
Vertex heaviest paths and cycles in quasi-transitive

digraphs

Jørgen Bang-Jensen
Gregory Gutin∗

Department of Mathematics and Computer Science
Odense University, Denmark

Abstract

A digraph D is called a quasi-transitive digraph (QTD) if for any
triple x, y, z of distinct vertices of D such that (x, y) and (y, z) are
arcs of D there is at least one arc from x to z or from z to x. Solving
a conjecture by J. Bang-Jensen and J. Huang (J. Graph Theory, to
appear), G. Gutin (Australas. J. Combin., to appear) described poly-
nomial algorithms for finding a Hamiltonian cycle and a Hamiltonian
path (if it exists) in a QTD. The approach taken in that paper cannot
be used to find a longest path or cycle in polynomial time. We present
a principally new approach that leads to polynomial algorithms for
finding vertex heaviest paths and cycles in QTD’s with non-negative
weights on the vertices. This, in particular, provides an answer to a
question by N. Alon on longest paths and cycles in QTD’s.

1 Introduction

A digraph D is called quasi-transitive if for any triple x, y, z of distinct
vertices of D such that (x, y) and (y, z) are arcs of D there is at least one
arc from x to z or from z to x. A digraph D is semicomplete if, for every
pair of vertices of D, there is at least one arc between them.

Quasi-transitive digraphs (QTD’s) were introduced by Ghouilà-Houri [4]
and have been studied in [1, 7, 8, 9]. Bang-Jensen and Huang [1] character-
ized those quasi-transitive digraphs that have a Hamiltonian cycle (Hamil-
tonian path, respectively). They noted that their theorems do not seem to

∗This work was supported by the Danish Research Council under grant no. 11-0534-1.
The support is gratefully acknowledged.

1

imply polynomial algorithms and conjectured that there exist polynomial
algorithms for solving the Hamiltonian path and cycle problems for QTD’s
on n vertices. A positive answer to this conjecture was given in [7], where
O(n4)-time algorithms were described.

The approach taken in [7] cannot be used to find a longest path or
cycle in polynomial time. N. Alon (personal communication, 1993) posed
the following question: do there exist polynomial algorithms for finding a
longest path and a longest cycle in a quasi-transitive digraph? In this paper,
we present a principally new approach that leads to O(n5)-time algorithms
for finding vertex heaviest paths and cycles in QTD’s with non-negative
weights on the vertices (here the weight of a path or cycle is the sum of the
weights of its vertices). In particular, one can solve the longest path and
cycle problems as well as the X-cyclicity problem (find a cycle through a
given set X of vertices, if one exists) for QTD’s in time O(n5).

2 Totally Φ-decomposable digraphs

The terminology is rather standard, generally following [3]. By a cycle (path)
we mean a simple directed cycle (path, respectively). A trivial digraph is
a digraph without arcs. Let R be a digraph on r vertices v1, ..., vr and let
H1, ..., Hr be a disjoint collection of digraphs. Then D = R[H1, ...,Hr] is
the new digraph obtained from R by replacing each vertex vi of R by Hi

and adding an arc from every vertex of Hi to every vertex of Hj if and only
if (vi, vj) is an arc of R (1 ≤ i 6= j ≤ r). If each of H1, ..., Hr is trivial,
D is called an extension of R. In particular, a digraph D is an extended
semicomplete digraph (ESD, for short) if there exists a semicomplete digraph
R such that D = R[H1, . . . , Hr], where each Hi is an independent set of
vertices (possibly of size 1).

Let Φ be a set of digraphs containing the trivial digraph with one vertex.
Then Φext denotes the set of all extensions of digraphs in Φ. A digraph D is
called totally Φ-decomposable if either D has only one vertex, or there is a
decomposition D = R[H1, ..., Hr], r ≥ 2 so that R ∈ Φ and each of H1, ..., Hr

is totally Φ-decomposable. In this case, the decomposition D = R[H1, ..., Hr],
appropriate decompositions Hi = Ri[Hi1, ..., Hiri] of all Hi except trivial
ones on one vertex, appropriate decompositions of all Hij except trivial
ones of order 1, and so on, form a total Φ-decomposition of D.

Let Ψ be the union of all acyclic and all semicomplete digraphs. One
of the basic results we use is the following weakening of a decomposition

2

theorem from [1].

Theorem 2.1 Every QTD D on n vertices is totally Ψ-decomposable. One
can find a total Ψ-decomposition of D in time O(n3).

From now on, assume that every digraph D we consider has non-negative
weights w(.) on the vertices. The weight w(H) of a subgraph of D is the
sum of the weights of its vertices. A k-path subgraph of D is a collection of
k vertex disjoint paths of D. For a positive integer k, the symbol wk(D)
denotes the weight of a heaviest k-path subgraph of D, i.e. one with the
maximum weight among all k-path subgraphs. For convenience we define
w0(D) = 0. We consider the following problem which we call the HPS
problem: Given a digraph D on n vertices, find a heaviest k-path subgraph
of D for every k = 1, 2, ..., n.

Theorem 2.2 Let Φ be a set of digraphs including the trivial digraph on
one vertex. Suppose that Φ = Φext and, for every D ∈ Φ on n vertices,

wk+1(D)− wk(D) ≤ wk(D)− wk−1(D), (1)

where k = 1, 2, ..., n − 1. If there is a constant s ≥ 2 so that, for every
L ∈ Φ, the HPS problem can be solved in time O(|V (L)|s), then, for every
totally Φ-decomposable digraph D, the HPS problem can be solved in time
O(|V (D)|s+1), provided we are given a total Φ-decomposition of D.

Proof: Let D = R[H1, ..., Hr] be a decomposition of D, where R ∈ Φ
and Hi is totally Φ-decomposable and has ni vertices (i = 1, ..., r). Set
D0 = R[E1, ..., Er], where Ei is the trivial digraph on ni vertices. Assign
new weights to the vertices of D0 as follows. The i’th vertex of Ej has the
weight

w̃ij = wi(Hj)− wi−1(Hj), j = 1, ..., r; i = 1, ..., nj .

We show that, given solutions of the HPS problem for H1, ...,Hr and D0,
one can easily construct a solution of the HPS problem for D. This will lead
to a recursive algorithm as desired.

Let Fk be a heaviest k-path subgraph of D0 and let Fk contain mj vertices
of Ej (j = 1, ..., r). By (1), w̃ij ≥ w̃qj whenever q > i. Therefore, we can
always change the vertices of Fk so that Fk contains precisely the first mj

vertices of Ej for each j = 1, ..., r. Assume now that this is the case. Now,
for each j = 1, ..., r, replace the vertices of Ej in Fk by a heaviest mj-path

3

subgraph of Hj . This replacement provides a k-path subgraph Tk of D. It
is easy to check that

w̃(Fk) =
r∑

j=1

mj∑

i=1

w̃ij =
r∑

j=1

wmj (Hj) = w(Tk) ≤ wk(D).

So, the weight of a heaviest k-path subgraph of D0 is at most wk(D). Anal-
ogously, starting with a heaviest k-path subgraph of D, one can prove that
the weight of a heaviest k-path subgraph of D0 is at least wk(D). Therefore,
Tk is a heaviest k-path subgraph of D.

The arguments above lead to the following recursive algorithm called
GA.

1. Find D = R[H1, ...,Hr] using the total Φ-decomposition of D.

2. Solve the HPS problem for H1, ...,Hr using GA.

3. Form D0 (with the weights w̃ij) and solve the HPS problem for D0

using an O(|V (D)|s)-time algorithm. Change the solutions Fk (if it is
necessary) so that each of Fk contains the first vertices of Ej without
’blanks’, for each j = 1, ..., r.

4. Using the solutions obtained in Step 2, transform every Fk into a k-
path subgraph Tk of D as in the discussion above.

It is easy to check that the complexity of Algorithm GA is O(|V (D)|s+1).
2.

3 Main results

Theorem 3.1 For a QTD D on n vertices, the following two problems can
be solved in time O(n5):

1. For every k = 1, 2, ..., n, find a heaviest k-path subgraph of D.

2. Find a heaviest cycle of D.

By Theorems 2.1 and 2.2, we can prove the first part of Theorem 3.1 by
showing that every digraph D ∈ Ψext satisfies the conditions of Theorem
2.2 with s = 4. This will be done later using some results on both extended
semicomplete digraphs and flows in networks. We start with theorems on

4

flows in networks. We use standard terminology on the topic, the undefined
terms can be found in [10].

We consider a network N = (V, A, s, t, b) with source s, sink t and a
capacity function b on the arc set A. A flow f on N is called integral if, for
every arc a ∈ A, f(a) is a non-negative integer. A circulation is a flow with
value 0. A circulation is a cycle flow if the digraph induced by the arcs with
non-zero flow is just a (directed) cycle. The following observation can be
easily proved analogously to Theorem 7.2 in [2].

Proposition 3.2 Every integral flow of value k ≥ 0 can be decomposed into
k flows of value 1 along (s,t)-paths and a number of cycle flows. Such a
decomposition of f can be found in time O(

∑
a∈A f(a)), where f(a) is the

number of units of f along an arc a.

A flow f in N is feasible if 0 ≤ f(a) ≤ b(a) for every arc a ∈ A. Below we
always assume that we are dealing with a feasible flow in N .

Assume now that, besides the network N , we have a non-negative real
valued cost function c on A. The cost c(f) of a flow f is defined by the
relationship c(f) =

∑
a∈A) c(a)f(a). A flow f of value k is a minimum cost

(maximum cost) flow of value k if its cost is minimum (maximum) among
all flows of value k in N . Below we present a few results on maximum cost
flows. They can all be derived in an analogous way to their counterparts for
minimum cost flow (see e.g. pages 109-110 in [11]). We recall the definition
of the residual network N(f) = (V, A(f), s, t, κ). Here A(f) consists of the
following arcs:

(a) If (u, v) ∈ A and f(u, v) < b(u, v), then (u, v) ∈ A(f) and κ(u, v) =
b(u, v)− f(u, v).

(b) If (u, v) ∈ A and f(u, v) > 0, then (v, u) ∈ A(f) and κ(v, u) = f(u, v).

Proposition 3.3 A flow f with value k in a network N has maximum cost
among the flows with value k if and only if the residual network N(f) has
no cycles of positive cost.

Corollary 3.4 Let N be a network in which the value of a maximum flow
from s to t is m and let fi denote a maximum cost flow of value i in N ,
i = 1, 2, . . . ,m. For all k = 1, 2, . . . , m− 1 we have

c(fk+1)− c(fk) ≤ c(fk)− c(fk−1). (2)

5

For a flow f in a network N and a (t, s)-path P = v1v2 . . . vp, v1 = t,
vp = s, in N(f), we denote by εP the function defined on A(N) as follows:

εP (a) =





1, if there is an i ∈ {1, ..., p− 1} such that a = (vi, vi+1) and a ∈ N,
−1, if there is an i ∈ {1, ..., p− 1} such that a = (vi+1, vi) ∈ N but (vi, vi+1) 6∈ N,
0, otherwise.

Proposition 3.5 Let f be a maximum cost flow with positive value k in a
network N and let P be a (t, s)-path of maximum cost in the residual network
N(f). Then f + εP (here we mean arc-wise addition) is a maximum cost
flow with value k − 1 in N .

Proposition 3.5 can be proved analogously to Theorem 8.12 in [11].

In our applications, we consider networks with costs and capacities only
on the vertices. We can easily transform any such a network N ′ to a network
N ′′ with costs and capacities on the arcs: The vertex and arcs sets of N ′′

are {v−, v+ : v ∈ V (N ′)} and {(u+, w−) : (u,w) ∈ A(N ′)} ∪ {(v−, v+) : v ∈
V (N ′)}. All arcs of the kind (u+, w−), u 6= w have cost zero and infinite
capacity in N ′′. The arcs (v−, v+) have cost and capacity equal to the
cost and capacity of v in N ′. It is easy to see that the problem of finding a
maximum cost flow in N ′ is equivalent to the problem of finding a maximum
cost flow in N ′′.

Let D be a digraph with vertex set {v1, ..., vn}, m arcs and with a given
nonnegative cost c(vi) = w(vi) for each vertex vi. Construct a transport
network ND as follows. Add a zero-cost source s and a zero-cost sink t to
D. For each vertex vi of D, we add the arcs (s, vi) and (vi, t). Finally, we
assign capacity one to each vertex of D and capacity n to s and t. Using
Propositions 3.3 and 3.5 we can easily construct an O(n2m)-time algorithm
(which will be called FA) for finding maximum cost flows f0, ..., fn of values
0, ..., n in ND:

Let fn be the flow with value n, obtained by sending one flow unit
along each of the paths svit, i = 1, ..., n. Obviously, fn is a maximum
cost flow with value n. We start with this flow. Using Proposition 3.5 we
can find fn−1, ..., f0. To find fk we construct a maximum cost path from
t to s in N(fk+1). Such a path can be obtained in time O(nm) using an
implementation of Dijkstra’s algorithm described in [11], p. 93 (we just
change the sign of the costs and find a minimum cost path in a digraph
without negative cost cycles).

6

Now we consider some properties of paths and cycles in extended semi-
complete digraphs which were obtained in [5, 6]. A collection F of vertex
disjoint paths and cycles of a digraph D is called a k-path-cycle subgraph of
D if F has exactly k paths. For a non-negative integer k and a given weight
function w on V (D), w′k(D) denotes the weight of a heaviest k-path-cycle
subgraph of D with respect to w.

Theorem 3.6 Let D be an extended semicomplete digraph on n vertices.

1. For every 1-path-cycle subgraph F of D, there exists a path P so that
V (P) = V (F). Given F , one can construct P in time O(n2).

2. If D is strong, then, for every 0-path-cycle subgraph Z of D, there is a
cycle C so that V (C) = V (Z). Given Z, one can construct C in time
O(n2).

Proof of the first part of Theorem 3.1: Consider a digraph D ∈ Ψext

on n vertices. We show that D satisfies the conditions of Theorem 2.2 with
s = 4.

For every k = n, ..., 1, construct a maximum cost flow fk of value k in
the network ND in time O(n4) (using Algorithm FA). By Proposition 3.2,
every fk is the sum of k flows of value 1 along paths from the source to the
sink and a number of cycle flows. Hence, fk provides a collection of k paths
and a number of cycles such that the paths and the cycles have no common
vertices, except the source and the sink of the network. Moreover, by the
definition of ND, none of the cycles contain the source or the sink. Deleting
the source and the sink from ND with the flow fk, we get k paths and some
cycles in D which are vertex disjoint and have total cost c(fk). It follows
from the definition of ND and the fact fk is a maximum cost flow in ND

that the paths and the cycles in D form a heaviest k-path-cycle subgraph
Lk in D. In particular, c(fk) = w′k(D) for every k = 1, ..., n.

If D is an ESD then, by the first part of Theorem 3.6, for every k =
1, ..., n, we can construct a k-path subgraph Qk so that V (Qk) = V (Lk).
If D is acyclic then just let Qk = Lk. Obviously, Qk is a heaviest k-path
subgraph of D. Note that Q1, ..., Qn can be found in time O(n4).

Since wk(D) = w′k(D) = c(fk), it follows from (2) in Corollary 3.4 that
(1) holds. 2.

7

Proof of the second part of Theorem 3.1: Let D be a strong QTD
on n ≥ 2 vertices and let D = R[H1, ..., Hr], where R is semicomplete,
H1, ..., Hr are QTD’s and r ≥ 2. (If D is not strong, then we consider the
strong components of D one by one.) We claim that D has a heaviest cycle
C containing vertices from more than one of the digraphs H1, ...,Hr. Indeed,
let C ′ be a heaviest cycle of D completely contained in a Hi. Since D is
strong, there is a path in D, of length at least 2, starting at a vertex x of C ′,
terminating at a vertex y of C ′ and containing no other vertices from Hi.
Hence, by the definition of R[H1, ..., Hr], there is a path of length at least 2,
starting at x, terminating at the succesor x′ of x (in C ′) and containing no
other vertices from Hi. Clearly, the last path and C ′ minus the arc (x, x′)
form a cycle as desired. Now it is easy to see the correctness of the following
algorithm for finding a heaviest cycle of D. Note that our approach finds
a heaviest cycle C which contains vertices from at least two Hi’s. By the
remark above this is also a heaviest cycle of D.

1. Solve the HPS problem for H1, ...,Hr using Algorithm GA.

2. Form D0 with the weights w̃ij , as in the proof of Theorem 2.2, and
the network ND0 .

3. Using Algorithm FA, construct a maximum cost circulation f0 in
ND0 . Deleting the source and sink of ND0 , form a heaviest 0-path-
cycle subgraph Z of D0.

4. Using an O(n2)-time algorithm of the second part of Theorem 3.6,
construct a heaviest cycle C of D0.

5. Using the solutions of Step 1 and the cycle C, form a heaviest cycle of
D (analogously to what we did in the proof of Theorem 2.2).

Clearly, the complexity of this algorithm is O(n4). 2.

Theorem 3.1 implies

Corollary 3.7 For a QTD D on n vertices, the following problems can be
solved in time O(n5).

1. Find a longest path of D.

2. Find a longest cycle of D.

8

3. For a set X ⊂ V (D), check if D contains a cycle through X and
construct one (if it exists).

2.

References

[1] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs. J. Graph Theory 20 (1995)
141-161.

[2] R.G. Busacker and T.L. Saaty, Finite Graphs and Networks. (McGraw Hill,
N.Y.,1965).

[3] J. A. Bondy and U.R.S. Murty Graph Theory with Applications, (North Holland, N.
Y., 1976).

[4] A. Ghouilà-Houri, Caractérisation des graphes non orientès dont on peut orienter les
arrêtes de maniere à obtenir le graphe d’un relation d’ordre, C.R.Acad. Sci.Paris 254
(1962) 1370-1371.

[5] G. Gutin, Finding a longest path in a complete multipartite digraph, SIAM J. Discrete
Math., 6 (1993) 270-273.

[6] G. Gutin Paths and cycles in digraphs. Ph.D thesis, Tel Aviv Univ., 1993.

[7] G. Gutin, Polynomial algorithms for finding Hamiltonian paths and cycles in quasi-
transitive digraphs. Australas. J. Combin. 10 (1994) 231-236.

[8] P. Hell and J. Huang, Lexicographic orientation and representation algorithms for
comparability graphs, proper circular graphs, and proper interval graphs, submitted.

[9] J. Huang, Tournament-like oriented graphs. Ph.D. thesis, Simon Fraser Univ., 1992.

[10] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity (Prentice-Hall, N.J., 1982).

[11] R.E. Tarjan, Data Structures and Network Algorithms, (SIAM, Phil., 1983).

9

