(D). Since I is
independent, f(x)f(y) ∈ A(H). Thus, f ∈ HOM(D, H).

Let HOM(D,H) 6= ∅ and let n = |V (D)|. Let X and Y be subsets of V (D ⊗ H) and
|X| = |Y |+ 1 ≤ n. Then

c(X)− c(Y ) ≥ |X|nµ− (|X| − 1)(n + 1)µ ≥ µ > 0.

Thus, in particular, every maximum cost independent set of D⊗H is a largest independent set.
Observe that the cost of the homomorphism f defined above equals the cost of vertices in the
independent set I minus n2µ, which is a constant. Thus, every maximum cost independent set
of D ⊗H corresponds to a maximum cost homomorphism of D to H and vise versa. ¦

Remark 2.4 In applications of Theorem 2.3, we may need to replace a pair D,H by another
pair D′,H ′ such that HOM(D,H) = HOM(D′,H ′) and the costs of the homomorphisms remain
the same.

A digraph D is transitive if xy, yz ∈ A(D) implies xz ∈ A(D) for all pairs xy, yz of arcs in
D. A graph is a comparability graph if it has an orientation, which is transitive. In the second
proof of Theorem 2.6, we will use the following result proved in [23].

Theorem 2.5 Let G be a comparability graph with n vertices and m edges and let every vertex
of G be assigned a positive integer weight. We can compute a maximum weight independent set
in G in time O(nm log(n2/m)).

Bang-Jensen, Hell and MacGillivray [5] proved that if H is an acyclic tournament, then
HOMP(H) is polynomial time solvable. We extend this result to MinHOMP(H). We provide
two proofs using both approaches above.

Theorem 2.6 If H is an acyclic tournament, then MinHOMP(H) is polynomial time solvable.

First Proof: Let H be an acyclic tournament with V (H) = {1, 2, . . . , p} and A(H) = {ij :
1 ≤ i < j ≤ p}. Let (i, k) and (j, s) be arcs in H. Since i < k and j < s, we conclude that
(min{i, j}, min{k, s}) and (max{i, j}, max{k, s}) are also arcs in H. Thus, our theorem follows
from Theorem 2.2.

Second Proof: Let H be an acyclic tournament with V (H) = {1, 2, . . . , p} and A(H) = {ij :
1 ≤ i < j ≤ p}. Observe that H is transitive. Also observe that HOM(D,H) = ∅ unless D is
acyclic. Since we can verify that D is acyclic in time O(|V (D)| + |A(D)|) [4], we may assume
that D is acyclic. Since H is transitive, we have HOM(D, H) = HOM(D+,H), where D+ is
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the transitive closure of D, i.e., if there is a path from x to y in D, then xy ∈ D+. One can find
the transitive closure of a digraph in polynomial time [4], so we may assume that D is transitive.

Let G = D ⊗H. Let G′ be an orientation of G such that

A(G′) = {xiyj : j ≤ i, xy ∈ A(D)} ∪ {xixj : x ∈ V (D), j < i}.

We will prove that G′ is a transitive digraph. Let xiyj , yjzk ∈ A(G′). Observe that i ≥ j ≥ k
and consider three cases covering all possibilities.

Case 1: x = y = z. Then xixj , xjxk ∈ A(G′) and, thus, i > j > k and xizk = xixk ∈ A(G′).

Case 2: x = y = z does not hold, but not all vertices x, y, z are distinct. Without loss of
generality, assume that x = y 6= z. Then xixj , xjzk ∈ A(G′) and, thus, i > k and xizk ∈ A(G′).

Case 3: x, y, z are all distinct. Then xy, yz ∈ A(D+) and, thus, xz ∈ A(D+). Since i ≥ k,
we conclude that xizk ∈ A(G′).

So, we have proved that G is a comparability graph. Therefore, by Theorem 2.5, a maximum
cost independent set in D ⊗H can be found in polynomial time. It remains to apply Theorem
2.3. If D ⊗H has an independent set with |V (D)| vertices, HOM(D, H) 6= ∅ and a maximum
cost independent set corresponds to a maximum cost H-coloring. ¦

Remark 2.7 Let n = |V (D)|, m = |A(D)|. The first proof of Theorem 2.6 can be converted to
an algorithm of complexity O(n3) (see Theorem 2.1). The second proof allows one to obtain an
algorithm of complexity O(n(n+m) log(n2/(n+m))+n2.376) (by Theorem 2.5 and the fact that
the transitive closure of digraph with n vertices can be found in time O(n2.376) [4]). Observe that
O(n(n + m) log(n2/(n + m)) + n2.376) = O(n3) and the second proof leads to an asymptotically
faster algorithm for m = o(n2).

Corollary 2.8 If H is an acyclic tournament, then LHOMP(H) is polynomial time solvable.

3 Dichotomy for LHOMP(H)

Recall that ~Ck denotes a directed cycle on k vertices, k ≥ 2; let V (~Ck) = {1, 2, . . . , k}. One
can check whether HOM(D, ~Ck) 6= ∅ using the following algorithm A from Section 1.4 of [22].
First, we may assume that D is connected (i.e., its underlying undirected graph is connected)
as otherwise A can be applied to each component of D separately. Choose a vertex x of D and
assign it color 1. Assign every out-neighbor of x color 2 and each in-neighbor of x color k. For
every vertex y with color i, we assign every out-neighbor of y color i + 1 modulo k and every
in-neighbor of y color i − 1 modulo k. We have HOM(D, ~Ck) 6= ∅ if and only if no vertex is
assigned different colors.

A special case of the following theorem was first proved by M. Green [13], who has shown
that unicyclic tournaments admit a majority polymorphism (defined in, e.g., [7]). Our proof
below is elementary, and does not rely on the machinery of polymorphisms.

Theorem 3.1 Let H be a semicomplete digraph with a unique cycle, then LHOMP(H) is poly-
nomial time solvable.

Proof: It is well-known [4] that a semicomplete digraph with a unique cycle contains a cycle
with two or three vertices. We assume that H has a cycle with three vertices (the case of 2-cycle
can be treated similarly) and we prove this theorem by induction |V (H)|. If |V (H)| = 3, then
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we can use the algorithm A described earlier. Otherwise, there must exist a vertex i ∈ V (H)
with either in-degree or out-degree 0. Without loss of generality, let the out-degree of i be 0.
Let Ri be the set of vertices in D that have out-degree 0 and have i in their list. Observe that a
list homomorphism of D to H exists if and only if there exists a list homomorphism of D to H
that maps all vertices in Ri to i. Since vertices that do not have out-degree 0 cannot map to i,
we can reduce the problem to LHOMP(H − i) with input D−Ri. By the induction hypothesis,
the last problem admits a polynomial time algorithm. ¦

Recall that HOMP(H) is NP-complete when H is a semicomplete digraph with at least two
cycles. This result, Corollary 2.8 and Theorem 3.1 imply the following:

Theorem 3.2 Let H be a semicomplete digraph. Then LHOMP(H) is polynomial time solvable
if H has at most one cycle, and LHOMP(H) is NP-complete, otherwise.

4 Dichotomy for MinHOMP(H)

To solve MinHOMP(H) for H = ~Ck, choose an initial vertex x in each component D′ of D (a
component of its underlying undirected graph). Using the algorithmA from the previous section,
we can check whether each D′ admits an ~Ck-coloring. If the coloring of D′ exists, we compute
the cost of this coloring and compute the costs of the other k− 1 ~Ck-colorings when x is colored
2, 3, . . . , k, respectively. Thus, we can find a minimum cost homomorphism in HOM(D′, ~Ck).
Thus, in polynomial time, we can obtain a ~Ck-coloring of the whole digraph D of minimum cost.
In other words, we have the following:

Lemma 4.1 For H = ~Ck, MinHOMP(H) is polynomial time solvable.

Addition of an extra vertex to a cycle may well change the complexity of MinHOMP(H).

Lemma 4.2 Let H ′ be a digraph obtained from ~Ck, k ≥ 2, by adding an extra vertex dominated
by the vertices of the cycle, and let H be H ′ or its dual. Then MinHOMP(H) is NP-hard.

Proof: Without loss of generality we may assume that H = H ′ and that V (H) = {1, 2, 3, . . . , k, k+
1}, 123 . . . k1 is a k-cycle, and the vertex k + 1 is dominated by the vertices of the cycle.

We will reduce the maximum independent set problem to MinHOMP(H). Let G be a graph.
Construct a digraph D as follows:

V (D) = V (G) ∪ {ve
i : e ∈ E(G) i ∈ V (H)}, A(D) = A1 ∪A2, where

A1 = {ve
1v

e
2, v

e
2v

e
3, . . . v

e
k−1v

e
k, v

e
kv

e
1 : e ∈ E(G)}

and
A2 = {vuv

1 u, vuv
k+1u, vuv

2 v, vuv
k+1v : uv ∈ E(G)}.

Let all costs ci(t) = 1 for t ∈ V (D) apart from ck+1(p) = 2 for all p ∈ V (G).

Consider a minimum cost homomorphism f ∈ HOM(D, H). By the choice of the costs,
f assigns the maximum possible number of vertices of G (in D) a color different from k + 1.
However, if pq is an edge in G, by the definition of D, f cannot assign colors different from
k + 1 to both p and q. Indeed, if both p and q are assigned colors different from k + 1, then the
existence of vpq

k+1 implies that they are assigned the same color, which however is impossible by
the existence of {vpq

i : i ∈ {1, 2, . . . , k}}. Observe that f may assign exactly one of the vertices
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p, q color k + 1 and the other a color different from k + 1. Also f may assign both of them color
k +1. Thus, G has a maximum independent set with α vertices if and only if D has a minimum
cost H-coloring of cost |E(G)| · |V (H)|+ 2|V (G)| − α. This reduces the maximum independent
set problem to MinHOMP(H). ¦

Interestingly, the problem HOMP(H ′) for H ′ (especially, with k = 3) defined in Lemma 4.2
is well known to be polynomial time solvable (see, e.g., [5, 17, 22]). The following lemma allows
us to prove that MinHOMP(H) is NP-hard when MinHOMP(H ′) is NP-hard for an induced
subdigraph H ′ of H.

Lemma 4.3 Let H ′ be an induced subdigraph of a digraph H. If MinHOMP(H ′) is NP-hard,
then MinHOMP(H) is also NP-hard.

Proof: Let D be an input digraph with n vertices and let ci(u) be the costs, u ∈ V (D),
i ∈ V (H ′). Let all costs ci(u) be bounded from above by β(n). For each i ∈ V (H) − V (H ′)
and each u ∈ V (D), set costs ci(u) := nβ(n) + 1. Observe that there is an H-coloring of D of
cost at most nβ(n) if and only if HOM(D, H ′) 6= ∅ and if HOM(D,H ′) 6= ∅, then the cost of
minimum cost H-coloring equals to that of minimum cost H ′-coloring. ¦

As a corollary of Theorem 2.6 and Lemmas 4.1, 4.2 and 4.3, we obtain the following theorem.

Theorem 4.4 For a semicomplete digraph H, MinHOMP(H) is polynomial time solvable if H
is acyclic or H = ~Ck for k = 2 or 3, and NP-hard, otherwise.

Proof: By Theorem 2.6 and since HOMP(H) is NP-complete when a semicomplete digraph H
has at least two cycles [5], we may restrict ourselves to the case when H has a unique cycle.
Observe that this cycle has two or three vertices. If no other vertices are in H, MinHOMP(H)
is polynomial time solvable by Lemma 4.1. Assume that H has a vertex i not in the cycle.
Observe that i is dominated by or dominates all vertices of the cycle, i.e., H contains, as an
induced subdigraph one of the digraphs of Lemma 4.2. So, we are done by Lemmas 4.2 and 4.3.
¦

5 Discussion

In this paper we have obtained dichotomy classifications for the time complexity of the list and
minimum cost H-coloring problems when H is a semicomplete digraph. It would be interesting
to find out whether there exists a dichotomy classification for the minimum cost H-coloring
problem (for an arbitrary digraph H) and if it does exist, to obtain such a classification. Since
these problems seem to be far from trivial, one could concentrate on establishing dichotomy clas-
sifications for special classes of digraphs such as semicomplete multipartite digraphs (digraphs
obtained from complete multipartite graphs by replacing every edge with an arc or the pair of
mutually opposite arcs).

We have recently obtained some partial results on MinHOMP(H) for semicomplete mul-
tipartite digraphs H. To find a complete dichotomy for the case of semicomplete bipartite
digraphs, one would need, among other things, to solve an open problem from [16]: establish
a dichotomy classification for the complexity of MinHOMP(H) when H is a bipartite (undi-
rected) graph. Indeed, let B be a semicomplete bipartite digraph with partite sets U, V and
arc set A(B) = A1 ∪ A2, where A1 = U × V and A2 ⊆ V × U . Let B′ be a bipartite graph
with partite sets U, V and edge set E(B′) = {uv : vu ∈ A2}. Observe that MinHOMP(B) is
equivalent to MinHOMP(B′).
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It was proved in [16] that MinHOMP(H) is polynomial time solvable when H is a bipartite
graph whose complement is an interval graph. It follows from the main result of [11] that
MinHOMP(H) is NP-hard when H is a bipartite graph whose complement is not a circular arc
graph. This leaves the obvious gap in the classification for MinHOMP(H) when H is a bipartite
graph.
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