
The Linear Arrangement Problem Parameterized Above

Guaranteed Value

Gregory Gutin∗ Arash Rafiey† Stefan Szeider‡ Anders Yeo§

Abstract

A linear arrangement (LA) is an assignment of distinct integers to the vertices of a
graph. The cost of an LA is the sum of lengths of the edges of the graph, where
the length of an edge is defined as the absolute value of the difference of the integers
assigned to its ends. For many application one hopes to find an LA with small cost.
However, it is a classical NP-complete problem to decide whether a given graph G
admits an LA of cost bounded by a given integer. Since every edge of G contributes
at least one to the cost of any LA, the problem becomes trivially fixed-parameter
tractable (FPT) if parameterized by the upper bound of the cost. Fernau asked
whether the problem remains FPT if parameterized by the upper bound of the cost
minus the number of edges of the given graph; thus whether the problem is FPT “pa-
rameterized above guaranteed value.” We answer this question positively by deriving
an algorithm which decides in time O(m + n + 5.88k) whether a given graph with m
edges and n vertices admits an LA of cost at most m + k (the algorithm computes
such an LA if it exists). Our algorithm is based on a procedure which generates a
problem kernel of linear size in linear time for a connected graph G. We also prove
that more general parameterized LA problems stated by Serna and Thilikos are not
FPT, unless P=NP.

Key words: linear arrangement, fixed-parameter tractability, parametrization above
guaranteed value, para-NP-complete.

∗Corresponding author. Department of Computer Science, Royal Holloway University of London,
Egham, Surrey TW20 OEX, UK, gutin@cs.rhul.ac.uk and Department of Computer Science, University of
Haifa, Israel

†Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX,
UK, arash@cs.rhul.ac.uk

‡Department of Computer Science, Durham University Science Labs, South Road, Durham DH1 3LE,
UK, stefan.szeider@durham.ac.uk

§Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX,
UK, anders@cs.rhul.ac.uk

1

1 Introduction

All graphs considered in this paper do not have loops or parallel edges. A linear arrange-
ment of a graph G = (V, E) is a one-to-one mapping α : V → {1, . . . , |V |}. The length of
an edge uv ∈ E relative to α is defined as

λα(uv) = |α(u)− α(v)|.

The cost c(α, G) of a linear arrangement α is the sum of lengths of all edges of G relative
to α, i.e.,

c(α, G) =
∑

e∈E

λα(e).

Linear arrangements of minimal cost are optimal ; ola(G) denotes the cost of an optimal
linear arrangement of G.

The Linear Arrangement Problem (LAP) is the problem of deciding whether,
given a graph G and an integer k, G admits a linear arrangement of cost at most k,
i.e., whether ola(G) ≤ k. The problem has numerous application; in particular, the
first published work on the subject appears to be the 1964 paper of Harper [14], where a
polynomial-time algorithm for finding optimal linear arrangement for n-cubes is developed,
which has applications in error-correcting codes. Goldberg and Klipker [13] were first to
obtain a polynomial-time algorithm for computing optimal linear arrangements of trees.
Faster algorithms for trees were obtained by Shiloach [17] and Chung [2]. However, we
cannot hope to find optimal linear arrangements for the class of all graphs in polynomial
time since LAP is a classical NP-complete problem [11, 12].

Recently, LAP was studied under the framework of parameterized complexity [6, 18].
We recall some basic notions of parameterized complexity here, for a more in-depth treat-
ment of the topic we refer the reader to [4, 5, 6, 10, 16]. A parameterized problem Π
can be considered as a set of pairs (I, k) where I is the problem instance and k (usually
an integer) is the parameter. Π is called fixed-parameter tractable (FPT) if membership
of (I, k) in Π can be decided in time O(f(k)|I|c), where |I| is the size of I, f(k) is a
computable function, and c is a constant independent from k and I. Let Π and Π′ be
parameterized problems with parameters k and k′, respectively. An fpt-reduction R from
Π to Π′ is a many-to-one transformation from Π to Π′, such that (i) (I, k) ∈ Π if and only
if (I ′, k′) ∈ Π′ with k′ ≤ g(k) for a fixed computable function g and (ii) R is of complexity
O(f(k)|I|c). A reduction to problem kernel (or kernelization) is an fpt-reduction R from
a parameterized problem Π to itself. In kernelization, an instance (I, k) is reduced to an-
other instance (I ′, k′), which is called the problem kernel. It is easy to see that a decidable
parameterized problem is FPT if and only if it admits a kernelization (see, e.g., [5, 16]);
however, the problem kernels obtained by this general result have impractically large size.
Therefore, one tries to develop kernelizations that yield problem kernels of smaller size, if
possible of size linear in the parameter.

2

The following is a straightforward way to parameterize LAP [6, 18]:

Parameterized LAP
Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have a linear arrangement of cost at most k?

An edge has length at least 1 in any linear arrangement. Thus, for a graph G with
m edges always ola(G) ≥ m prevails; in other words, m is a guaranteed value for ola(G).
Consequently, parameterized LAP is FPT by trivial reasons (we reject a graph with more
than k edges and solve LAP by brute force if the graph has at most k edges). Hence it
makes sense to consider the net cost nc(α, G) of a linear arrangement α defined as follows:

nc(α, G) =
∑

e∈E

(λα(e)− 1) = c(α,G)−m.

We denote the net cost of an optimal linear arrangement of G by ola+(G). Indeed, the
following non-trivial parameterization of LAP is considered by Fernau [6, 7]:

LA parameterized above guaranteed value (LAPAGV)
Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have a linear arrangement of net cost at most k?

Parameterizations above a guaranteed value were first considered by Mahajan and Raman
[15] for the problems Max-SAT and Max-Cut; such parameterizations have lately gained
much attention [6, 16]. However, apparently only a few nontrivial problems parameterized
above guaranteed value are known to be FPT.

Fernau [6, 7, 8] raises the question of whether LAPAGV is FPT (the status of this
problem was reported open in Cesati’s compendium [1]). We answer this question posi-
tively by deriving a kernelization procedure for LAPAGV that yields problem kernels of
linear size in linear time for connected graphs G. Moreover, using the method of bounded
search trees, we develop an algorithm that solves LAPAGV for the obtained kernel more
efficiently than by brute force. In summary, we obtain an algorithm that decides in time
O(m+n+5.88k) whether a given graph with m edges and n vertices admits an LA of cost
at most m+k. Our algorithm also produces an optimal linear arrangement if ola+(G) ≤ k.
A key concept of our kernelization is the suppression of vertices of degree 2, a standard
technique used in the design of parameterized algorithms (e.g., for finding small feedback
vertex sets in graphs [4]). For LAPAGV, however, we need a more sophisticated approach
where we suppress only vertices of degree 2 that satisfy a certain condition depending on
the parameter k.

3

Fernau [8] proposes a bounded search tree approach to prove that LAPAGV is FPT.
The description of the approach is incomplete (for example, it is unclear how to deal
with vertices of degree 2 without rejecting any yes-instances) and an inequality, which
is required by Fernau’s approach to show that LAPAGV is FPT, is not proved. These
conclusions are confirmed in our private communication with Fernau (February, 2006) and
it remains to be seen whether a bounded search tree approach can be used to prove that
LAPAGV is FPT.

Serna and Thilikos [18] formulate more general parameterized LA problems (see Sec-
tion 4) and ask whether their problems are FPT. We prove that the problems are not
FPT (unless P=NP) by demonstrating that for almost all fixed values of the parameter,
the corresponding decision problems are NP-complete. This implies that the problems are
para-NP-complete [10]. We conclude the paper by Theorem 4.3, which indicates that our
FPT result cannot be extended much further, in a sense.

For a graph G and a set X of its vertices, V (G), E(G) and G[X] denote the vertex set
of G, the edge set of G, and the subgraph of G induced by X, respectively. An edge e in a
graph G is a bridge if G− e has more components than G has. A connected graph with at
least two vertices and without bridges is called 2-edge-connected. A bridgeless component
of a graph G is a maximal induced subgraph of G with no bridges. Observe that the
bridgeless components of G are the connected components that we get after removing all
bridges from G. A bridgeless component is either a 2-edge-connected graph or is isomorphic
to K1; in the latter case we call it trivial. Further graph-theoretic terminology can be found
in Diestel’s book [3].

2 Kernelization

In the next section, we use the following simple lemma to solve LAPAGV for the general
case of an arbitrary graph input G. The lemma allows us to confine our attention to
connected graphs in the rest of this section.

Lemma 2.1 Let G1, . . . , Gp be the connected components of a graph G. Then ola+(G) =∑p
i=1 ola+(Gi).

Proof: Follows directly from the definitions. 2

Let α be a linear arrangement of a graph G. It is convenient to use for subgraphs G′

of G the notation nc(α,G′) =
∑

uv∈E(G′)(λα(uv)− 1).

Lemma 2.2 Let G be a graph, let X ⊆ V (G), and let u, v be two distinct vertices of G
that belong to the same connected component of G−X. Let α be a linear arrangement of
G with α(u) < α(x) < α(v) for every x ∈ X. Then nc(α, G−X) ≥ |X|.

4

Proof: We proceed by induction on |X|. If |X| = 0 then the lemma holds vacuously.
Hence we assume |X| ≥ 1 and pick x ∈ X. We define G′ = G − x, X ′ = X \ {x}, and
we let α′ be the linear arrangement of G′ obtained from α by setting, for y ∈ V (G′),
α′(y) = α(y) if α(y) < α(x), and α′(y) = α(y) − 1 otherwise. By induction hypothesis,
nc(α′, G′ − X ′) ≥ |X ′|. By assumption, G − X contains a path P from u to v; hence
P contains at least one edge w1w2 with α(w1) < α(x) < α(w2) (and w1, w2 /∈ X). By
definition of α′, we have λα(w1w2) = λα′(w1w2)+1. Since for all other edges e ∈ E(G′−X ′)
we have λα(e) ≥ λα′(e), nc(α, G−X) ≥ nc(α′, G′ −X ′) + 1 follows. 2

Let G be a connected graph and let α be a linear arrangement of G. We say that
two disjoint subgraphs A,B of G are α-comparable if either α(a) < α(b) holds for all
a ∈ V (A), b ∈ V (B), or α(a) > α(b) holds for all a ∈ V (A), b ∈ V (B). Moreover, let e be
a bridge of G and let G1, G2 be the two connected components of G − e. For a positive
integer k, we say that e is k-separating if both |V (G1)|, |V (G2)| > k.

Lemma 2.3 Let G be a connected graph and let k be a positive integer such that k ≥
ola+(G). Then for every optimal linear arrangement α of G and every k-separating bridge
e of G, the two connected components of G− e are α-comparable.

Proof: Let α be an optimal linear arrangement. Let e be a k-separating bridge of G and
let G1, G2 be the two connected components of G − e. Since e is a k-separating bridge,
|V (G1)|, |V (G2)| > k holds by definition. We denote the extremal values of the vertices of
G1 and G2 with respect to α by li = minv∈V (Gi) α(v) and ri = maxv∈V (Gi) α(v), i = 1, 2.
We may assume, w.l.o.g., that l1 < l2.

First we show that r1 < r2. Assume to the contrary that r1 > r2. Now α−1(l1) and
α−1(r1) belong to the same connected component of G− V (G2), and Lemma 2.2 implies
nc(α, G) ≥ |V (G2)| > k, contradicting the assumption nc(α, G) ≤ k. Hence indeed l1 < l2
and r1 < r2.

Next we show that r1 < l2. Assume to the contrary that l2 < r1. From α we
obtain a new linear arrangement α′ of G, changing the order of vertices in X = {x ∈
V (G) : l2 ≤ α(x) ≤ r1 } such that G1 and G2 become α′-comparable, without changing
the relative order of vertices within G1 or changing the relative order of vertices within
G2. That is, for X ∩ V (Gi) = {v(i)

1 , . . . , v
(i)
ji
} and α(v(i)

1) < . . . < α(v(i)
ji

), i = 1, 2, we have

α′(v(1)
1) < . . . < α′(v(1)

j1
) < α′(v(2)

1) < . . . < α′(v(2)
j2

).

Since e is a bridge, we have

nc(α, G) = nc(α,G− e) + λα(e)− 1 and nc(α′, G) = nc(α′, G− e) + λα′(e)− 1 (1)

Although λα′(e) can be greater than λα(e), we will show that an increase of the length of e
is more than compensated by the reduced cost of G− e under α′. Again using Lemma 2.2
we conclude that nc(α′, Gi) ≤ nc(α,Gi)−|X∩V (G3−i)| holds for i = 1, 2 (observe that the

5

vertices α−1(li), α−1(ri) are in the same component of G − V (G3−i), and for each vertex
x in X ∩ V (Gi) we have α(li) < α(x) < α(ri)). In summary, we have

nc(α′, G− e) ≤ nc(α, G− e)− |X|. (2)

Using the fact that |α(x)− α′(x)| ≤ |X| − 1 holds for all vertices x ∈ V (G), it is easy
to see that

λα′(e) ≤ λα(e) + |X| − 1. (3)

Indeed, if at least one of the ends of e is in V (G)\X, then clearly λα′(e) ≤ λα(e)+ |X|−1;
otherwise, if both ends of e are in X, then λ′α(e) ≤ |X| − 1, and since λα(e) ≥ 1, we have
even λα′(e) ≤ λα(e) + |X| − 2.

By (1),(2) and (3), we obtain nc(α′, G) ≤ nc(α, G)−1. This contradicts the assumption
that α is an optimal linear arrangement. Hence l1 < r1 < l2 < r2, and so G1 and G2 are
α-comparable as claimed. 2

Lemma 2.4 If G is a connected bridgeless graph of order n ≥ 1, then ola+(G) ≥ (n−1)/2.

Proof: If n ≤ 2, then the inequality trivially holds. Thus, we may assume that n ≥ 3 and
G is 2-edge-connected. Let α be an optimal linear arrangement of G and put u = α−1(1)
and w = α−1(n). Since G is 2-edge-connected, Menger’s Theorem (see, e.g., [3]) implies
that there are two paths P, P ′ between u to w such that E(P)∩E(P ′) = {u,w}. Observe
that the subgraph G′ of G induced by E(P) ∪ E(P ′) is a collection of t ≥ 1 edge-disjoint
cycles. Let n′ be the number of vertices in G′. Since G′ has t− 1 vertices of degree 4 and
n′ − t + 1 vertices of degree 2, |E(G′)| = (n′ − t + 1) + 2(t− 1) = n′ + t− 1. Since n′ ≤ n
and t ≤ n−1

2 , we conclude that |E(G′)| ≤ 3
2(n−1). Observe that nc(α, P) ≥ n−1−|E(P)|

and nc(α, P ′) ≥ n− 1− |E(P ′)|. Hence,

ola+(G) = nc(α, G) ≥ nc(α, G′) ≥ 2(n− 1)− |E(G′)| ≥ (n− 1)/2.

2

Lemma 2.5 A connected graph G on at least two vertices has a pair u, v of distinct
vertices such that both G− u and G− v are connected.

Proof: Let T be a spanning tree in G and let u, v be leaves in T . Then T−x is a spanning
tree in G− x for x ∈ {u, v}. 2

Let α be an optimal linear arrangement of G. We call a vertex u ∈ V (G) α-special if
G− u is connected and α(u) 6∈ {1, n}.

6

Lemma 2.6 Let G be a connected graph. Let X be a vertex set of G such that G[X] is
connected and let G − X have connected components G1, G2, . . . , Gr with n1, n2, . . . , nr

vertices, respectively, such that n1 ≤ n2 ≤ . . . ≤ nr. Then ola+(G) ≥ ola+(G[X]) +∑r−2
i=1 ni.

Proof: Let α be an optimal linear arrangement of G. If r ≤ 2, then
∑r−2

i=1 ni = 0 and,
thus, this lemma holds. Now assume that r ≥ 3. By Lemma 2.5, each nontrivial Gi has a
pair ui, vi of distinct vertices such that Gi − ui and Gi − vi are connected. If Gi is trivial,
i.e., it has just one vertex x, then set ui = vi = x. Since r ≥ 3, for some j ∈ {1, 2, . . . , r},
we have α(uj) 6∈ {1, n} and α(vj) 6∈ {1, n}. Now we claim that there is a vertex u ∈ V (Gj)
such that G − u is connected. Indeed, we set u = uj if there are edges between vj and
G[X], we set u = vj , otherwise.

We have proved that G has an α-special vertex u not in X. Let αu be a linear
arrangement of G−u defined as follows: αu(x) = α(x) for all x ∈ V (G) with α(x) < α(u),
and αu(x) = α(x) − 1 for all x ∈ V (G) with α(x) > α(u). Since G is connected, it has
an edge yz such that α(y) < α(u) < α(z). Observe that λα(yz) = λαu(yz) + 1. Hence, we
have

ola+(G) = nc(α, G) ≥ nc(αu, G− u) + 1 ≥ ola+(G− u) + 1.

Thus,

ola+(G) ≥ ola+(G− u) + 1 for an α-special vertex u of G (4)

Run the following procedure: while G − X has a least three components, choose a
β-special vertex u 6∈ X of G for an optimal linear arrangement β of G and replace G with
G− u. By the end of this procedure, we have deleted some t vertices from G obtaining a
subgraph H of G. By (4), we have ola+(G) ≥ ola+(G[X])+ t. Observe that H −X has at
most two components, if all vertices of at least r−2 components G1, G2, . . . , Gr are deleted
from G during the procedure. Thus, t ≤ ∑r−2

i=1 ni and ola+(G) ≥ ola+(G[X])+
∑r−2

i=1 ni.2

The proof of the next lemma is illustrated in Figure 1.

Lemma 2.7 Let k be a positive integer and let G be a connected graph with n vertices
with ola+(G) ≤ k. Then either G has a k-separating bridge or n ≤ 4k + 1.

Proof: Assume that G does not have a k-separating bridge. If G is a bridgeless graph,
then by Lemma 2.4 we know that n ≤ 2k + 1. So, we may assume that G has a bridge.
Choose a bridge e1 with maximal min{|V (F1)|, |V (F0)|}, where F1, F0 are the components
of G− e1. Assume, w.l.o.g., that |V (F1)| ≤ |V (F0)|. Since e1 is not a k-separating bridge,
|V (F1)| ≤ k follows of necessity. Let F ∗

0 denote the bridgeless component of F0 that
contains a vertex incident to e1. If F0 = F ∗

0 then |V (F0)| ≤ 2k + 1 follows by Lemma 2.4
and we are done; hence we assume that F0 6= F ∗

0 .

7

F1 F ∗
0

F2

F3

F4

e1

e2

e3

e4

Figure 1: Illustration for Lemma 2.7.

Let e2, . . . , er denote the bridges of F0 that are incident to vertices in F ∗
0 . Moreover,

let F2, . . . , Fr denote the connected components of F0−V (F ∗
0) such that each ei is incident

with a vertex of Fi, i = 2, . . . , r. Assume that |V (F2)| ≥ |V (F3)| ≥ . . . ≥ |V (Fr)|. Suppose
that |V (F2)| > |V (F1)|. Then the component of G − e2 different from F2 has more
vertices than F1, which is impossible by the choice of e1 and the assumption that G has
no k-separating bridges. We conclude that |V (F1)| ≥ |V (F2)|. By Lemma 2.6, ola+(G) ≥
ola+(F ∗

0)+
∑r

i=3 |V (Fi)|. Thus,
∑r

i=3 |V (Fi)| ≤ k−ola+(F ∗
0). Since |V (F2)| ≤ |V (F1)| ≤ k

and, by Lemma 2.4, |V (F ∗
0)| ≤ 2 · ola+(F ∗

0) + 1, we obtain that

n = |V (F ∗
0)|+

r∑

i=1

|V (Fi)| ≤ (2·ola+(F ∗
0)+1)+(3k−ola+(F ∗

0)) = 3k+ola+(F ∗
0)+1 ≤ 4k+1.

2

Lemma 2.8 Let k be a positive integer and let G be a connected graph with the following
structure:

1) G has bridgeless components C1, C2, . . . , Ct, t ≥ 2, such that every two consecutive
components Ci and Ci+1 are linked by a single edge ei, which is a k-separating bridge
in G, i = 1, 2, . . . , t− 1.

2) Let L = G[
⋃t

i=1 V (Ci)]. The graph G′ = G − V (L) has connected components
G1, G2, . . . , Gr such that each Gj has edges only to one subgraph Cπ(j), π(j) ∈
{1, 2, . . . , t}.

Let Jp be the indices of all Gj such that π(j) = p, p = 1, 2, . . . , t. Let ni = max{|V (Gj)| :
j ∈ Ji}, i = 1, 2, . . . , t. Then ola+(G) ≥ ola+(L) + |V (G′)| − n1 − nt.

8

Proof: Let α be an optimal linear arrangement of G. Let

Ap =


 ⋃

j∈J1∪J2∪···∪Jp

V (Gj)


 ∪




p⋃

j=1

V (Cj)




for p = 1, 2, . . . , t. By Lemma 2.3, the two components of G−e1 are α-comparable. We may
assume, w.l.o.g., that α(x) < α(y) for each x ∈ A1, y 6∈ A1. Because of the assumption
and since the two components of G − e2 are α-comparable, we have α(x) < α(y) < α(z)
for each x ∈ A1, y ∈ A2 − A1 and z 6∈ A2. Continuing this argument, we can prove that
α(xi) < α(xi+1) for each xi ∈ Ai and xi+1 ∈ Ai+1 \

⋃i
j=1 Aj .

By the above conclusion and the arguments similar to those used in the proof of Lemma
2.6, we can prove that each Gj , apart from at most one graph Gp with p ∈ J1 and at most
one graph Gq with q ∈ Jt, has an α-special vertex u. As in Lemma 2.6, it follows that
ola+(G − u) ≤ ola+(G) − 1. Now we apply a procedure similar to that used in the proof
of Lemma 2.6: until |J1| ≤ 1, |Jt| ≤ 1 and J2 = · · · = Jt−1 = ∅, choose a β-special vertex
u ∈ V (G′) for an optimal linear arrangement β of G and replace G with G−u and G′ with
G′ − u. The procedure will have at most |V (G′)| − n1 − nt steps each decreasing ola+(G)
by at least 1. Hence ola+(G) ≥ ola+(L) + |V (G′)| − n1 − nt. 2

Let G be a graph and let v be a vertex of degree 2 of G. Let vu1, vu2 denote be
the edges incident with v. Assume that u1u2 /∈ E(G). We obtain a graph G′ from G
by removing v (and the edges vu1, vu2) from G and adding instead the edge u1u2. We
say that G′ is obtained from G by suppressing vertex v. Furthermore, if the two edges
incident with v are k-separating bridges for some positive integer k, then we say that v is
k-suppressible. The last definition is justified by the following lemma.

Lemma 2.9 Let G be a connected graph and let v be an ola+(G)-suppressible vertex of
G. Then ola+(G) = ola+(G′) holds for the graph G′ obtained from G by suppressing v.

Proof: Let u1, u2 denote the neighbors of v and let G1, G2 denote the connected com-
ponents of G − v with ui ∈ V (Gi), i = 1, 2. Consider an optimal linear arrangement α
of G. As above we use the notation li = minw∈V (Gi) α(w) and ri = maxw∈V (Gi) α(w),
i = 1, 2, and we assume, w.l.o.g., that l1 < l2. Since vu1, vu2 are ola+(G)-separating
bridges, Lemma 2.3 implies that α assigns to the vertices of Gi an interval of consecutive
integers. Thus, we conclude that l1 < r1 < α(v) < l2 < r2. We define a linear arrangement
α′ of G′ by setting α′(w) = α(w) for w ∈ V (G1) and α′(w) = α(w) − 1 for w ∈ V (G2).
Evidently ola+(G′) ≤ nc(α′, G′) = nc(α, G) = ola+(G).

Conversely, assume that α′ is an optimal linear arrangement of G′. We proceed
symmetrically to the first part of this proof. Let li = minw∈V (Gi) α′(w) and ri =
maxw∈V (Gi) α′(w), i = 1, 2, and assume, w.l.o.g., that l1 < l2. Observe that u1u2 is an

9

ola+(G′)-separating bridge of G′, hence Lemma 2.3 applies. Thus l1 < r1 < l2 < r2. We de-
fine a linear arrangement α of G by setting α(w) = α′(w) for w ∈ V (G1), α(v) = r1+1, and
α′(w) = α(w) + 1 for w ∈ V (G2). Evidently ola+(G) ≤ nc(α′, G) = nc(α′, G′) = ola+(G′).

Hence ola+(G) = ola+(G′) as claimed. 2

Theorem 2.10 Let k be a positive integer, and let G be a connected graph without k-sup-
pressible vertices. If ola+(G) ≤ k, then G has at most 5k + 2 vertices and at most 6k + 1
edges.

Proof: Let n = |V (G)| > 1, and let ola+(G) ≤ k.

Any linear arrangement of G can have at most n − 1 edges of length 1, and each
additional edge contributes at least 1 to the net cost. Thus, m ≤ n− 1 + k and it suffices
to show that n ≤ 5k + 3.

If G does not have a k-separating bridge, then by Lemma 2.7 we have n ≤ 5k + 1.
Assume now that G has a k-separating bridge. Let e = uv be such a bridge, and let H1, H2

be two connected component of G−e, where H1 contains u. Let Cu (Cv) be the bridgeless
components containing u (v). Let Cu

1 , Cu
2 , ..., Cu

p (Cv
1 , Cv

2 , ..., Cv
q) be all connected compo-

nents of H1−V (Cu) (H2−V (Cv)). Observe that each of the components Cu
i (Cv

i) is linked
to Cu (Cv) by a bridge. Assume that |V (Cx

i)| ≤ |V (Cx
j)| for i < j, where x ∈ {u, v}. By

Lemma 2.6, we have
∑i=p−1

i=1 |V (Cu
i)| ≤ k and

∑i=q−1
i=1 |V (Cv

i)| ≤ k. If the bridge between
Cu

p and Cu (Cv
q and Cv) is k-separating, we consider the bridgeless component of Cu

p (Cv
q)

containing an endvertex of the bridge and the connected components obtained from Cu
p

(Cv
q) by deleting the vertices of the bridgeless component. Continuation of the procedure

above as long as possible will bring us the following decomposition of G:

1) G has bridgeless components C1, C2, . . . , Ct, t ≥ 2, such that every two consecutive
components Ci and Ci+1 are linked by a single edge ei, which is a k-separating bridge
in G, i = 1, 2, . . . , t− 1.

2) Let L = G[
⋃t

i=1 V (Ci)]. The graph G′ = G − V (L) has connected components
G1, G2, . . . , Gr such that each Gj has edges only to one subgraph Cπ(j), π(j) ∈
{1, 2, . . . , t}.

Since we have carried out the above procedure as long as possible, all bridges between
G′ and L are not k-separating. Thus, |V (Gj)| ≤ k for each j = 1, 2, . . . , t. Recall that Jp

is the set of indices of all Gj such that π(j) = p, p = 1, 2, . . . , t, and ni = max{|V (Gj)| :
j ∈ Ji}, p = 1, 2, . . . , t. By Lemma 2.8, ola+(G) ≥ ola+(L) + |V (G′)| − n1 − nt. Since
n1 ≤ k, nt ≤ k and ola+(G) ≤ k, we obtain

|V (G′)| ≤ 3k − ola+(L). (5)

10

Since G has no k-suppressible vertices, the bridgeless components C2, C3, . . . , Ct−1 are
not trivial. Observe that

∑t−1
i=2 ola+(Ci) ≤ ola+(L). By Lemma 2.4, every component

ola+(Ci) ≥ 1, 2 ≤ i ≤ t − 1, and thus t − 2 ≤ ola+(L). By Lemma 2.4, |V (Ci)| ≤
2 · ola+(Ci) + 1 for each i = 1, 2, . . . , t. Hence,

|V (L)| =
t∑

i=1

|V (Ci)| ≤ 2(
t∑

i=1

ola+(Ci)) + t ≤ 3 · ola+(L) + 2. (6)

Combining (5) and (6), we obtain

|V (G)| = |V (G′)|+|V (L)| ≤ (3k−ola+(L))+(3·ola+(L)+2) ≤ 3k+2·ola+(L)+2 ≤ 5k+2.

2

Theorem 2.11 Let f(n, m) be the time sufficient for checking whether ola+(G) ≤ k for
a connected graph G with n vertices and m edges. Then

f(n, m) = O(m + n + f(5k + 2, 6k + 1)).

Proof: We assume that G is represented by adjacency lists. Using a depth-first-search
(DFS) algorithm, we can determine the cut vertices of G in time O(n+m) (see Tarjan [19]).
Let T be a spanning rooted tree of G (say, as obtained by the DFS algorithm). For each
vertex v ∈ V (G), let Tv denote the subtree of T rooted at v. That is, Tv contains v and
all descendants of v in T . We assign to each vertex v the integer tv = |V (Tv)|. This
can be done in time O(n + m) by a single bottom-up traversal of T where we assign 1 to
leaves, and to non-leaves we assign the sum of the integers assigned to their immediate
descendants plus one.

Consider now a cut vertex v of G of degree 2. Let u, w be the neighbors of v. Since
the edges vu and vw are bridges of G, they are edges of T . It follows now directly from
the definition that v is k-suppressible if and only if one of the following conditions holds.

1. v is the root of T and tu, tw > k.

2. v is not the root of T and k + 1 < tv < n− k.

Since these conditions can be checked in constant time for each cut vertex v of G, we
can find the set S of all k-suppressible vertices of G in time O(n + m). Note that if H
is the graph obtained by suppressing some v ∈ S, some vertices of S \ {v} may not be
k-suppressible in H; however, any k-suppressible vertex of H belongs to S \ {v}.

We compute a set S′ ⊆ S starting with the empty set and successively adding some of
the vertices of S to S′. We visit the vertices of G according to a bottom-up traversal of T
(i.e., if v is a descendant of v′ then we visit v before v′). During this traversal we assign
to each vertex v an integer t′v which is the number of vertices in S′ ∩ V (Tv).

11

Assume we visit a vertex v ∈ V (G) \ S. If v is a leaf of T we put t′v = 0; otherwise we
let t′v be the sum of the values t′v′ for the direct descendants v′ of v in T . Assume we visit
a vertex v ∈ S. Let u and w be the neighbors of v such that u is a direct descendant of
v. Let H denote the graph obtained from G by suppressing all vertices in the current set
S′. It follows from the considerations above that v is a k-suppressible vertex of H if and
only if one of the following conditions holds.

1. v is the root of T and tu − t′u, tw − t′w > k.

2. v is not the root of T and k + 1 < tv − t′u < n− k − |S′|.
If v is a k-suppressible vertex of H we add v to S′, put t′v = t′u + 1, and continue;

otherwise we leave S′ unchanged, put t′v = t′u, and continue.

Performing a further bottom-up traversal of T we suppress the vertices in S′ one
after the other, and we are left with a graph G′ which has no k-suppressible vertices. If
|V (G′)| > 5k+2 or |E(G′)| > 6k+1, then we know from Theorem 2.10 that ola+(G′) > k.
It follows from Lemma 2.9 that ola+(G) > k as well, and we can reject G. On the other
hand, if |V (G′)| ≤ 5k + 2 and |E(G′)| ≤ 6k + 1, then we can find an optimal linear
arrangement α′ for G′ in time f(5k +2, 6k +1). By means of the construction in the proof
of Lemma 2.9 we can transform in time O(n + m) the arrangement α′ into an optimal
linear arrangement α of G. 2

The proof of Theorem 2.11 implies the following:

Corollary 2.12 The problem LAPAGV, with a connected graph G as an input, has a
linear problem kernel, which can be found in linear time. If ola+(G) ≤ k, then the reduced
graph (i.e., kernel) has at most 5k + 2 vertices and 6k + 1 edges.

In the next section, we give an upper bound for the function g(k) = f(5k + 2, 6k + 1)
in Theorem 2.11.

3 Computing Optimal Linear Arrangements

Lemma 3.1 Let G be a 2-vertex-connected graph on n vertices and let α be a linear
arrangement of G. Then nc(α, G) ≥ n− 2.

Proof: Define x and y such that α(x) = 1 and α(y) = n. For an edge e = uv in
G in which α(u) < α(v), let Q(e) = {w : α(u) < α(w) < α(v)}. For every vertex
w ∈ V (G) − {x, y}, there is a path between x and y in G − w, and therefore there is an
edge uv such that α(u) < α(w) < α(v). This implies that

⋃
e∈E(G) Q(e) = V (G)− {x, y}.

12

Since λα(e)− 1 = |Q(e)| we have

nc(α, G) =
∑

e∈E(G)

|Q(e)| ≥ |
⋃

e∈E(G)

Q(e)| = n− 2.

2

Let n and k be nonnegative integers. Let Pn = p1p2 . . . pn be a path of order n and let
OLA+

Pn
(k, j) be the set of linear arrangements α of Pn with net cost at most k and such

that α(p1) = j and α(pn) = n. We will first prove an upper bound for |OLA+
Pn

(k, j)|.

Theorem 3.2 For all n ≥ 2, k ≥ 0 and 0 ≤ j ≤ n− 1, we have

|OLA+
Pn

(k, j)| ≤ 20.119n+1.96k−0.967095j+2.

Furthermore the following holds, when d2 = 0.497534,

|OLA+
Pn

(k, 2)| ≤ (1− d2)20.119n+1.96k−2·0.967095+2.

Proof: Let j > k + 1 and let G be Pn with the extra edge p1pn. By Lemma 3.1,
nc(α, G) ≥ n− 2. Since λα(p1pn)− 1 = n− j − 1, we conclude that nc(α, Pn) ≥ n− 2−
(n − j − 1) = j − 1 > k. Therefore |OLA+

Pn
(k, j)| = 0 when j > k + 1, and the theorem

holds in this case. So assume that j ≤ k + 1. We also note that the theorem holds when
k = 0, as in this case |OLA+

Pn
(k, j)| ≤ 2, so assume that k ≥ 1.

We will prove the theorem by induction on n. Clearly the theorem is true when n ≤ 4,
as in this case |OLA+

Pn
(k, j)| ≤ (n− 2)! ≤ 2. So we may assume that n > 4.

Let α ∈ OLA+
Pn

(k, j) be arbitrary. Let α′ be a linear arrangement of the path Pn− p1

such that α′(z) = α(z) when α(z) < α(p1) and α′(z) = α(z)− 1 when α(z) > α(p1). Fur-
thermore, let a = 0.119, b = 1.96, x = 0.967095, Γ = 2an+bk−xj+2 and γ = |OLA+

Pn
(k, j)|

and consider the following two cases:

Case 1: j = 1. Let α(p2) = q. Observe that α′ ∈ OLA+
Pn−1

(k − q + 2, q − 1) since
α′(p2) = q − 1 and λα(p1p2) − 1 = q − 2. Since α′ is uniquely determined by α we note
that there are at most |OLA+

Pn−1
(k − q + 2, q − 1)| linear arrangements in OLA+

Pn
(k, j)

with α(p2) = q. This implies the following:

γ ≤
k+2∑

q=2

|OLA+
Pn−1

(k − q + 2, q − 1)|

≤



k+2∑

q=2

2a(n−1)+b(k−q+2)−x(q−1)+2


− d22a(n−1)+b(k−3+2)−x(3−1)+2

13

=





2−a

k∑

q=0

(2−b−x)q


− d22−a−b−x


Γ

≤
(

2−a

1− 2−b−x
− d22−a−b−x

)
Γ ≤ Γ.

Case 2: j ≥ 2. First assume that q = j − α(p2) > 0. Since Pn − p1 is connected,
there must be an edge e from the set of vertices with α-values in {1, 2, . . . , j−1} to the set
of vertices with α-values in {j + 1, j + 2, . . . , n}. Observe that λα(e) = λα′(e) + 1. Since
λα(p1p2) − 1 = q − 1, the net cost of α′ is at most the net cost of α minus q. Since α′ is
uniquely determined by α we note that there are at most |OLA+

Pn−1
(k − q, j − q)| linear

arrangements in OLA+
Pn

(k, j) with α(p2) = j − q.

Now assume that q = α(p2) − j > 0. Let pi be the vertex with α(pi) = 1. Observe
that the path p2p3 . . . pi must contain some edge e = uv, where α(u) > j and α(v) < j (as
α(p2) > j and α(pi) = 1 < j). Furthermore, the path pipi+1 . . . pn must contain some edge
e′ = u′v′, where α(v′) > j and α(u′) < j (as α(pn) = n > j and α(pi) = 1 < j). As above
we note that λα(e) = λα′(e) + 1 and λα(e′) = λα′(e′) + 1. Since λα(p1p2)− 1 = q − 1, the
net cost of α′ is at most the net cost of α minus q + 1. Since α′ is uniquely determined by
α, we note that there are at most |OLA+

Pn−1
(k − q − 1, j + q − 1)| linear arrangements in

OLA+
Pn

(k, j) with α(p2) = j + q (as α′(p2) = j + q − 1). This implies the following when
j ≥ 3 :

γ ≤
j−1∑

q=1

|OLA+
Pn−1

(k − q, j − q)|+
k−1∑

q=1

|OLA+
Pn−1

(k − q − 1, j + q − 1)|

≤
j−1∑

q=1

2a(n−1)+b(k−q)−x(j−q)+2 +
k−1∑

q=1

2a(n−1)+b(k−q−1)−x(j+q−1)+2

=


2−a−b+x

j−2∑

q=0

(2−b+x)q + 2−a−2b
k−2∑

q=0

(2−b−x)q


Γ

≤
(

2−a−b+x

1− 2−b+x
+

2−a−2b

1− 2−b−x

)
Γ ≤ Γ.

When j = 2 we get the following analogously to above.

γ ≤
j−1∑

q=1

|OLA+
Pn−1

(k − q, j − q)|+
k−1∑

q=1

|OLA+
Pn−1

(k − q − 1, j + q − 1)|

≤

2−a−b+x

2−2∑

q=0

(2−b+x)q + 2−a−2b
k−2∑

q=0

(2−b−x)q


Γ− d22a(n−1)+b(k−1−1)−2x

14

≤
(

2−a−b+x +
2−a−2b

1− 2−b−x
− d22−a−2b

)
Γ

≤ (1− d2)Γ

This completes the induction proof. 2

Remark 3.3 Note that Theorem 3.2 implies that |OLA+
P5k

(k, 1)| = O(22.555k) = O(5.88k).
It is possible to prove that |OLA+

P5k
(k, 1)| = Ω(5.36k), which shows that our result cannot

be significantly improved, in a sense. Due to space considerations we do not include the
proof of |OLA+

P5k
(k, 1)| = Ω(5.36k).

Let n and k be nonnegative integers. Let Tn be the set of trees with n vertices.
Let T ∈ Tn and let X ⊆ V (T) be arbitrary. Let OLA+

T (n, k, X) be the set of linear
arrangements α of T with net cost at most k and such that α(x) ∈ {1, n} for all x ∈ X.
Note that OLA+

T (n, k, X) = ∅ if |X| ≥ 3. Now define t(n, k, i) as follows:

t(n, k, i) = max{|OLA+
T (n, k, X)| : T ∈ Tn, |X| = i}.

In other words, no tree T of order n has more than t(n, k, i) linear arrangements such that
the net cost is at most k and i prescribed vertices have to be mapped to either 1 or n (and
t(n, k, i) is the minimum such value).

For a connected graph G, let TG be a spanning tree of G. Since ola+(TG) ≤ ola+(G) we
only have to check all linear arrangements in OLA+

TG
(n, k, ∅) (but still considering all edges

in G and not just TG) to decide whether ola+(G) ≤ k. Since |OLA+
TG

(n, k, ∅)| ≤ t(n, k, 0)
the values of t(n, k, i) are of interest (especially when i = 0). We will prove an upper bound
for t(n, k, i) before indicating how to generate all linear arrangements in OLA+

TG
(n, k, ∅).

Note that t(n, k, 3) = 0.

Theorem 3.4 For all n ≥ 2, k ≥ 0 and 0 ≤ i ≤ 3, we have the following upper bound:

t(n, k, i) ≤ 20.119n+1.96k−1.4625i+4.

Proof: We will prove the theorem by induction on n + k− i. Clearly the theorem is true
when n = 2 and 0 ≤ i ≤ 3, as in this case t(n, k, i) = 2 if i ∈ {0, 1, 2} and t(n, k, 3) = 0.
Furthermore when i = 3 the theorem also holds. So now let i ≤ 2 and n ≥ 3 (and k ≥ 0)
and assume that the theorem holds for all smaller values of n + k − i.

Let T be a tree of order n and let X be a set of i vertices in T . Let x be a leaf in the
tree T and let y be the unique neighbor of x in T . Furthermore if some leaf in the tree
T does not belong to X then let x be such a vertex (that is x 6∈ X). Let α be a linear

15

arrangement of T with net cost at most k and with all vertices q ∈ X having α(q) ∈ {1, n}.
Let α′ be a linear arrangement of the tree T −x such that α′(z) = α(z) when α(z) < α(x)
and α′(z) = α(z)− 1 when α(z) > α(x). Furthermore let a = 0.119, b = 1.96, c = 1.4625,
Γ = 2an+bk−ci+4, and γ = |OLAT (n, k,X)|. Consider the following three cases:

Case 1: x, y 6∈ X. Observe that there are at most t(n, k, i + 1) linear arrangements
α in which α(x) ∈ {1, n}, as we may add x to X and use our induction hypothesis.
So now assume that α(x) 6∈ {1, n}. Assume that α(x) − α(y) = j. This means that
λα(xy) − 1 = j − 1. However, since α(x) 6∈ {1, n} and T − x is connected, there must
be an edge e from the set of vertices with α-values in {1, 2, . . . , α(x) − 1} to the set of
vertices with α-values in {α(x) + 1, α(x) + 2, . . . , n}. Observe that λα(e) = λα′(e) + 1.
Therefore, the net cost of α′ is at most the net cost of α minus j. Thus, there are at most
t(n−1, k− j, i) linear arrangements α′. Since α′ is uniquely determined by α we note that
there are at most t(n−1, k−j, i) linear arrangements α with α(x)−α(y) = j. Analogously,
there are at most t(n − 1, k − j, i) linear arrangements α with α(x) − α(y) = −j. The
above arguments imply the following:

γ ≤ t(n, k, i + 1) + 2
k∑

j=1

t(n− 1, k − j, i)

≤ 2an+bk−c(i+1)+4 + 2
k∑

j=1

2a(n−1)+b(k−j)−ci+4

=


 1

2c
+

2
2a+b

k−1∑

j=0

(2−b)j


Γ

≤
(

1
2c

+
2

2a+b(1− 2−b)

)
Γ ≤ Γ.

Case 2: x 6∈ X and y ∈ X. As in our first case there are at most t(n, k, i + 1)
linear arrangements α with α(x) ∈ {1, n}. Now assume that α(x) 6∈ {1, n} and assume
that |α(x) − α(y)| = j, which implies that λα(xy) − 1 = j − 1. As in our first case
we observe that there is an edge e in T − x such that λα(e) = λα′(e) + 1. Therefore,
there are at most t(n− 1, k − j, i) linear arrangements α with the above property. Thus,
γ ≤ t(n, k, i+1)+

∑k
j=1 t(n−1, k−j, i). By the computations in our first case, this implies

that γ ≤ Γ, so we have now proved the case when x 6∈ X and y ∈ X.

Case 3: x ∈ X. Since |X| ≤ 2 (and n ≥ 3) we note that the tree T only has two
leaves, by our definition of x. Furthermore X contains both leaves in T , which implies
that T = Pn = p1p2 . . . pn is a path of order n and X = {p1, pn}. By Theorem 3.2 we now
obtain the following:

γ ≤ |OLA+
Pn

(k, 1)| ≤ 20.119n+1.96k−0.967095+2 ≤ 20.119n+1.96k−2·1.4625+4 = Γ.

16

We have now bounded the value of t(n, k, i) for all the values we needed. 2

Remark 3.5 The values a = 0.119 and b = 1.96 in the above proofs could be changed in
such a way that we decrease a but increase b (and change c and x accordingly) or we could
decrease b but increase a (and change c and x accordingly). However the values we have
chosen are the ones that minimize 5a + b, as our final bound is basically O((25a+b)k).

It is not difficult to turn the computations in the proof of Theorem 3.2 and Theorem 3.4
into a recursive algorithm that generates OLA+

T ′(n
′, k′, X ′) for all the relevant n′, k′, X ′

and subtrees T ′ of TG and OLA+
Pn′

(k′, j′) for all relevant n′, k′ and n′. After comput-
ing OLA+

TG
(n, k, ∅) we only need to calculate the net cost of each linear arrangement in

OLA+
TG

(n, k, ∅) with respect to G. This way we can find the value ola+(G) if ola+(G) ≤ k.

In order to do the above we need to generate at most (n + 1)2(n − 1)(k + 1) sets
OLA+

T ′(n
′, k′, X ′), (there are at most (n + 1)2 sets |X ′|, 2 ≤ n′ ≤ n and 0 ≤ k′ ≤ k). We

also need to generate at most n(k+1)(k+2) sets OLA+
Pn′

(k′, j′) (as 1 ≤ n′ ≤ n, 0 ≤ k′ ≤ k

and 0 ≤ j ≤ k + 1). Each of the above sets can be computed in at most n · t(n, k, ∅) time
(as every set will be of size at most t(n, k, ∅)). Thus, we can obtain OLA+

TG
(n, k, ∅) in

O(n(n3k + nk2)t(n, k, ∅)) time. We then need O((n + m)t(n, k, ∅)) time to consider each
linear arrangement α in OLA+

TG
(n, k, ∅) and compute nc(α, G), where m = |E(G)|. So the

total time complexity, when n ≤ 5k + 2, is at most

O(k5t(n, k, ∅)) = O(k520.119(5k+2)+1.96k) = O(2(5·0.119+1.96+0.0001)k) = O(22.5551k).

We have proved the following:

Theorem 3.6 Let n be the number of vertices in a connected graph G and let k be a
nonnegative integer. If n ≤ 5k + 2, then we can check whether ola+(G) ≤ k and compute
ola+(G), provided ola+(G) ≤ k, in time O(22.5551k).

Now we are ready to prove the main result of this paper.

Theorem 3.7 Let G = (V, E) be a graph and let k be a nonnegative integer. We can
check whether ola+(G) ≤ k and compute ola+(G) provided ola+(G) ≤ k in time O(|V | +
|E|+ 5.88k).

Proof: Let G1, G2, . . . , Gp be the connected components of G. We can check, in time
O(|V (Gi)|), whether ola+(Gi) = 0 since ola+(Gi) = 0 if and only if Gi is a path. Thus,
in time O(|V |), we can detect all components of G of net cost zero. By Lemma 2.1, we
do not need to take these components into consideration when computing ola+(G). Thus,

17

we may assume that for all components Gi, i = 1, 2, . . . , p, we have ola+(Gi) ≥ 1. Thus, if
ola+(G) ≤ k, then ola+(Gi) ≤ k−p+1. By Lemma 2.1, Theorems 2.11 and 3.6, and the fact
that ola+(Gi) ≤ k−p+1 if ola+(G) ≤ k, we can check whether ola+(G) ≤ k and compute
ola+(G) provided ola+(G) ≤ k in time O(

∑p
i=1(|V (Gi)| + |E(Gi)|) + p22.5551(k−p+1)) =

O(|V |+ |E|+ 5.88k). 2

4 Stronger Parameterizations of LAP

Serna and Thilikos [18] introduce the following related problems. They ask whether either
problem is FPT.

Vertex Average Min Linear Arrangement (VAMLA)
Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have a linear arrangement of cost at most k|V (G)|?

Edge Average Min Linear Arrangement (EAMLA)
Instance: A graph G.
Parameter: A positive integer k.
Question: Does G have a linear arrangement of cost at most k|E(G)|?

Both problems are not FPT (unless P=NP), which follows from the next two theorems.

Theorem 4.1 For any fixed integer k ≥ 2, it is NP-complete to decide whether ola(H) ≤
k|V (H)| for a given graph H.

Proof: Let G be a graph and let r be an integer. We know that it is NP-complete to
decide whether ola(G) ≤ r (LAP). Let n = |V (G)|. Let k be a fixed integer, k ≥ 2. Define
G′ as follows: G′ contains k copies of G, j isolated vertices and a clique with i vertices
(all of these subgraphs of G′ are vertex disjoint). We have n′ = |V (G′)| = kn + i + j.

By the definition of G′ and the fact that ola(Ki) =
(
i+1
3

)
, we have

k · ola(G) = ola(G′)− ola(Ki) = ola(G′)−
(

i + 1
3

)
.

Therefore, ola(G) ≤ r if and only if ola(G′) ≤ kr +
(
i+1
3

)
. If there is a positive integer

i such that kr +
(
i+1
3

)
= kn′ and the number of vertices in G′ is bounded from above

by a polynomial in n, then G′ provides a reduction from LAP to VAMLA with the fixed
k. Observe that kr +

(
i+1
3

) ≥ k(kn + i) for i = 6kn. Thus, by setting i = 6kn and

18

j = r + 1
k

(
i+1
3

) − kn − i, we ensure that G′ exists and the number of vertices in G′ is
bounded from above by a polynomial in n. 2

The proof of the following theorem is similar, but G′ is defined differently: G′ contains
k copies of G, a path with j edges and a clique with i vertices (all of these subgraphs of
G′ are vertex disjoint).

Theorem 4.2 For any fixed integer k ≥ 2, it is NP-complete to decide whether ola(H) ≤
k|E(H)| for a given graph H.

For a vertex v in a graph G = (V, E), its closed neighborhood N [v] = {u ∈ V : uv ∈
E} ∪ {v}. The profile of a linear arrangement α of G is

prf(α,G) =
∑

z∈V

(α(z)−min{α(w) : w ∈ N [z]}).

Serna and Thilikos [18] introduce also the following problem and ask whether it is FPT.

Vertex Average Profile (VAP)
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Does G have a linear arrangement of profile ≤ k|V |?

Similarly to Theorem 4.1 we can prove that VAP is NP-complete for every fixed k ≥ 2.

Recently, Flum and Grohe [9, 10] introduced para-NP and other parameterized com-
plexity classes. Recall that a parameterized problem Π can be considered as a set of pairs
(I, k) where I is the problem instance and k is the parameter. Π is in para-NP if member-
ship of (I, k) in Π can be decided in nondeterministic time O(f(k)|I|c), where |I| is the
size of I, f(k) is a computable function, and c is a constant independent from k and I.
Here, nondeterministic time means that we can use nondeterministic Turing machine. A
parameterized problem Π′ is para-NP-complete if it is in para-NP and for any parameter-
ized problem Π in para-NP there is an fpt-reduction from Π to Π′. Observe that VAMLA,
EAMLA and VAP are in para-NP. Moreover, it follows directly form our results that the
three problems are para-NP-complete (see Corollary 2.16 in [10]).

Similarly to Theorem 4.2 we can prove the following:

Theorem 4.3 For each fixed 0 < ε ≤ 1, it is NP-complete to decide whether ola+(H) ≤
|E(H)|ε for a given graph H.

Notice that Theorem 3.7 implies that we can decide, in polynomial time, whether
ola(H) ≤ |E(H)| + log |E(H)| for a graph H. Theorem 4.3 indicates that the possibility

19

to strengthen the last result is rather limited. It would be interesting to determine the
complexity of the problem to verify whether ola(H) ≤ |E(H)|+log2 |E(H)| for a graph H.

Acknowledgements Research of Gutin and Rafiey was supported in part by the
IST Programme of the European Community, under the PASCAL Network of Excellence,
IST-2002-506778. Part of the paper was written when Szeider was vising Department of
Computer Science, Royal Holloway, University of London.

References

[1] M. Cesati, Compendium of parameterized problems, Sept. 2005.
http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf,

[2] F.R.K. Chung, On optimal linear arrangements of trees. Comp. & Maths. with Appls. 10
(1984), 43–60.

[3] R. Diestel, Graph Theory, Springer–Verlag, New York, 2nd ed., 2000.

[4] R.G. Downey and M.R. Fellows, Parameterized Complexity , Springer–Verlag, New York, 1999.

[5] V. Estivill-Castro, M.R. Fellows, M.A. Langston, and F.A. Rosamond, FPT is P-Time ex-
tremal structure I. In H. Broersma, M. Johnson, and S. Szeider, editors, Algorithms and
Complexity in Durham 2005, Proceedings of the first ACiD Workshop, volume 4 of Texts in
Algorithmics, pages 1–41. King’s College Publications, 2005.

[6] H. Fernau, Parameterized Algorithmics: A Graph-theoretic Approach. Habilitation thesis, U.
Tübingen, 2005.

[7] H. Fernau, Parameterized Algorithmics for Linear Arrangement Problems. Talk at Dagstuhl,
July 2005, slides at
www.dagstuhl.de/files/Materials/05/05301/05301.FernauHenning.Slides.pdf

[8] H. Fernau, Parameterized Algorithmics for Linear Arrangement Problems. Manscript, July
2005, http://homepages.feis.herts.ac.uk/ comrhf/papers/ola.pdf

[9] J. Flum and M. Grohe, Describing parameterized complexity classes. Information and Com-
putation 187 (2003), 291–319.

[10] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[11] M. R. Garey and D. R. Johnson, Computers and Intractability, W.H. Freeman & Comp., New
York, 1979.

[12] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems.
Theoret. Comput. Sci. 1 (1976), 237–267.

[13] M.K. Goldberg and I.A. Klipker, Minimal placing pf trees on a line. Tech. Report, Physico-
Technical Institute of Low Temperatures, Ukranian SSR Acad. of Sciences, USSR, 1976. [In
Russian]

[14] L.H. Harper, Optimal assignments of numbers to vertices. J. Soc. Indust. Appl. Math. 12
(1964) 131–135.

20

[15] M. Mahajan and V. Raman, Parameterizing above guaranteed values: MaxSat and MaxCut.
J. Algorithms 31 (1999), 335–354.

[16] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and Its Applications. Oxford University Press, 2006. Forthcoming.

[17] Y. Shiloach, A minimum linear arrangement algorithm for undirected trees. SIAM J. Comp.
8 (1979), 15–32.

[18] M. Serna and D.M. Thilikos, Parameterized complexity for graph layout problems. EATCS
Bulletin 86 (2005), 41–65.

[19] R.E. Tarjan, Depth first search and linear graph algorithms. SIAM J. Comput. 1 (1972),
146–160.

21

