
An algorithm for finding input-output constrained
convex sets in an acyclic digraph

G. Gutin, A. Johnstone, J. Reddington, E. Scott, and A. Yeo

Department of Computer Science, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK

Abstract. A set X of vertices of an acyclic graph is convex if any vertex on a
directed path between elements of X is itself in X. We construct an algorithm for
generating all input-output constrained convex (IOCC) sets in an acyclic digraph,
which uses several novel ideas. We show that our algorithm is more efficient than
algorithms described in the literature in both the worst case and computational
experiments. IOCC sets of acyclic digraphs are of interest in the area of modern
embedded processor technology.

1 Introduction

In this paper we consider an algorithm for generating all input-output constrained
convex sets in an acyclic digraph N . There is an immediate application for this
algorithm in the field of embedded systems design. One of the major design
choices for any new processor is the selection of the machine instruction set.
In an embedded system, the processor will only execute a single fixed program
during its lifetime, and significant efficiency gains can be made by choosing the
machine instruction set, and associated hardware, to support the program that
will be executed.

In particular there exist extensible general purpose processors such as the
ARM OptimoDE, the MIPS Pro Series and the Tensilica Xtensa that can be
customized for specific applications by the addition of custom-designed machine
instructions and supporting hardware. The approach is to choose a set of ap-
plication specific machine instructions by examination of the target program;
candidate instructions are likely to involve the combination of several basic com-
putations. For example, a program solving simultaneous linear equations may
find it useful to have a single instruction to perform matrix inversion on a set of
values held in registers.

Candidate instruction identification is carried out on data dependency graphs
(DDGs), which are obtained from the application program by first splitting it
into basic blocks, regions of sequential computation with no control transfer into
their bodies, and then creating vertices for each instruction. There is an arc to
each vertex u from those vertices whose instructions compute input operands
of u. The resulting DDGs are acyclic and any convex subset of vertices is a
candidate for a custom instruction which could be implemented in hardware. (A

vertex set X is convex if it has the property that any vertex which lies on a
path between vertices in X is itself in X, and convexity ensures that all of the
inputs for the proposed instruction are available at the start of the instruction
execution.)

We have given [4] an algorithm which efficiently finds all the connected con-
vex vertex sets of an acyclic digraph N . However, in practice a given hardware
application will have specific, and usually small, input and output constraints.
This significantly reduces the size of the solution space and thus presents an
opportunity for a more efficient enumeration algorithm. Furthermore, certain
instructions, such as writes to main memory, cannot be combined into a cus-
tom instruction, thus certain vertices in the acyclic digraph can be designated
as forbidden from the point of view of inclusion in a candidate set. Thus we are
interested in finding all convex sets which have specified bounds, nin and nout, on
the numbers of input and output vertices and which do not contain any vertices
from a specified forbidden set F . For a convex set S, a vertex i ∈ V (N) − S
(o ∈ S) is called an input vertex (output vertex) if there is an arc from i to a
vertex in S (there is an arc from o to a vertex not in S).

Bonzini and Pozzi [1] and Chen, Maskell and Sun [2] proved that with the
two constraints above there are only polynomial number, O(nnin+nout), of valid
convex sets in an acyclic digraph N with n vertices provided nin and nout are
constants (as they are in practice). The algorithm given in [1], the BP algorithm,
has running time O(nnin+nout+1). For an acyclic digraph N with unique source
s (which is a vertex of in-degree zero) and a vertex set Q, a vertex set C is a
generalized dominator of Q if each path from s to Q passes through a vertex in
C, and for each vertex c ∈ C there is a path from s to Q which contains only
c and no other members of C. It was observed in [1] that if C is a generalized
dominator of B in N then there is a convex set S in N with the set of input
vertices C and the set of output vertices containing B. However, the converse it
not true and, as a result, the BP algorithm does not generate all valid convex
sets (in our experiments up to 25% of all valid convex sets were not generated
by the BP algorithm); for a more detailed discussion, see [6].

Moreover, the BP algorithm is efficient only when the number c(N) of valid
convex sets in N is close to Θ(nnin+nout). In practice many acyclic digraphs N
have significantly fewer valid convex sets. In such cases our valid convex set gener-
ation algorithm A described below, which is of time complexity O(m ·n2

in(c(N)+
nnout) + m), is significantly faster (m is the number of arcs in N) than the BP
algorithm. More importantly, A generates all valid convex sets.

In computational experiments, we have compared A with the state-of-the-art
algorithm of Chen, Maskell and Sun [2] (CMS algorithm) and the well-known al-
gorithm of Atasu, Pozzi and Ienne [5] (API algorithm). Our experiments clearly
demonstrate that A is significantly faster than both the CMS and API algo-
rithms.

2

For more information on modern embedded processors technology and convex
set generating algorithms, see, e.g., [1–5].

In what follows, N denotes the acyclic digraph under consideration and F0

is the initial set of forbidden vertices. By adding extra vertices to N and F0 if
necessary, without loss of generality we shall assume that N has a unique vertex
s (source) with in-degree zero and a unique vertex t (sink) with out-degree zero.
We assume that s, t ∈ F0. Thus, every vertex lies on a directed path between two
elements of F0.

For a fixed pair nin, nout of positive integers and a set F of forbidden vertices,
we say that a convex set S is valid if S ∩F = ∅ and the numbers of its input and
output vertices are at most nin and nout, respectively. For vertex sets Y, Z, an arc
yz with y ∈ Y and z ∈ Z is called an (Y,Z)-arc and a path (walk) starting in a
vertex of Y and terminating in a vertex of Z is called a (Y, Z)-path ((Y,Z)-walk).
In this paper, all walks (and, thus, paths and cycles) are directed.

2 Preliminary Results

Let O be an arbitrary set of vertices such that |O| ≤ nout and the following holds:
for every vertex o ∈ O there is an (o, F)-path in N − (O − {o}). The condition
guarantees that there is no convex set containing O with the output set O′ ⊂ O.

Definition 1. For a set Y of vertices in a digraph D, the convex closure Y cl
D

(or just Y cl if D is clear from the context) is defined as Y cl
D = {u | ∃(u, Y) −

path & (Y, u)− path}. That is, Y cl
D contains all vertices with a path in D into Y

and a path in D from Y . In particular Y ⊆ Y cl.

Let X and F be arbitrary sets of vertices in N , such that Ocl
N ⊆ X, F0 ⊆ F

and X ∩ F = ∅. We will give a recursive algorithm that finds all convex sets S
with O as the output vertices, with at most nin input vertices and with X ⊆
S ⊆ V (N)−F . However, before doing this we need the following definitions and
lemmas.

Definition 2. Given the above definitions, let N∗ be obtained from N by deleting
all arcs out of the vertices in O. Let D be obtained from N∗ by coloring every
arc xy ∈ A(N∗) red and adding the blue-colored arc yx.

Given a multiset B of arcs in D, let DB denote the directed multigraph with
V (DB) = V (D) and A(DB) = B. Note that B may contain several copies of the
same arc in D and DB may therefore contain parallel arcs.

Definition 3. A multiset W of arcs in D is (D;F,X)-feasible if the following
conditions hold.

(i) d+
DW

(f) ≥ d−DW (f) for all f ∈ F ;
3

(ii) d−DW
(x) ≥ d+

DW
(x) for all x ∈ X;

(iii) d−DW
(y) = d+

DW
(y) for all y ∈ V (DW)− F −X;

(iv) No distinct red arcs in DW have the same initial vertex;
(v) There are no 2-cycles in DW .

Define R(W) as follows.

R(W) =
∑
f∈F

(d+
DW

(f)− d−DW (f)) =
∑
x∈X

(d−DW
(x)− d+

DW
(x))

Definition 4. Let W be a (D;F,X)-feasible multiset of arcs in D and let W =
w1w2 . . . wk be a walk in D. Let R denote all vertices in D with a red arc out of
them in W and let RED(D) denote all red arcs in D. A vertex wi ∈ V (W) is
said to be either (W,W)-special, (W,W)-normal or (W,W)-forbidden depending
on the following.

(a) wi is (W,W)-special if and only if 1 < i < k, wiwi−1 ∈ W ∩ RED(D) and
wiwi+1 ∈ RED(D).

(b) wi is (W,W)-normal if and only if wi is not (W,W)-special and the follow-
ing holds: i = k or wiwi+1 6∈ RED(D) or wi+1wi ∈ W or wi 6∈ R.

(c) wi is (W,W)-forbidden if it is not (W,W)-special or (W,W)-normal.
In other words, wi is (W,W)-forbidden if and only if i < k and wiwi−1 6∈
W ∩ RED(D) (or i = 1) and wiwi+1 ∈ RED(D) and wi+1wi 6∈ W and
wi ∈ R.

We now define a (D;W;F,X)-feasible walk, W , in D as any (X,F)-walk
where for every vertex x ∈ V (D), x appears at most once on W as a (W,W)-special
vertex, it appears at most once on W as a (W,W)-normal vertex and it does not
appear at all as a (W,W)-forbidden vertex.

Lemma 1. Let W be a (D;F,X)-feasible multiset of arcs in D and let W =
w1w2 . . . wk be an (X,F)-walk in D. If no vertex on W is (W,W)-forbidden
then there exists a (D;W;F,X)-feasible walk, W ′, in D from w1 to wk.

Proof: Assume without loss of generality that W is the shortest walk from w1

to wk in D without any (W,W)-forbidden vertices. For the sake of contradiction
assume that W is not a (D;W;F,X)-feasible walk, which implies that some
vertex x ∈ V (D) appears on W at least twice as a (W,W)-special vertex or at
least twice as a (W,W)-normal vertex.

First assume that x = wi = wj and 1 < i < j < k and both wi and wj are
(W,W)-special. This means that w1w2 . . . wiwj+1wj+2 . . . wk is a walk from w1

to wk containing no (W,W)-forbidden vertices (as wi is still (W,W)-special and
no other vertex changes status). This contradicts the minimality of W .

So now assume that x = wi = wj and 1 ≤ i < j ≤ k and both wi and
wj are (W,W)-normal. Again we note that W ′ = w1w2 . . . wiwj+1wj+2 . . . wk

4

is a walk from w1 to wk containing no (W,W)-forbidden vertices (if j = k,
then W ′ = w1w2 . . . wi). This again contradicts the minimality of W . These
contradictions imply that W is a (D;W;F,X)-feasible walk. ut

Corollary 1. Let W be a (D;F,X)-feasible multiset of arcs in D. If W =
w1w2 . . . wk and W ′ = wkwk+1 . . . wl are (D;W;F,X)-feasible walks in D, then
there exists a (D;W;F,X)-feasible walk from w1 to wl in D.

Proof: Let W ∗ = w1w2 . . . wkwk+1 . . . wl. As wk is not a (W,W ∗)-forbidden
vertex on W ∗ (as otherwise wk would be (W,W ′)-forbidden on W ′) we note that
there are no (W,W ∗)-forbidden vertices on W ∗. We are now done by Lemma
1. ut

Recall that ifW is a multiset of arcs and W is a walk, then if some arc appears
i times in W and j times in A(W) then it appears i+ j times in A(W) ∪W.

Lemma 2. Let W be a (D;F,X)-feasible multiset of arcs in D and let W be
a (D;W;F,X)-feasible walk in D. Let W ′ be obtained from A(W) ∪ W after
deleting pairs xy, yx of arcs until there is no 2-cycles anymore. Then W ′ is a
(D;F,X)-feasible multiset of arcs in D with R(W ′) = R(W) + 1.

Proof: Let W ′ be defined as in the statement of the lemma and let W ′′ =
A(W) ∪ W. As W is a walk from F to X we note that (i), (ii) and (iii) in
Definition 3 hold for W ′′ and R(W ′′) = R(W) + 1. However this implies that (i),
(ii) and (iii) in Definition 3 also hold for W ′ and R(W ′) = R(W) + 1, as deleting
2-cycles have no effect on d−(y)− d+(y) for any y ∈ V (D). By the definition of
a (D;W;F,X)-feasible walk in D we note that (iv) in Definition 3 holds for W ′
(as the only way a vertex can increase the number of red arcs leaving it is if x is
a (W,W)-normal vertex in W and x did not have any red arcs leaving it in W).
By the construction of W ′ we also note that (v) in Definition 3 holds for W ′. ut

We say that a set S = {Q1, Q2, . . . , Qp} of paths and cycles in a directed
multigraph M is a decomposition of M if each arc of M belongs to exactly one
element of S.

Lemma 3. Let W be a (D;F,X)-feasible multiset of arcs in D. Then DW can
be decomposed into W1,W2, . . . ,WR(W), C1, C2, . . . , Ck (for some k ≥ 0), such
that Wi is a path from F to X in DW for all i = 1, 2, . . . , R(W) and Cj is a cycle
in DW for all j = 1, 2, . . . , k.

Proof: If R(W) = 0, DW is eulerian and it is well-known that DW can be
decomposed into a number of cycles. So assume that R(W) > 0. We will use
induction on |A(DW)|. Let u1 ∈ F be any vertex with d+

DW
(u1) > d−DW

(u1).
Starting at u1 and moving to a successor vertex until we reach an already visited
vertex, in which case we obtain a cycle, or we reach a vertex in X, in which case
we obtain an (F,X)-path in DW . Remove the arcs of this cycle or path from

5

W and use induction if R(W) > 0 or the above case when R(W) = 0. It is not
difficult to see that this results in the desired decomposition, with exactly R(W)
(F,X)-paths in DW . ut

Lemma 4. LetW be a (D;F,X)-feasible multiset of arcs in D, such that R(W) ≤
nin. Assume that Ocl

N ⊆ X and that for every vertex o ∈ O there is an (o, F)-path
in N − (O − {o}). Let Q be a set of vertices such that X ⊆ Q ⊆ V (D) − F . If
there is no (D;W;V (D)−Q,Q)-feasible walk in D then Q is a convex set in N
satisfying the input and output constraints. Furthermore, O is the set of output
vertices of Q.

Proof: Let Q be defined as stated in the lemma. Assume that Q is not
convex, implying that there is a w 6∈ Q such that there exists a (w,Q)-path, P ,
in N and a (Q,w)-path, P ′, in N . Let P ′′ be the reverse of P ′ and note that if
no vertex of P ′ belongs to O, then P ′′ is a blue path in D from w ∈ V (D) −Q
to Q. As there is no (D;W;V (D)−Q,Q)-feasible walk in D we must have that
some vertex on P ′ does indeed belong to O. Let o1 ∈ V (P ′) ∩O be arbitrary.

Let p be the terminal vertex of P and note that p ∈ Q. As there is a path,
P ∗, in N from p to F (recall that there exist (u, F)-paths for all u ∈ V (N)), we
get a blue path from F to Q unless some vertex on the P ∗ belongs to O. Let this
vertex be o2 ∈ V (P ∗) ∩ O. By the above construction, we have an (o1, w)-path
in N and an (w, o2)-walk in N (by merging P and part of P ∗). However this
implies that w ∈ Ocl

N ⊆ X ⊆ Q, a contradiction.

We will now prove that the input and output constraints are satisfied. Assume
that there is some arc, xy, out of Q in N where x 6∈ O. Thus, yx is a blue arc in
D and yx is a (D;W;V (D) − Q,Q)-feasible walk in D, a contradiction. So the
only arcs out of Q in N come from O. Let o ∈ O be arbitrary and recall that
there is an (o, F)-path in N − (O−{o}), which implies that some vertex on this
path is an output vertex for Q. Therefore, this vertex must be o, so we have now
shown that O is exactly the output vertices for Q.

Assume that the input constraint is not satisfied and that {x1, x2, . . . , xr} is a
set of vertices in V (N)−Q with arcs into Q in N and r > nin. Let {y1, y2, . . . , yr}
be defined such that xiyi is an (V (D) − Q,Q)-arc in N for all i ∈ {1, 2, . . . , r}.
By Lemma 3 let W1,W2, . . . ,WR(W), C1, C2, . . . , Ck be a decomposition of W,
such that Wi is a path from F to X in DW for all i = 1, 2, . . . , R(W) and Cj is
a cycle in DW for all j = 1, 2, . . . , k.

Assume that there is some xi ∈ {x1, x2, . . . , xr} such that there is no red
(xi, Q)-arc in W. If there is no red arc out of xi in W at all, then the arc xiyi

contradicts the fact that there is no (D;W;V (D)−Q,Q)-feasible walk in D. So
let xiu be a red arc inW where u 6∈ Q. However the path uxiyi again contradicts
the fact that there is no (D;W;V (D) − Q,Q)-feasible walk in D. So for every
vertex in {x1, x2, . . . , xr} there exists a red (xi, Q)-arc in W. Without loss of
generality we may assume that {y1, y2, . . . , yr} was chosen such that xiyi is red

6

and xiyi ∈ W for all i = 1, 2, . . . , k. If for some i ∈ {1, 2, . . . , k} the arc xiyi

belongs to a cycle Ca ∈ {C1, C2, . . . , Ck}, then there is a (Q,V (D) − Q)-arc,
uv, in Ca. However, the path vu is a (D;W;V (D)−Q,Q)-feasible walk in D, a
contradiction.

As r > nin ≥ R(W) there must be some path in {W1,W2, . . . ,WR(W)} that
contains at least two arcs from {x1y1, x2y2, . . . , xryr}. Without loss of generality
assume that x1y1 is the first such arc on W1 and x2y2 is the second such arc
on W1. This implies that there is a walk from y1 ∈ Q to x2 6∈ Q, containing a
(Q,V (D) − Q)-arc, uv. However the path vu is a (D;W;V (D) − Q,Q)-feasible
walk in D, a contradiction. This contradiction against r > nin implies that the
input constraint is satisfied. ut

Lemma 5. LetW be a (D;F,X)-feasible multiset of arcs in D, such that R(W) >
nin. Then there is no convex set of vertices, Q, in N , such that X ⊆ Q ⊆
V (D)− F and Q satisfies the input constraint and has O as its output vertices.

Proof: For the sake of contradiction assume that there exists a convex set
of vertices, Q, in N , such that X ⊆ Q ⊆ V (D) − F and Q satisfies the input
constraint and has O as its output vertices. Let I = {i1, i2, . . . , ir} be the input
vertices for Q and r ≤ nin. By Lemma 3 let W1,W2, . . . ,WR(W), C1, C2, . . . , Ck

be a decomposition of W, such that Wi is a path from F to X in DW for all i =
1, 2, . . . , R(W) and Cj is a cycle in DW for all j = 1, 2, . . . , k. As r ≤ nin < R(W)
there must be some path Wi, without loss of generality say W1, which does not
contain a red arc out of any vertex in I (as each vertex in I has at most one red
arc out of it in W). Let uv be a (V (D)−Q,Q)-arc on W1. If uv is a red arc then
u 6∈ I, contradicting the fact that I is the set of input vertices. So uv is a blue
(V (D)−Q,Q)-arc in D. Hence u ∈ N∗ and v ∈ O contrary to the definition of
N∗. ut

Lemma 6. LetW be a (D;F,X)-feasible multiset of arcs in D. In time O(|V (N)|+
|A(N)|) we can find a (D;W;F,X)-feasible walk in D if it exists or determine
that it does not exist. If it does not exist we can also determine the following two
sets:

S = {u | there is a (D;W;F, {u})-feasible walk in D}
T = {v | there is a (D;W; {v}, X)-feasible walk in D}

Proof: We will define a digraph D′ as follows. Let R contain all vertices in
D which have a red arc out of them in W. Let the vertex set of D′ be V (D′) =
V (D)∪{r′ | r ∈ R} (that is we duplicate all vertices inR). For all arcs uv ∈ A(D)
add the following arcs to D′.

(R1) If uv is red and vu 6∈ W and u ∈ R, then add u′v to D′.
(R2) If uv is red and vu ∈ W or u 6∈ R, then add uv to D′.
(B1) If uv is blue and vu ∈ W, then add uv and uv′ to D′.

7

(B2) If uv is blue and vu 6∈ W, then add uv to D′.

Now use any algorithm such as depth (or breadth) first search to find an
(F,X)-path in D′ if it exists (we start and end in vertices of the form u and
not u′). First assume that such a path P ′ = x1x2 . . . xk exists. Replacing vertices
of the form u′ with u, we obtain a walk W = w1w2 . . . wk in D, which we will
show is a (D;W;F,X)-feasible walk. If xi = w′i then, since there are no arcs of
the form y′z′ in D′, we must have xi−1 = wi−1 and xi+1 = wi+1. Thus, it is not
difficult to see that wi a (W,W)-special vertex in W . Whereas if wi = xi then
either i = k or R2, B1 or B2 holds for wiwi+1 and so wi is (W,W)-normal in
W . Thus, since P ′ is a path, W is indeed a (D;W;F,X)-feasible walk in D.

Now assume that some (D;W;F,X)-feasible walk, W , in D exists. Let W =
w1w2w3 · · ·wl. If wi is (W,W)-special in W then change it to w′i in D′. After
doing this for all special vertices we note that we get a path from F to X in
D′. So we have now shown that there exists a (D;W;F,X)-feasible walk in D
if and only if there exists an (F,X)-path in D′. This gives us the correct time
complexity as |V (D′)| ≤ 2|V (D)| and |A(D′)| ≤ 2|A(D)|.

If there is no (F,X)-path in D′ then it is not difficult to find the set of vertices
Z ⊆ V (D′), such that there is an (F, z)-path in D′ if and only if z ∈ Z. Now
let S = {u ∈ V (D) | u ∈ Z} (note that {u ∈ V (D) | u ∈ Z or u′ ∈ Z} is an
equivalent definition of S). It is not difficult to see that S is the set of vertices
in V (D) for which there exists a (D;W;F, {s})-feasible walk in D. Analogously
we can find T . ut

3 The Algorithm

The algorithm A(N,F) described below makes a call to B(∅, F,X) for all possible
output sets O (see A.2) where X = Ocl

N . The procedure B(W, F,X) will then find
all convex sets, Q, satisfying the input constraint and having O as the output
vertices and satisfying X ⊆ Q ⊆ V (N)− F .

Algorithm A(N, F)
A.1 Find an acyclic order u1, u2, . . . , un of the vertices in N (that

is, if uiuj ∈ A(N) then i < j).
A.2 For all sets O ⊆ V (N), where for every vertex o ∈ O there is

an (o, F)-path in N−(O−{o}) and |O| ≤ nout do the following.
A.2.1 Find N∗ and D as in Definition 2.
A.2.2 Let X = Ocl

N (see Definition 1).
A.2.3 Make a call to B(∅, F, X) (see below).

8

Algorithm B(W, F,X)
B.1 If R(W) > nin or if X ∩F 6= ∅, then there is no solution so return.
B.2 Use Lemma 6 to determine if there is a (D;W;F,X)-feasible walk

in D. If there is and R(W) ≤ nin then add it to W using the
approach in Lemma 2 and go to B.1. Otherwise determine S and T
as in Lemma 6.

B.3 If V (D) 6= S ∪ T then let u ∈ V (D) − S − T be arbitrary. Now
make recursive calls B(W, F, (X∪{u})cl

N) and B(W, F ∪{u}, X) and
return.

B.4 If R(W) = nin, then by B.3 we have V (D) = S ∪ T . In this case
save T as a solution and return.

B.5 If R(W) < nin then consider the following possibilities. Note that
V (D) = S ∪ T .

B.5.1 If X 6= T then let ua ∈ T − X be chosen such that a
is minimum. Make the recursive calls B(W, F, (X ∪ {ua})cl

N) and
B(W, F ∪ {ua}, X) and return.

B.5.2 If X = T , then save T as a solution. Let i1, i2, . . . , ik be the
vertices in V (D)− T with red arcs into T in D. Make the following
recursive calls.
B(W, F, (X ∪ {i1})cl

N),
B(W, F ∪ {i1}, (X ∪ {i2})cl

N),
B(W, F ∪ {i1, i2}, (X ∪ {i3})cl

N),....,
B(W, F ∪ {i1, i2, . . . , ik−1}, (X ∪ {ik})cl

N).

Lemma 7. The sets saved by A(N,F) are precisely the valid convex sets of N
and furthermore no such set is saved more than once.

Proof: We only save solutions in B.4 or B.5.2. In both cases, using Corollary 1
and Lemma 4, it can be seen that the saved set is a valid convex set.

Now let Q′ be a valid convex set. Let O′ be the output vertices of Q′. Assume
that for some o′ ∈ O′ there is no (o′, F)-path in N − (O′ − {o′}). Let y ∈
N+

N (o′) be arbitrary and assume that y 6∈ Q′. However there is no (y, F)-path
in N − (O′ − {o′}) but there is a (y, F)-path in N . This implies that there is a
(y,O′−{o′})-path inN . Therefore y ∈ Q′ (asQ′ is convex), a contradiction. So for
every o′ ∈ O′ there is a (o′, F)-path in N−(O′−{o′}). Note that X = (O′)cl

N ⊆ Q′,
as Q′ is convex and we will make a call to B(∅, F,X) in A.2.3 of A(N,F).

If we return in B.1, then we did not have X ⊆ Q′ ⊆ V (D)−F , by Lemma 5.
If we make recursive calls in B.3, then the desired recursive call is B(W, F, (X ∪
{u})cl

N) if u ∈ Q′ (note that if X ∪{u} ⊆ Q′ and Q′ is convex, then (X ∪{u})cl
N ⊆

Q′) and B(W, F ∪{u}, X) if u 6∈ Q′. Now assume that T is saved in B.4. We note
that S ∩ V (Q′) = ∅ by Lemma 5 (as otherwise we obtain a (D;F,Q′)-feasible
multiset, W ′, with R(W ′) > nin, by adding a (D;W;F, {s})-feasible walk to W,

9

where s ∈ S ∩ V (Q′)). Analogously T − V (Q′) = ∅ by Lemma 5 (as again we
obtain a (D;V (D)−Q′, Q′)-feasible multiset, W ′, with R(W ′) > nin, by adding
a (D;W; {t}, X)-feasible walk to W, where t ∈ T − V (Q′)). Therefore Q′ = T
and Q′ is saved.

If we make recursive calls in B.5.1, then the desired call is B(W, F, (X ∪
{ua})cl

N) if ua ∈ Q′ and B(W, F ∪ {ua}, X) if ua 6∈ Q′. If we perform B.5.2, then
we return Q′ if {i1, i2, . . . , ik} ∩ Q′ = ∅. If {i1, i2, . . . , ik} ∩ Q′ 6= ∅ then let j be
the minimum index such that ij ∈ {i1, i2, . . . , ik} ∩Q′ and note that the desired
recursive call is B(W, F ∪ {i1, i2, . . . , ij−1}, (X ∪ {ij})cl

N).
We have shown that Q′ will be saved and we will now prove that Q′ cannot

be saved twice. As we only consider sets O with the property that for every
vertex o ∈ O there is an (o, F)-path in N − (O − {o}), we note that Q′ cannot
be saved in two distinct calls in A.2.3 (only when O is exactly the output set of
Q′). Furthermore as all recursive calls either add a vertex to the forbidden set or
that same vertex to X the same set cannot be saved in two different recursive
calls (in B.5.2. we noted above exactly in which recursive call Q′ would be saved
if {i1, i2, . . . , ik} ∩ Q′ 6= ∅ and otherwise it would not be saved in any recursive
call, but only in the current call). ut

We omit proof of the following due to the limited space.

Lemma 8. If N is a connected acyclic digraph of order n, size m and containing
c(N) valid convex sets, then A(N,F) has time complexity O(m · N2

in(c(N) +
nNout) +m).

The last two lemmas imply the following:

Theorem 1. Let N be an acyclic digraph with n vertices and m arcs. The algo-
rithm A(N,F) finds all valid convex sets in N in time O(m ·n2

in(c(N) +nnout) +
m), where c(N) is the number of valid convex sets.

4 Experiments

We have implemented A and tested it against the state-of-the-art algorithm of
Chen, Maskell and Sun [2] (the CMS algorithm) and the well-known algorithm
of Atasu, Pozzi and Ienne [5] (the API algorithm) using both synthetic examples
and DDGs generated from real world applications. The source of the CMS imple-
mentation was kindly provided by its authors. All algorithms were implemented
in C++ and experimental data were produced using Dual Core AMD Opteron
265 1.8GHz processors with 4Gbyte of RAM, running 64-bit SUSE Linux 10.2.

Figure 1 shows the performance of these algorithms on synthetic tree and
acyclic lattice digraphs with nin = 3 and nout = 2. In both cases, algorithm A
consistently outperforms the current state of the art with the performance of
CMS only slightly superior to the API algorithm on tree-like graphs.

10

Table 1 shows results from five real world C++ programs in the MiBench
benchmark suite [3]. We selected a large (150–1800 lines of intermediate code)
basic block from within a critical loop of each program: typically the compiler will
have unrolled this block to some degree. The resulting DDGs were augmented
with forbidden vertices, which represent values external to the basic block to give
the following examples: the BlowFish encryption algorithm (bf) with 467 vertices
of which 134 are forbidden; JPEG image compression (cjpeg) with 152 vertices,
34 forbidden; AES encryption (rijndael) with 1237 vertices, 391 forbidden; secure
message digest hashing (sha) with 1811 vertices, 351 forbidden; and MD5 with
1170 vertices, 353 forbidden.

The API algorithm is not competitive with either A or CMS for these graphs,
supporting the conclusions in [2]. Although the CMS algorithm performs better
on some small to medium examples, on large examples the effect of the better
asymptotic complexity is clear — on the rijindel, sha and md5 benchmarks, A
clearly has a performance advantage. We also note that in every case, the number
of recursions made by A was significantly lower.

References

1. P. Bonzini and L. Pozzi, Polynomial-time subgraph enumeration for automated instruction
set extension. DATE 2007, 1331–1336.

2. X. Chen, D.L. Maskell, and Y. Sun, Fast identification of custom instructions for extensible
processors. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26 (2007), 359–368.

3. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
MiBench: A free, commercially representative embedded benchmark suite, In Proceedings
of the WWC-4, 2001 IEEE International Workshop on Workload Characterization, (2001),
3–14.

4. G. Gutin, A. Johnstone, J. Reddington, E. Scott, A. Soleimanfallah and A. Yeo, An al-
gorithm for finding connected convex subgraphs of an acyclic digraph. In ‘Algorithms and
Complexity in Durham, 2007’, College Publications, 2008.

5. L. Pozzi, K. Atasu and P Ienne, Exact and approximate algorithms for the extension
of embedded processor instruction sets. IEEE Trans. on CAD of Integrated Circuits and
Systems, 25 (2006), 1209–1229.

6. J. Reddington, Improvements to instruction identification for custom instruction set design.
PhD Thesis, Royal Holloway, University of London, 2008.

11

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

Vertices in lattice

T
im

e
(s

ec
on

ds
)

API

A

CMS

300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

220

Vertices in tree

T
im

e
(s

ec
on

ds
)

CMS

API

A

Fig. 1. Performance on lattice and tree synthetic digraphs under I/O constraints

Input nin nout c(N) Time Time Time Calls Calls Calls
sets CMS API06 A CMS API06 A

bf

2 1 482 0.04 2.78 0.01 24,009 796,775 631
4 1 1,920 0.07 15.71 0.04 34,084 4,467,923 3,507
6 1 7,669 0.11 34.61 0.17 55,374 9,816,778 15,005
3 2 7,831 0.35 91.51 0.15 176,631 25,169,197 12,302
5 2 40,714 0.79 352.95 0.92 383,570 101,091,122 75,376
4 3 105,599 2.31 DNF 2.81 1,122,520 DNF 189,037
6 3 570,197 7.02 DNF 14.57 3,342,391 DNF 1,085,505
8 3 2,155,103 17.37 DNF 71.95 8,329,766 DNF 4,253,251

cjpeg

2 1 406 0.02 0.10 0.00 21,907 61,832 694
4 1 544 0.02 0.10 0.00 22,003 70,216 970
6 1 550 0.01 0.11 0.00 22,003 70,216 982
3 2 41,363 0.61 13.86 0.28 677,813 9,880,064 76,889
5 2 113,611 0.82 19.30 1.02 875,155 13,460,590 220,929
7 2 140,335 0.94 20.15 1.53 896,688 13,721,462 274,377
4 3 2,201,568 20.50 DNF 18.78 18,454,621 DNF 4,236,388

rijndael

2 1 1241 2.79 51.43 0.05 697778 5473096 1636
4 1 4,787 3.51 253.30 0.17 786,732 27,471,175 8,728
6 1 15,236 4.09 DNF 0.59 878,083 DNF 29,626
3 2 75,241 83.96 DNF 3.98 11,575,641 DNF 145,477
5 2 648,748 201.41 DNF 23.88 31,777,459 DNF 1,207,733

sha

2 1 1,546 3.76 DNF 0.13 300,752 DNF 1,632
4 1 4,372 4.23 DNF 0.24 345,994 DNF 7,284
6 1 10,152 5.30 DNF 0.49 432,350 DNF 18,844
3 2 78,132 85.14 DNF 6.75 6,450,724 DNF 117,159
5 2 293,259 164.97 DNF 15.37 12,652,418 DNF 494,521

md5

2 1 893 1.54 DNF 0.04 329,373 DNF 969
4 1 2,304 1.66 DNF 0.08 342,133 DNF 3,791
6 1 3,546 1.70 DNF 0.12 349,486 DNF 6,275
3 2 54,476 51.45 DNF 3.24 6,109,809 DNF 102,389

Table 1. Comparative performance on real world examples

12

