▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Out-branchings with Extremal Number of Leaves

Gregory Gutin

Department of Computer Science Royal Holloway, University of London

April 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Minimum Leaf Out-branchings

3 Maximum Leaf Out-branchings and Out-trees

Out-Trees and Out-Branchings

- We say that a subdigraph *T* of a digraph *D* is an out-tree if *T* is an oriented tree with only one vertex *s* of in-degree zero (its root).
- The vertices of *T* of out-degree zero are leaves.
- If T is a spanning out-tree, i.e. V(T) = V(D), then T is an out-branching of D.
- A digraph *D* has an out-branching iff *D* has only one initial strong component (a strong component *C* is initial if there are no arcs entering *C*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problems with Extremal Number of Leaves

- Find an out-branching with minimum number of leaves, $\ell_{\min}(D)$.
- Find an out-branching with maximum number of leaves, $\ell_{max}(D)$.
- If D has no out-branching, let $\ell_{\min}(D) = \ell_{\max}(D) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure 1: A digraph D and its out-branchings with minimum and maximum number of leaves (Q and R, respectively).

Aspects to Study

- Classical Complexity (polynomial time or NP-hard).
- Parameterized Complexity (FPT, etc.).
- Bounds on the Number of Leaves.

Fixed Parameter Tractability

Definition

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k (usually an integer) is the parameter.

Definition

 Π is called fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O(f(k)|I|^c)$, where |I| is the size of I, f(k) is a computable function, and c is a constant independent from k and I.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2 Minimum Leaf Out-branchings

3 Maximum Leaf Out-branchings and Out-trees

Min Leaf in Acyclic Digraphs is in P

- G., Kim and Razgon, 2008
- Algorithm: $D \to B(D) \to M \to M^* \to T$

Figure 1: Illustration for the MINLEAF algorithm

Las Vergnas' Theorem

Theorem (Las Vergnas 1976)

Let D be a digraph and let $\alpha(D)$ be the independence number of D. Then $\ell_{\min}(D) \leq \alpha(D)$.

- Tight bound. For transitive acyclic digraphs with unique vertex of in-degree 0, we have l_{min}(D) = α(D).
- Constructive proof yielding a polynomial-time algorithm.

General Case Complexity

Fact

For any fixed k, the problem to decide whether $\ell_{\min}(D) \le k$ is NP-hard.

Theorem (G., Kim and Razgon, 2008)

Let k be a parameter and n = |V(D)|. The problem to decide whether $\ell_{\min}(D) \le n - k$ is FPT.

A scheme of the proof follows ...

Tree Decompositions

A tree decomposition of an digraph G is a pair (X, T) where T is a tree whose vertices we will call nodes and $X = \{X_i : i \in V(T)\}$ is a collection of subsets of V(G) (called bags) such that

② for each arc vw ∈ A(G), there is an i ∈ V(T) such that $v, w ∈ X_i$, and

of for each v ∈ V(G) the set of nodes {i : v ∈ X_i} forms a subtree of T.

The width of a tree decomposition $({X_i : i \in V(T)}, T)$ equals $\max_{i \in V(T)} \{|X_i| - 1\}$. The treewidth tw(*G*) of *G* is the minimum width over all tree decompositions of *G*.

Parameterized Complexity Result-1

Fact (well-known)

For any digraph D, we have $\alpha(D) + \beta(D) = n$, where $\beta(D)$ is the minimum size of a vertex cover of D.

Fact (mentioned earlier)

For a digraph D, one can check, in polynomial time, whether $\ell_{\min}(D) \leq \alpha(D)$.

Parameterized Complexity Result-2

Fact (simple tree decomposition)

If $\beta(D) \leq k$, then tw $(D) \leq k$.

Proof: Let *C* be a min size vertex cover of *D*. The bags are $X_x = C$ and $\{X_y = C + y : y \in V(D) - C\}$. The tree *T* is a star with center *x* and its other vertices are $y \in V(D) - C$.

- ② for each arc $vw \in A(D)$, there is a $z \in V(T)$ such that $v, w \in X_z$, and
- of for each v ∈ V(D) the set of nodes {z : v ∈ X_z} forms a subtree of T.

Parameterized Complexity Result-3

Fact (dynamic programming)

If $tw(D) \le k$, then we can check whether $\ell_{min}(D) \le n - k$ in FPT time.

It follows from the four facts that

Theorem

The problem of checking $\ell_{\min}(D) \leq n - k$ is FPT.

In fact, there is an $O(2^{k \log k} + n^3)$ -algorithm.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

2 Minimum Leaf Out-branchings

3 Maximum Leaf Out-branchings and Out-trees

Acyclic Digraphs

Fact (Alon et al. 2008)

Finding a max leaf out-branching is NP-hard even for acyclic digraphs.

Transformation to the Vertex Cover problem.

Out-Trees vs Out-Branchings-1

- $\ell_{\max}^t(D)$ max no. leaves in an out-tree
- $\ell_{\max}(D)$ max no. leaves in an out-branching
- Family \mathcal{L} : $\ell_{\max}(D) = \ell_{\max}^t(D)$ or 0
- *L* includes strong digraphs, acyclic digraphs, semicomplete multipartite digraphs, quasi-transitive digraphs, etc.

Out-Trees vs Out-Branchings-2

There are many digraphs outside \mathcal{L} : $\ell_{\max}(D) = 1$, $\ell_{\max}^t(D) = n - 2$. $D \notin \mathcal{L}$.

Parameterized MaxLeafOT (M. Fellows)

Problem (M. Fellows)

Is it FPT to check whether there is an out-tree with at least k leaves?

Theorem (Alon et al. 2007)

Let $D \in \mathcal{L}$. Then either $\ell_{\max}(D) \ge k$ or D is of pathwidth $\le 2k^2$.

Fact (Alon et al. 2007)

Let R_v be the set of vertices reachable from v. Then $D[R_v] \in \mathcal{L}$. Also, $\ell_{\max}^t(D) = \max\{\ell_{\max}(D[R_v]) : v \in V(D)\}.$

Parameterized MaxLeafOT (cont'd)

Theorem (Alon, Fomin, G., Krivelevich, Saurabh, 2007)

The problem is FPT.

1-Opt OB [Alon et al. 2007]

Parameterized MaxLeafOB (M. Fellows)

Problem (M. Fellows)

Is it FPT to check whether there is an out-branching with at least k leaves?

Theorem (Bonsma and Dorn, 2007)

The problem is FPT.

Similar to Alon et al. but:

- Delete useless arcs from D
- Using an 1-Opt out-branching and some of its backward arcs, try to construct an out-branching with at least k leaves. If no success, then pathwidth(D) ≤ 6k³.

Open Problems

- All FPT algorithms mentioned are of complexity $O(2^{k \log k} n^{O(1)})$.
- Find algorithms of complexity $O(2^k n^{O(1)})$ if possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Discussion

- Questions?
- Suggestions?
- Comments?