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Abstract

Given two integers n and k, n > k > 1, a k-hypertournament 7" on n vertices is a
pair (V, A), where V is a set of vertices, |V| =n and A is a set of k-tuples of vertices,
called arcs, so that for any k-subset S of V', A contains exactly one of the k! k-tuples
whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament.
A path is a sequence vya1v2a2vV3...0;_1a;_10; of distinct vertices vy, va, ..., vy and dis-
tinct arcs ag, ..., a;—1 such that v; precedes v;11 in a;, 1 <i <t —1. A cycle can be
defined analogously. A path or cycle containing all vertices of T' (as v;’s) is Hamilto-
nian. 7T is strong if T has a path from z to y for every choice of distinct =,y € V. We
prove that every k-hypertournament on n (> k) vertices has a Hamiltonian path (an
extension of Redei’s theorem on tournaments) and every strong k-hypertournament
with n (> k + 1) vertices has a Hamiltonian cycle (an extension of Camion’s theo-
rem on tournaments). Despite the last result, it is shown that the Hamiltonian cycle
problem remains polynomial time solvable only for £ < 3 and becomes NP-complete
for every fixed integer k > 4.

1 Introduction, terminology and notation

Hypertournaments have been studied by a number of authors (cf. Assous [1], Barbut and
Bialostocki [2, 3], Bialostocki [5], Frankl [6] and Marshall [9, 10]). Reid [12] (Section 8)
describes several results on hypertournaments obtained by the authors above and poses
some interesting problems on the topic. In particular, he raises the problem of extending
the most important results on tournaments to hypertournaments.
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In this paper, we obtain extensions of two of the most basic theorems on tournaments:
every tournament has a Hamiltonian path (Redei’s theorem), and every strong tournament
has a Hamiltonian cycle (Camion’s theorem) [11]. We prove that every k-hypertournament
on n (> k) vertices has a Hamiltonian path and every strong k-hypertournament on
n >k + 2 > 5 vertices contains a Hamiltonian cycle. We also describe an infinite family
of strong k-hypertournaments on k£ + 1 > 4 vertices which have no Hamiltonian cycles.
We consider the complexity of the Hamiltonian cycle problem for k-hypertournaments
and prove that the problem remains polynomial time solvable when k = 3 and becomes
NP-complete for every fixed integer k& > 4.

Given two integers n and k, n > k > 1, a k-hypertournament T on n vertices is a
pair (V, A), where V is a set of vertices, |V| = n and A is a set of k-tuples of vertices,
called arcs, so that for any k-subset S of V, A contains exactly one of the k! k-tuples
whose entries belong to S. That is, 7' may be thought of as arising from an orientation
of the hyperedges of the complete k-uniform hypergraph. Clearly, a 2-hypertournament is
merely a tournament. For an arc a of T, @ denotes the set of vertices contained in a.

Let T = (V, A) denote a k-hypertournament 7' on n vertices. A path in T is a se-
quence v1a1v2a9v3...0¢_1a;—1v; of distinct vertices vy, vs,...,v, t > 1, and distinct arcs
ai,...,a;—1 such that v; precedes v;1q in a;, 1 <7 <t —1. A cyclein T is a sequence
V1a1V2Q20V3...V¢_10¢_1V:a; 01 of distinct vertices vy, v, ..., vy and distinct arcs aq, ..., as, t > 1,
such that v; precedes vi11 in a;, 1 < i <t (a41 = a1). The above definitions of a path
and cycle in a hypertournament are oriented analogs of the corresponding definitions of a
path and cycle in a hypergraph (cf. [4, 10]).

For a path or cycle @, V(Q) and A(Q) denote the set of vertices (v;’s above) and the
set of arcs (a;’s above), respectively. For a pair of vertices v; and v; of a path or cycle @,
Qvi, v;] denotes the subpath of @ from v; to v; (which can be empty). A path or cycle
Q in T is Hamiltonian if V(Q) = V(T). T is Hamiltonian if it has a Hamiltonian cycle.
A path from z to y is an (x,y)-path. T is called strong if T has an (x,y)-path for every
(ordered) pair z,y of distinct vertices in 7.

We also consider paths and cycles in digraphs which will be denoted as sequences of
the corresponding vertices.

For a pair of distinct vertices x and y in T', Ap(x,y) denotes the set of all arcs of T" in
which z precedes y. Clearly, for all distinct z,y € V(T),

A, )| + Ay, )| = (’,’j - j) (1)



2 Hamiltonian paths

Clearly, no k-hypertournament with k > 3 vertices has a Hamiltonian path. However, all
other hypertournaments have Hamiltonian paths:

Theorem 2.1 Fvery k-hypertournament with n (> k) wvertices contains a Hamiltonian
path.

Proof: Let T'= (V, A) be a k-hypertournament 7" on n vertices 1,2,...,n. We consider the
cases k =n — 1 and k < n — 1 separately.

Case 1: k = n — 1. We proceed by induction on k£ > 2. By Redei’s theorem, this
theorem holds for k = 2. Hence, suppose that k& > 3. Assume w.l.o.g. that T contains
the arc a = (23...n). Let b be the arc of T that has the vertices 1,2,...,n — 1. Consider
the k — 1-hypertournament 7" = (V' A’) obtained from T by deleting the arc a, deleting
n from the arcs in A — {a,b}, and finally deleting 1 from b. So, V' = {1,2,....,n — 1},
A = { : ¢ isewithout n, e € A — {a,b}} U{b'}, where O is b without the vertex
1. By the induction hypothesis, 7" has a Hamiltonian path xjajzed}...a, _oxy_1. This
path corresponds to the path Q = xja1x2a9...ap—9xy—1 in T. Clearly, {x1,...., 2,1} =
{1,..,n—1} and A — {ay,...,an—2} consists of the arc a and another arc c.

If 2,1 # 1, then Qan is a Hamiltonian path in 7. Hence from now on assume that
T,_1 = 1. Consider two subcases.

Subcase 1.1: ¢ # b. If the last vertex of ¢ is n, then Qcn is a Hamiltonian path in
T. Otherwise, x; is the last vertex of ¢ for some j < n — 1. If j > 1 we replace a;_1 by
anc in @ in order to obtain a Hamiltonian path in 7". If j = 1, then nc@ is a Hamiltonian
path in T'.

Subcase 1.2: ¢ = b. If ¢ # (xp—12p—2...71) so that x; precedes x;y1, for some i,
1<i<n-—2,inc, then P = Qx1, z;]cQ[it+1,Tn_1] is a path in T. Since a; # b, one can
construct a Hamiltonian path in 7" from P as in Subcase 1.1. If ¢ = (x,—12—2...71), then
Q[z2, xn—1]cz1an is a Hamiltonian path in 7.

Case 2: kK <n — 1. We proceed by induction on n > 4. The case n = 4 (and, hence,
k = 2) follows from Redei’s theorem. Therefore, suppose that n > 5. Consider the new
k-hypertournament 7" obtained from T' by deleting the vertex n along with all arcs in A
containing n. T” has a Hamiltonian path because of either Case 1 if n = k — 2 or the
induction hypothesis, otherwise.

Let P = zia122a9...0y—2Tp—1 be a Hamiltonian path in 7”. If T has an arc a €
Ap(zp—1,n), then Pan is a Hamiltonian path in 7. Suppose that Ap(z,—1,n) = 0.



Then either U?:_fAT(xi,n) = (), or there is an ¢ so that T" has no arc where any z;j,
j > 1 precedes n and T contains an arc b where x; precedes n. In the first case, ncP
is a Hamiltonian path in T, where ¢ is an arc of T' containing both z; and n. In the
second case, Pz, z;|bndP[z;+1,Tp—1] is a Hamiltonian path in 7', where d is an arc of T
containing both x;11 and n and distinct from b.

0.

3 Hamiltonian cycles

Clearly, every Hamiltonian hypertournament is strong. In this section, we prove that every
strong k-hypertournament with n vertices, where 3 < k < n — 2, is Hamiltonian.

However, for every k > 3, there exists a strong k-hypertournament with n = k +
1 vertices which is not Hamiltonian. Indeed, let the n — 1-hypertournament H, have
vertex set {z1,...,x,} and arc set {aj,ag, ...,a,}, where a1 = (x923...2—2XnTn_1), ag =
(x173%4...), a3 = (X12204X5...2,), ag = (T2T3T125T6...Ty ), and

a; = (X1T2...Tj—4Ti_3%;—1Tj—2Ti+1Tiy2...Ty) for 5 < i < n.

The hypertournament H, is strong because of the following paths: w;asx; for all
i< j, 2 ¢ {iaj}a 1032, T201Tj for all j > 2; TjGj+1Tj—105T5—2...Ti410i4+2%; for all
3 S 7 < j S n, where anp+1 = Ay, xjaj+1xj_1...x4a5x3a4x1a3x2 for all 3 S j S n, roa4x1,
and zjaj12j_1...x30477 for all 3 < j < n.

However, H,, is not Hamiltonian. To prove that, assume that H, has a Hamiltonian
cycle C. We will try to construct C starting from the vertex x,. Since a; is the only
arc which has a vertex that succeeds z,, C' has the form z,a1x,_1.... Since a, is the
only arc which has a vertex different from z,, that succeeds x,,_1, C = p01Tn_10nTn_29....
Continuing this process, we obtain that C' = x,a12,_1...z4a573.... The only arc where 3
precedes 1 or x9 is ay. Hence, C = x,a12p_1...T4a5730421.... Now we need to include xo,
a3 and a9 into C. However, this is impossible because only one of the arcs a3, as contains
xTo.

The majority digraph M (H) of a k-hypertournament with n vertices H has the same
vertex set V as H and, for every pair x, y of distinct vertices in V', the arc zy is in M (H) iff
Ap(z,y) > An(y,z) (or, by (1), |Ar(z,y)| > 1(}23)). Obviously, M(H) is a semicomplete
digraph, i.e. every pair of vertices in M (H) is adjacent.

Let C1,Cy,...,Cy be the strong components of M (H) such that there is no arc from
V(Cj) to V(Cy) if 1 <i < j <t (if M(H) is strong, then ¢t = 1). Define the function
en (component number) such that cn(z) = r if x € V(C,). We say that (P,Q) is a



Hamiltonian pair of paths, if P is a (x,y)-path in H and @ is a (y,z)-path in M(H)
such that V(P)UV(Q) =V (H), V(P)NV(Q) = {z,y} and if M(H) is not strong, then
en(y) < en(x).

The main result of this section is the following:

Theorem 3.1 Fvery strong k-hypertournament with n vertices, where 3 < k < n — 2,
contains a Hamiltonian cycle.

Theorem 3.1 follows immediately from Lemma 3.3 (the case k = 3), Lemma 3.4 (the
case k > 4 and n > 7) and Lemma 3.6 (the remaining case k = 4 and n = 6). Proofs of
these lemmas are given in the rest of this section and based on the following:

Lemma 3.2 For every strong k-hypertournament with n vertices H, there exists a Hamil-
tonian pair of paths.

Proof: Suppose first that M(H) is not strong. Let C; (C%, resp.) be the first (ter-
minal, resp.) strong component of M(H). Since H is strong there exists a path P =
1412202 . . . Gm—1Zy, from Cp to C7 in H. Suppose that P is a shortest such path.
Then, z1 € V(C}), xp € V(C1) and {z2,x3,...,2m-1} N (V(C1) UV (Cy)) = 0. Since
M' = M(H) — {xz2,23,...,Zy,_1} is semicomplete and z,, (1) is in the first (terminal)
strong component of M’ there exists a Hamiltonian path in M’ from z,, to z;. Let
Q =viy2...y (xr1 = y; and x,,, = y1), be such a path. Clearly (P, Q) is a Hamiltonian
pair of paths.

Suppose that M (H) is strong. Then, there is a Hamiltonian cycle R = x123 ... 2,21 in
M(H). Clearly P = zjaxg, where a € Ap(z1,x2), and Q = R[za, x;] form a Hamiltonian
pair of paths. 0.

Lemma 3.3 FEvery strong 3-hypertournament with n vertices, where n > 5, contains a
Hamiltonian cycle.

Proof: Let H be a 3-hypertournament with n > 5 vertices and let M be the majority
digraph of H.

By Lemma 3.2, there exists a Hamiltonian pair of paths (P;, Q)), where

P, = x1a12200...0,—12; is a path in H and @ = z;x;41...x5x1 is a path in M.
Observe that if uv is an arc of M, then |Ag(u,v)| > 2. Since |Ag (2, zit1)| > 2, there
is an arc a; € Apg(xi,xi+1) — ai—1. The arc a; & {a1,a2,...,a;—1}, since if a; = a; then
J < i —1 and the arc a; includes the vertices x;, xj;1, ¥; and x;41, which is impossible
as H is a 3-hypertournament. Thus, we can extend P; to P11 = P;a;z;+1. Continuing



this process we obtain a (z1, z,)-path, P, = xia1x2 ... an—_1Ty, which is Hamiltonian, and
|Ag(zn,x1)] > 2.

If Ag(xy,z1) = {an—1,a1}, then there is an arc b € Ag(z1,zy), and a1 = (x,z122) and
an—1 = (Tp_1znx1). We now obtain the Hamiltonian cycle P, [x2, z—1]an—121bxpa120.

If Ag(zp,x1) # {an—1,a1}, then there is an arc b € Ay (zy, 1) —{an—1,a1}. As before
we see that b & {aj,a2,...,a,—1}, and therefore we get the Hamiltonian cycle P,bx.

0.

Lemma 3.4 Fvery strong k-hypertournament with n vertices, where 4 < k <n — 2 and
n > 7, contains a Hamiltonian cycle.

Proof: It is easy to check that, for 4 < k < n—2, (2:3) > 2n —4 if and only if n > 7. Let

H be a k-hypertournament with n vertices, such that 4 < k <n — 2 and (Z:g) > 2n — 4,
and let M = M (H) be the majority digraph of H. Now consider the following two cases.

Case 1: M is not strong. Let Cy (Ct) be the first (terminal) strong component of M.
We first prove that H has a pair of distinct vertices x,y such that

there exists a Hamiltonian (x,y)-path in H and |Ag(y,z)| > n — 1. (2)

By Lemma 3.2, there exists a Hamiltonian pair of paths (P, @), where

P = x1a120a3 . . . Gyp—1Ty, is a path in H, 1 € V(Cy), xp, € V(C1), and Q = y1y2...y;
is a path in M. Recall that y; = 2, and y; = ;.

We may assume w.l.o.g that, for some i > 1, en(y;) < en(y;+1) (the case i = 1 can be
considered analogously). It follows from the definition of M that

|An(yj,yj+1)| >n—2for j=1,2,...,1 -1, (3)
|A(Yp,yg)| >n—1for 1 <p<i<gqg<l (4)

If | = 2, then P is a path satisfying (2). Hence we may assume that [ > 2. By
(3), we can extend the path P to a path R = ribirebs...by_orp,—1 in H with r =
Yit1, Th—1 = Yi—1, V(R) = V(H) — y;. If there is an arc in H in which y;_1 precedes y;
and which is not already used in R, then we can find a Hamiltonian (y;+1,y;)-path in H
and |Ag(yi,yitr1)] > n — 1, therefore we may assume that Ay (yi—1,y;) = A(R).

Since A(yi—1,yi) = A(R), we observe that b,_o contains the vertices 7,2, yi—1, i
(in that order), thus, b,—o € Apg(rn—2,y;). Let ¢ be an arbitrary arc in Ay (y;, yi—1)
(Ag (yi,yi—1) # 0 since |Ag (yi,yi—1)| > n — 2). We now obtain a path



R’ = R[r1,7p—2]bn—2yicy;—1 which satisfies (2) because of (4). Thus the claim (2) is
completely proved.

Let S = s1dysads . . . dp—18, be a Hamiltonian path in H such that |Ag(sp, s1)| > n—1

If Ag(sn,s1) # A(S) then there is an arc e € Ay (sy, s1) — A(S), since |Ag(sn,s1)| >
n—1 and |A(S)| =n — 1. Now Ses; is a Hamiltonian cycle in H.

If A(sp,s1) = A(S), then |Ag(sn,s1)] = n — 1. Let f be an arbitrary arc in
Ap(s1,8n) (Am(s1,8,) is not empty since |Ag(s1,8,)| > n —3 > 3). Since Ag(sn,s1) =
A(S), it follows that d,—1 € Ap(sp—1,51) and di € Apg(sp,s2). This implies that
S[s2, $p—1]dn—151fSnd1s2 is a Hamiltonian cycle of H.

Case 2: M is strong. There is a Hamiltonian cycle, C' = x1x2...z,21, in M. Since
k > 4, there exist distinct arcs a; and ag, such that {ay,a2} C Ag(z1,22). Since k > 4
and a1 and ao cannot include exactly the same vertices, either a; or as does not contain

at least one vertex from the set {z4,x5,...,2,—1}. Assume w.l.o.g. that z; & a;, where
i€{4,5,...,n—1}. Since |Ag(zj,zj41)] >n—2forall j =1,2,...,n — 1 we can find
distinct arcs in H, by, bo, ..., b,_3, such that the following sequence is a path in H:

P = xi11b12i4 202 ... xpbp 1012200 1173 .. by 3751
Since a1 € Ap(xi—1,x;) and |Ag(zi—1,2;)| > n—2, thereisan arc b,—2 € Ag(x;—1,x;)—
A(P).

If AH(xi,xiH) 75 {bl, bg, . ,bn_g}, then let bn—l S AH(J}Z, .CC,‘_H) - {bl, bg, e ,bn_g}
be arbitrary. Now Pb,,_2x;b,_12;+1 is a Hamiltonian cycle in H.

If Ag(xzi,xip1) = {b1,b2,...,bp—2}, then let ¢ € Ag(x;41,x;) be arbitrary. Observe
that b; € AH(.CUZ, LL’Z'+1)UAH(.IZZ'+1, l’i_:,_g), thus, b, € AH(.TZ, .CUH_Q), and b,_o € AH(xi_l, l’i)U
Apg(xi,xiy1), thus, b,—o € Ag(xi—1,zi+1). We now obtain the Hamiltonian cycle

Plziyo, xi—1)bn—2xit1czibixiqa,

where we define z,,11 = z; (when i =n —1). o.

In the rest of this section we adopt the following: H is a strong 4-hypertournament
with 6 vertices and M = M (H) is the majority digraph of H.

To prove Lemma 3.6, we need one more lemma.

Lemma 3.5 If M contains a Hamiltonian path P = x1x9x3142526 Such that Ap(xe, x1) #
0, then H is Hamiltonian.



Proof: To show that H is Hamiltonian, it is sufficient to prove that the family of sets
Al,AQ, ...,Ag, where Al = AH(xi7$i+l) for 1 < 7 < 5 and A6 = AH(Z‘G,SL‘l), has a system
of distinct representatives (arcs of H). By P. Hall’s matching theorem, such a system
exists iff

| Urer Ay| > |R| for all subsets R of {1,2,3,4,5,6}. (5)

If |[R| < 3, then (5) holds by the definition of M (]A;| > 3 for all 1 < ¢ < 5). If
4 < |R| < 5, then R contains two integers i,j such that 1 < i+ 1 < j < 5. Obviously,
|A,L ﬂAJ’| <1, |A7J’, ’AJ’ > 3. Hence, |U7«€R Ar’ > |Al UAJ'| > 5.

If |R| = 6, then
| Urer Ar| > |A1 U A3 U As| > 6.

0.

Lemma 3.6 FEvery strong 4-hypertournament with 6 vertices contains a Hamiltonian cy-
cle.

Proof: Assume that H is not Hamiltonian.

Assume that M is strong. Since M is semicomplete, M has a Hamiltonian cycle.
Hence, H is Hamiltonian by Lemma 3.5. Therefore, we may and will assume that M is
not strong.

Let (P, Q) be a Hamiltonian pair of paths such that P has maximum possible length
and let P = zia12202 ... 0m-1%m, @ = y1y2...y; (I = 8 —m, 1 = y; and x,,, = y1).
If [ > 3, then assume w.l.o.g. that cn(y2) < en(y;) (otherwise cn(y1) < cn(yi—1), so we
may reverse all arcs). Since yjy2 and y;_1y; are arc in M, we have |Ag(y1,y2)| > 3 and
|Am(yi—1,y)| > 3. By the maximality of P and the fact that H is not Hamiltonian, we
conclude that

An(y1,y2) € A(P), Au(yi—1,y) € A(P). (6)

Since m—1 = |A(P)| > |Au(y1,y2)| > 3, we obtain 4 < m < 6. Consider the following
three cases depending on the value of m.

Case 1 (m = 4): By |Au(y1,v2)| > 3, |[Au(yi—1,y1)| > 3 and (6), we conclude that

A (yi,y2) = Ag(yi—1,y1) = {a1,a2,a3}. The last formula and |{y1,y2,y3,y4}| = 4 =k
imply that a1, as, ag consist of the same vertices, which is impossible.



Case 2 (m = 5): By (6) and since |A(P)| < 6, there exists an arc d € (Ag(y1,y2) U
A (y2,y1))—A(P) = A (y2,y1)—A(P). Ifay € Ag(y1,y2) then (z1a1720023032404Yy2dY1, Y1Y3)
is a Hamiltonian pair of paths (since en(y1) < cn(ys)). This contradicts the maximality
of m. Therefore as & An(y1,y2) which together with (6) and |Ag(y1,y2)| > 3 implies
that Ag(y1,y2) = {a1,az2,a3}. Now, the last formula, (6) and |Ag(y2,y3)| > 3 imply that
at least two of a1, as,as contain all of y1,y2,y3. However, as and ag contain at least two
vertices which are not in {y1,y2,ys3}, a contradiction (as k = 4).

Case 3 (m = 6): By the definition of a Hamiltonian pair of paths, we have that
en(xe) < en(xy1), which implies that |Ag (xe, z1)| > 4. Suppose that {a1,a5} C Ay (xe, z1).
By (6), there is an arc ¢; € Ag(z1,26) — A(P). Thus, x1c126a12202T303T404T5a521 1S
a Hamiltonian cycle in H. This implies that {aj,a5} € Ap(ze,x1). Assume w.lo.g.
that Apg(ze,x1) = {a1,a2,a3,a4} (otherwise Ag(xg,z1) = {ag2,as,a4,a5} and reverse
all arcs). Observe that a; includes the vertices {1, x9,z¢}, d2 = {21,292, 23,26}, d3 =
{x1, w3, 24,76}, g = {21, 24, %5, 26}, and a5 includes the vertices {5, z¢}.

Suppose that |Ag(zs,z1)| > 3. Observe that |Ag(x1,26)] = 2 and Ag(x1,26) N
{a1,a9,a3,a4} = 0. Therefore there exists an arc ¢; € Ag(xs,x1) — {a1,a4} and an
arc cg € Ag(z1,76) — {a1,a2,as,a4,c1}. Note that ¢; & {a2,a3}. This implies that
T1C2X61T2022303%404%5c1 1 1S a Hamiltonian cycle in H, a contradiction.

Therefore, |Ap (x5, 21)| < 3. This implies that z125 is in M, thus, en(zs) > en(z1). We
note that Ag(x1,22) C {a1, a2, a5}, since we could otherwise find an arc ¢; € Ag(x1,x2)—
{a1,a9,a3,a4,a5}, such that xicixeasrsasriasrsasreaixy is a Hamiltonian cycle in H.
Analogously, we can show that Apg(za,x3) C {a1,a2,a5}, Ag(xs,x4) C {as,as} and
Ap (x4, 25) C {aq,as}. This implies that cn(xy) > cn(z2) > en(xz) > en(xyq) > en(xzs) >
en(zy), which in turn yields en(z1) = en(z2) = en(x3) = cen(xg) = en(xs). Hence, M
contains exactly two strong components: the initial one consists of the vertex xg and
the second one contains all other vertices. Since the second strong component has a
Hamiltonian cycle, M contains a Hamiltonian (xg, z1)-path. Moreover, |Ag(z1,x¢)| = 2.
Therefore, by Lemma 3.5, H is Hamiltonian, a contradiction.

4 Complexity of the Hamiltonian cycle problem for k-hypertournaments

It is well known (see [8] for an efficient algorithm) that the Hamiltonian cycle problem for
2-hypertournaments, i.e. (ordinary) tournaments is polynomial time solvable. The aim of
this section is to show that the problem remains polynomial time solvable for k = 3, but
becomes NP-complete for every fixed k& > 4.

Let H = (V, A) be a k-hypertournament, A = {ay,...,a,,}. Associate with H the
following edge-coloured directed multigraph D(H): the vertex set of D(H ) is V; for distinct



vertices z,y € V, D(H) has the arc zy of colour 7 iff a; € Ay (x,y). Clearly, H contains a
path from a vertex x to another vertex y iff D(H) has a path P from z to y such that no
two arcs in P have the same colour.

Proposition 4.1 The Hamiltonian cycle problem for 3-hypertournaments is polynomial
time solvable.

Proof: Let H be a 3-hypertournament. By Theorem 3.1, it suffices to prove that one can
check the existence of a path, in H, from a vertex x to another vertex y in polynomial
time. Construct the edge-coloured directed multigraph D(H) as above. We prove that H
has a path from = to y iff D(H) has some (z,y)-path. Clearly, if H has a path from z
to y, then D(H) contains such a path. Suppose that D(H) has a path Q = ...z, from
x =1 to y = xp. If Q has no arcs of the same colour, then () corresponds, in the obvious
way, to an (z,y)-path of H. Suppose that @) contains arcs of the same colour. This means
that there exist a subscript ¢« and an integer j such that the arcs z;_12; and x;z;11 have
the same colour j (these two are the only arcs of colour j which can be in Q). We can
replace () by the path Q[z1,z;—1]Q[xit1,2p]. Continuing this process, we obtain a new
path, in D(H), from z to y without repetition of colours. The new path corresponds to
an (z,y)-path in H. o.

Theorem 4.2 Letk > 4 be an integer. The Hamiltonian cycle problem for k-hypertournaments
(k-HCHT) is NP-complete.

Proof: It is easy to see that k-HCHT is in NP.

To show that our problem is NP-hard, we first transform the well known problem 3-
SAT ([7], p. 46) to 4-HCHT. Let U = {uy, ..., ux} be a set of variables, let C' = {¢1,...,cm }
be a set of clauses such that every ¢; has three literals, and let v;; be the I’th literal in the
clause ¢;. We may and will assume that m > 3. We shall construct a 4-hypertournament
H which is Hamiltonian iff C' is satisfiable. Since it is more convenient, we shall actually
construct D = D(H) instead of H.

We first construct a spanning subgraph D’ of D. The edge-coloured directed multi-
graph D’ consists of m + k + 1 parts: the first m parts Xil, 1 = 1,...,m, correspond to
the clauses of C, the next k parts Xf, 1 =1,...,k, correspond to the variables of U, and
the last part X3 = X7 is auxiliary. Every part X} (X?) consists of vertices z;; = x%j
(yij = x?j, resp.). X3 has two vertices z; = 3,20 = 23,. For a pair of distinct vertices
v,w in D', we say that v < w if either v € Xf, w E Xg such that [ < j and if [ = j then
i<gq,orv=al L

ijr W= T, where j < q.

Note that, in the constructions below, different symbols denote different colours.

Each of the first m parts X} (i € {1,2,...,m}) consists of six vertices x;1, ..., 76 and
the following arcs: there are two arcs from ;1 to x;9, the first of colour a;; and the second
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of colour b;1; there is an arc from x;9 to ;3 and from ;4 to ;5 of colours d;; and d;o,
respectively; there are three arcs from xz;3 to x;4 of colours a;o, b;1 and b;o; and there are
two arcs from x;5 to x;6 of colours a;3 and b;o. Every Xil is connected to XZ~1+1 by the arc
zi62i+1,1 of colour e;, for i =1,2,...,m — 1.

For each i = 1,2,...,k, let f/; be the number of appearances of the literal u; in the
clauses of C, and let f/; be the number of appearances of the literal @; in the clauses of C.
Define f;;,i=1,2,....k, j = 1,2, as follows: f;; = fl-’j+1 if Z-’j > 0 and f;; = 0, otherwise.

Each of the k parts X? consists of f; = fi1 + fi vertices y;1, .y Yif;» and the basic
arcs y;;yij+1 for every j =1,2,..., f; — 1 and additional arcs yi1Yis,,, Vi, fa+1Yif, (the first
additional arc does not exist if f;; = 0 and the second additional arc does not exist if
fi2 = 0). For every j = 1,..., fi1 — 1, the basic arc y;;y; j+1 has colour ay:, if the j'th
appearance of the variable u; in C is the t’th literal in the ¢’th clause ¢,. For every
Jj = fin+1,..., fi = 1, the basic arc y;;¥y; j+1 has colour ay, if the j'th appearance of the
negation of the variable u; in C'is the ¢’th literal in the ¢’th clause ¢,. If both f;; and fio
are positive, then there exists an arc y;s, ¥ r,,+1 and its colour is g;. The colour of the
additional arcs y;1yif,, and y; f,,+1Yif; (possibly, only one of these two arcs does exist) is
s; (i=1,..,k). Every X? is connected to X1;2+1 by the arc y; ¢,y 1,1 of colour p;.

We say that an arc y;1y;r,, corresponds to the literal u; and an arc y; ,, +1¥iy, corre-
sponds to the literal ;. We also say that an arc of D’ of colour a; corresponds to the
literal v;;.

The part X3 consists of two vertices 21, zo and an arc 2129 of colour ¢3. Add two more
arcs: Tmey11 of colour ¢; and yy, 21 of colour cs.

We have obtained the edge-coloured directed multigraph D’. We shall prove that D’
has a path P from x11 to z2 such that no colour in P appears twice iff C' is satisfiable.

Suppose first that D’ has a path P from x11 to 29 such that no colour in P appears
twice. Hence, for every i = 1,2, ...,m, there is at least one arc of colour a;;, which is in
Plx11, xme]. Hence, the subpath P[y11,yks, | contains the arcs of colours s;’s corresponding
to the literals v;;,, @ = 1,2,...,m. It follows that if the negation of v;;, is also in C', then
the arcs of colours aj,’s of D corresponding to the negation of v;;, and belonging to P
must be in Plyi1,yxyp,| and must not be in Plxi1,2m,6]. This fact allows us to assign
"true” to every literal v;;,, ¢ = 1,2,...,m such that there is an arc of colour a;, belonging
to P[x11, Tme). This assignment is proper and makes C satisfied.

Suppose now that C'is satisfiable and consider a truth assignment « for U that satisfies
all the clauses in C'. Let v;;,, ¢ = 1,2, ..., m be true under a. Then the arcs x; o1, 125 2,, © =
1,2,...,m and the arcs of colours s,’s corresponding to v;;,, ¢ = 1,2,...,m can be easily
extended to a path P from x1; to z2 such that no colour in P appears twice.

Now we construct D from D’. Choose any four vertices vy, ve,v3,v4 in D’ such that
v1 < vg < v3 < vy. In D, the four vertices together with some arcs between them must form
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a monochromatic transitive 4-tournament such that the colour of this tournament differs
from the colours of all other such transitive 4-tournaments. So, we shall add some arcs to
D’ in order to meet this condition. The symbol TT (v;, v;,vi,v;,) Will denote the transitive
4-tournament with vertex set {v;,, vi,, viz, vi, } and arc set {v;,v;, : 1< g <p <4}

If D' contains arcs vivy and vzvs of the same colour ¢ (a;; or b;; or s;), then let
v1,v2,v3,v4 form in D the tournament 7T (vsvavive) of colour c¢. Otherwise, if {vs,vq} #
{z1, 22}, then vy, vy, v3, v4 form the tournament 7T (v4vsvv1) of a new colour. If {vs, vy} =
{z1, 22} and D’ has an arc from v1 to vy of colour ¢ that appears in D" only once, then let
v1, V2, U3, U4 form the tournament 77T (z9z1v1v2) of colour c. If {vs, v4} = {21, 22} and either
D’ has an arc from vy to v of colour that appears in D’ twice or D’ has no arc from v; to vs,
but {vi,va} # {z11221} or {&11yk, . }, then vy, v, v3, vy form the tournament TT (v4v3v201)
of a new colour. If (vi,v2,v3,v4) = (@11, Yks,, 21, 22) ((v1,v2,v3,v4) = (T11, 221, 21, 22),
resp.), then vi,v2,v3, v4 form the tournament 7T (2oyk f, 21211) (T'T(2122021211), resp.) of
colour ¢y (c3, resp.).

Observe that D is an edge-coloured directed multigraph of some 4-hypertournament
H and all arcs vw of D such that v < w are the arcs of D’. Thus, by the construc-
tion of D, D has a path P from x1; to z9 which contains no arcs of the same colour
iff D’ has such a path. Moreover, if D has such a path P, the path P can be ex-
tended to a Hamiltonian cycle W in D which contains no arcs of the same colour.
Indeed, only some vertices y. = yj. o, € UF X2 (r = 1,2,..,p) are not in P. If
p = 0, then we use the arc zox1; of the tournament 77T (z2x31221211) to construct W. If
p > 0, then we use the arcs zoy.., yLyl._1, .., Yoy}, ¥y 211 of the tournaments T'T (z2y,.x21211),
TT Y.y, _1x21211),--, TT (Y4 x21211), TT (Y 231221211) to construct W.

Therefore, the 4-hypertournament H corresponding to D is Hamiltonian iff C' is sat-
isfiable. This completes the proof for 4-hypertournaments. One can easily modify the
construction of D such that D will correspond to a g-hypertournament, ¢ > 5, using ¢ — 2
vertices, instead of two, in the last part X3 of D', 0.

5 Remarks and open problems

When all results of this paper except Lemma 3.6 were already proved, Susan Marshall
informed us (personal communication) that she independently obtained Theorem 2.1 (un-
published).

We have obtained a characterization of Hamiltonian k-hypertournaments with n > k+2
vertices. Yet, we were unable to characterize Hamiltonian n — 1-hypertournaments with n
vertices. Note that a non-difficult modification of the construction in the proof of Theorem
4.2 shows that the Hamiltonian cycle problem for n — 1-hypertournaments with n vertices
is NP-complete.
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It would also be interesting to characterize pancyclic and vertex pancyclic hypertour-
naments (extensions of well-known theorems by Moser and Moon, respectively, [11]).
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