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Abstract

The Generalized Traveling Salesman Problem (GTSP) is stated as follows. Given a weighted
complete digraph K, and a partition Vi, ..., Vi of its vertices, find a minimum weight cycle con-
taining exactly one vertex from each set Vi, i = 1,..., k. We study transformations from GTSP
to T'SP. The ’exact’ Noon-Bean transformation is investigated in computational experiments. We
study the 'non-exact’ Fischetti-Salazar-Toth (FST) transformation and its two modifications in
computational experiments and theoretically using domination analysis. One of our conclusions
is that one of the modifications of the FST transformation is better than the original FST trans-
formation in the worst case in terms of domination analysis.
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1 Introduction

The Generalized Traveling Salesman Problem (GTSP) is stated as follows. Given a weighted complete
digraph K and a partition Vi, ..., V) of its vertices, find a minimum weight cycle containing exactly
one (at least one) vertex from each set V;, i = 1,..., k. We assume that every arc uv of K} is assigned
a weight ¢(u,v); the weight of a cycle is the sum of the weights of its arcs. The sets V; will be called
clusters. The GTSP is sometimes called the International TSP [7].

In this paper we consider only the ’exactly one’ variant of the GTSP (i.e., every tour of GTSP
has exactly one vertex from each cluster V;) and with no restrictions imposed on the weights of the
complete digraph. We call the Asymmetric TSP simply the TSP.

Since the GTSP is an extension of the TSP, it is natural to try to solve the GTSP by reducing
it to the TSP. This way to tackle the GTSP is practically motivated by the fact that there exist a
large variety of exact and heuristic algorithms for the TSP, see, e.g., [10, 16]. In this paper, we show,
by computational experiments, that the Noon-Bean transformation from the GTSP to the TSP, can
be used to solve to optimality small to moderate instances of the GTSP. A similar conclusion for
the Laporte-Semet transformation from the Symmetric GTSP to the Symmetric TSP was derived in
[15]. We used the Noon-Bean transformation to solve GTSP instances obtained from an industrial
application in [2].

Fischetti, Salazar and Toth [5] (see also, [7]) suggested a 'non-exact’ transformation from the GTSP
to TSP that allows to obtain heuristic solutions to the GTSP using exact and heuristic algorithms for
the TSP. In this paper we provide a computational evaluation of this approach as well as of its two
modifications. The experiments indicate that the original Fischetti-Salazar-Toth (FST) transforma-
tion, which we call the minimum FST transformation, and one of our modifications, which we call the
average FST transformation, often produce results of similar quality and, in general, outperform our
other modification of the FST transformation.
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We prove, using a recent theoretical approach introduced by Glover and Punnen [9] and called
domination analysis (see, e.g., [11, 21] and references therein), that the minimum FST transformation
is inferior to the average FST transformation, in the worst case in the measure of domination analysis.
Thus, we conclude that the average FST transformation may be recommended, on its own or together
with the minimum FST transformation, as a good way to obtain approximate solutions for the GTSP.

The GTSP has many applications, see, e.g., [2, 18, 19, 12]. The GTSP was studied in [13, 19]; its
symmetric weight version was investigated in [5, 6, 14, 24, 25]; an informative account on the symmetric
GTSP is in [7]. Transformations from the GTSP to the TSP were provided in [19, 17, 3, 15].

2 Testbed for Experiments

The testbed comprises all asymmetric instances from TSPLIB [23] converted to GTSP instances using
the procedure introduced by Fischetti, Salazar and Toth [6]. The vertex clustering have been done
to simulate geographical regions. The number of clusters is k = [n/5]. The k centers of clusters are
chosen according to the following procedure. Let the distance from a vertex z; to a set S of vertices
be the minimum of ¢(z;,u), u € S. The first center w; is the vertex furthest to the vertex x;. The ith
center w; is the vertex furthest to the set {wy,...,w;—1}. If several vertices have the same (smallest)
distance from the current set of centers, the vertex with the smallest index is chosen as the next center.

A vertex z; belongs to the cluster with the center w; closest to x;. If there are several centers
equidistant from z;, the center w; of the smallest index is chosen.

We have made available instances of GTSP that we generated from TSPLIB instances by using this
method. These instances are available for download from www.cs.rhul.ac.uk/home/zvero/GTSPLIB/
The instances are named in the form Xname, where X is the number of clusters and name is the name
of the original TSPLIB instance. All algorithms were coded in C++ and the experiments were done
on an Intel Celeron 550MHz computer with 384 megabytes of RAM.

3 Noon-Bean Transformation

To describe the Noon-Bean transformation [20] we will use the same notation as in Section 1: K}
denotes a complete digraph; every arc uv is assigned a weight c(u, v); the vertices of K are partitioned
into clusters Vi,..., V. The transformation introduces a new weight function ¢’ in K such that the
minimum ¢-weight Hamilton cycle in K is of the same weight as the minimum c-weight tour in K.
(Recall that a GTSP tour contains exactly one vertex from every cluster.)

A GTSP instance is converted to an instance of the TSP. The number of vertices stays the same.
Weights are modified in such a way that guarantees that an optimal tour visits all vertices that belong
to the same cluster in the original problem before moving on to the next cluster. This is achieved
by adding a large constant M to the weight of each inter-cluster arc. If the constant is large enough
(it suffices that M is greater than the sum of n heaviest arcs in K), an optimal tour would contain
exactly k such heavy arcs, thus ensuring that no cluster is visited more than once.

Vertices within each cluster are visited in a prescribed ”circular” order. Vertices of a cluster are
first numbered in an arbitrary way, v, ..., v,. Weights of arcs that connect consecutive vertices (v;v;11,
including v,v1) are set to 0. Weight of all other arcs within the cluster is set to 2M. This ensures
that, when the cluster is entered at vertex vy, the remaining vertices are traversed in the following
order: vs41Vsy2... 0,012 ...Vs_1. Having entered the cluster at a vertex vs, the optimal tour always
traverses all other vertices of the cluster and then exits the cluster at the previous vertex, vs_1. The
optimal tour has zero weight inside the cluster.

There is one last change in weights that is required to ensure that each ’good’ tour on the trans-
formed instance has the same weight modulo kM as the corresponding GTSP tour on the original
instance. (By a ’good’ tour here we mean a tour that uses exactly k arcs of weight M and no 2M
arcs.) This change is reassigning the weight of each inter-cluster arc w;v; to c(uit1,v;).

The Noon-Bean transformation allows one to solve GTSP instances if one has an (Asymmetric)
TSP solver. Unfortunately, we did not have access to such a solver. We had access to Concorde, a
well-known Symmetric TSP solver described in [1]. To transform an Asymmetric TSP instance to an
‘equivalent’ Symmetric one, we used the following standard reduction: Replace every vertex z; in K



Instance | Optimal solution | Solution time (s)
4brl7 31 0.11
Tftv33 476 3.89
8ftv35 525 2.52
8ftv38 511 11.23

9p43 5563 39.52
9ftv44 510 75.91
10ftv47 569 38.14

10ry48p 6284 214.81

111t53 2648 82.58
12ftv55 689 218.19
13ftv64 708 107.81

14£t70 7707 11.38
15ftv70 594 8.12

20krol124p 11203 809.42

35ftv170 1205 820.69

65rbg323 471 27.86

72rbg358 693 31.25

81rbg403 1170 45.28

89rbgd43 632 48.06

Table 1: Solving GTSP instances using the Noon-Bean transformation

by three vertices z; , z?, :vf (in a complete undirected graph U on 3n vertices); the weights of edges of
the form z; 2 and x0x;

I are set to 0; the weight of every edge of the form z, z; s set to (zi,z4);
every other edge in U gets weight 3M.
The results of our experiment with the Noon-Bean transformation are given in Table 1.

Table 1 shows that the use of the Noon-Bean transformation allows one to solve small to moderate
instances of GTSP with the running time depending heavily on the weight function, and not only on
the number of vertices, n. Nevertheless, the running time grows very quickly when n increases, on
average, and the transformation is likely to be impractical for many large instances of GTSP.

A good branch-and-cut specialized Asymmetric TSP solver, like the one described in [4], may
well bring down the running time due to both the smaller size of the transformed Asymmetric TSP
instances (three times smaller than the Symmetric ones) and the fact that the Asymmetric instances
are less ’exotic’ (because of more restricted use of large constants).

4 Fischetti-Salazar-Toth Transformation and Its Modifications

Recall that the vertex set of K is partitioned into clusters Vi,..., Vi T W, CV;, ¢ =1,...,k, and
i1,42,...,0k is a permutation of 1,2,...,k, then C(W;,,W,,,...,W;,) is the subdigraph of K with
vertex set Uj_, W; and arc set UF_ {xy : = € Wi, y € Wy}, where i1 = i1. The Fischetti-
Salazar-Toth (FST) transformation is the following generic algorithm:

1. For every pair 4, j; 1 <1i# j <k compute w(i, j) = min{c(v;,v;) : v; € V;,v; € V;}. Construct a
weighted complete digraph K} with vertices {1,2,...,k} and weights w(i, j).

2. Using a TSP algorithm or heuristic find a Hamilton cycle i1z ... 4541 in K (optimal or otherwise).

3. Find a lightest k-cycle in C(V;,,Vi,,...,V;,) as follows. Let Vi = {z1,...,24}. For each j =
1,...,s, compute a minimum weight k-cycle Z; in C({z;},Vi,, Vi,, ..., Vi,) as follows. Delete z;
from C({z;},Viy, Viy, ..., Vi, ) and add, to the remaining digraph, a pair u;, v, of vertices together
with arcs {u;v: v e Vi, } U{vv; : v eV, } with weights c(u;,y) = c(z;,y), c(z,v;) = c(z, z;),
where y € V;,, z € V;, . In the obtained digraph, find a minimum weight path P; from u; to v;



and transform P; into Z; by replacing u;,v; with ;. Find the minimum weight cycle among
21, Zay .y Ls.

We also consider the following modification of the FST transformation. Let ¢(V;,V;) be the
total weight of arcs from V; to V;. In Step 1 compute w(i,j) as follows: For every pair ¢,7; 1 <
i # j < k compute w(i,j) = ¢(V;,V;)/(nin;), the average weight of an arc from V; to V;. To
distinguish between the original FST transformation and its modification we call them the minimum
FST transformation and average FST transformation, respectively. Also, we will consider the 10-
average FST transformation, where w(i, j) is computed as the average of the ten smallest weights of
arcs between V; and V; (if |V;||V;] < 5, w(i, j) is just the average of all weights of the arcs between V;
and Vj).

5 Computational Experiments with FST Transformations

We implemented the three types of the FST transformation together with three TSP heuristics used in
Step 2: greedy (the greedy algorithm), insertion (the random vertex insertion algorithm) and karp
(Karp’s patching algorithm). The three algorithms are very popular TSP heuristics and are described
in, e.g., [8]. Nevertheless, we provide short descriptions of the heuristics for the sake of completeness.

The greedy algorithm considers the arcs of K}, in non-decreasing order of their weights. It retains
the arc uv under consideration if and only if uv together with previously retained arcs form a subset
of arcs of a Hamilton cycle in K.

The heuristic insertion chooses randomly two initial vertices ¢; and 42 in K}, and forms the cycle
i1i291. Then, in every iteration, insertion chooses randomly a vertex ¢ of K} which is not in the
current cycle i1is...i5i; and inserts £ in the cycle (i.e., replaces an arc 4,,im,41 of the cycle with the
path @,,0i,,41) such that the weight of the cycle increases as little as possible. The heuristic stops
when all vertices have been included in the current cycle.

Karp’s patching algorithm starts from finding a lightest disjoint collection F' of cycles in K
covering all vertices of K. Then, karp iterates by choosing a pair of cycles C’, C" in F with maximum
number of vertices, patching them into one cycle C' of minimum possible weight, and replacing, in F,
the cycles C’,C” with C. The operation of patching of C’ and C” consists of deleting an arc in C’
and an arc in C”, and appending two arcs between C’ and C” such that the result is a cycle through
all vertices of C; and C”. There are |C’||C"| such patchings, but karp chooses the one that results in
the lightest cycle.

The results of our computational experiments on the testbed introduced above are provided in
Tables 2-4, where Column 2 (3,4) is for the minimum (10-average, average) transformation results.
The results are the excesses (in percent) of the heuristic solutions over the optimal ones.

One can clearly see that greedy is not good for the FST transformation as it is inferior to the
other two heuristics. The best heuristic seems to be karp. Now consider Table 4. The table indicates
that the 10-average FST transformation is inferior to the other two transformations and the two
transformations seem to produce solutions of similar quality. Thus, according to the experiments the
best choices seem to be karp with either the minimum or average FST transformation. Moreover, to
get further improvements, one may combine the two transformations, i.e. run both and choose the
best solution among them. The instances of Table 4 give the average of 7.32 % and the maximum of
17.56 % for the combined transformations. This is a significant improvement over the two separate
transformations.

The three tables do not have information on the running times. This is due to the fact that the
running times are very small. Most of the running times are within one hundredth of a second. The
slowest algorithm is greedy, which takes up to 0.2 seconds for the largest instances on test.

Certainly, one should keep in mind that our testbed, as testbeds in practically all computational
experiments, is very restricted. Thus, our conclusions regarding the choice of the heuristic and trans-
formations should be considered in the light of the above natural limitation.

In the next section, we analyze the two 'best’ transformations from the point of view of domination
analysis. Certainly, domination analysis (DA) has its limitations too, but its advantages are the facts
that its measure is objective as it does not depend on the chosen testbed (unless one restricts the



Instance | min (%) | avgl0 (%) | avg (%)
4brl7 116.13 0.00 116.13
Titv33 9.45 29.83 11.34
8ftv3h 29.14 10.29 10.29
8ftv38 27.40 27.79 30.72

9p43 1.46 1.60 0.67
9ftv44 51.76 29.61 9.41
10ftv47 50.97 19.51 31.11

10ry48p 27.85 8.56 13.46

1153 10.73 24.89 17.75
12ftv55 49.64 16.98 10.60
13ftv64 67.37 52.40 39.12

14£t70 11.26 22.75 16.62
15ftv70 76.60 50.67 13.47

20kro124p 30.70 35.29 22.36

35ftv170 61.16 69.54 52.37

65rbg323 35.24 68.58 42.89

72rbg358 14.29 40.55 29.15

81rbg403 11.37 23.59 16.07

89rbgd43 61.08 75.95 54.43

Average 39.14 32.02 28.31

Max 116.13 75.95 116.13

Table 2: Results of greedy

set of instances under consideration) and DA makes us aware of the worst possible outcomes of the
computations (in terms of the DA measure).

6 Domination Analysis

In this section we compare theoretically the two 'best’ FST transformations. In our comparison we
will use the domination number, which is a measure used in domination analysis. The domination
number can be defined for algorithms for many combinatorial optimization problems, but we restrict
ourselves to the GTSP and moreover to the GTSP, where all k clusters are of the same cardinality m.
The reader may easily extend our definition to other problems.

The domination number of a GTSP heuristic A, dom(A) = dom(A, m, k), is the maximum integer
d(m, k) such that, for every instance of GTSP with m vertices in each of k clusters, .4 computes a tour
that is not worse than at least d(m, k) — 1 other tours. In particular, the 'random choice’ heuristic,
in the worst case, produces the unique worst possible solution, i.e., this heuristic is of domination
number 1. As with approximation ratio, it is natural to say that a GTSP heuristic A is better than a
GTSP heuristic B if dom(A, m,k) > dom(B,m, k) for every m > ¢; and k > ¢y, where ¢; and co are
relatively small’ constants.

Comparing the minimum and average FST transformations, we will make some assumptions. First,
we assume that m > 2 since in the case of m = 1 both transformations do the same. Also, we will
assume that the minimum FST transformation finds a optimal cycle in Step 2 (and we call the minimum
FST transformation with this assumption minFST), while the average FST transformation uses any
TSP heuristic of domination number at least (k — 2)! (and we call the average FST transformation
with this assumption averFST). Despite our last assumption, we will prove that dom(minFST, m, k) <
dom(averFST,m, k) for any m > 2 and k > 4.

Notice that the assumption that averFST uses a TSP heuristic of domination number at least
(k — 2)! allows us to keep the time complexity of averFST polynomial: there are several polynomial
time TSP heuristics with domination number at least (k — 2)!. Among such heuristics (for all least
k # 6) are insertion, a modification of karp, and many local search TSP heuristics (even when they



Instance | min (%) | avgl0 (%) | avg (%)
4brl7 0.00 0.00 0.00
Titv33 14.08 11.34 11.34
8ftv3h 0.00 10.29 0.00
8ftv38 17.81 0.98 11.35

9p43 0.47 2.05 0.47
9ftv44 12.16 29.02 12.55
10ftv47 7.03 16.87 16.87

10ry48p 1.43 11.22 1.43

1153 22.66 19.64 15.07
12ftv55 1.16 28.74 2.90
13ftv64 9.18 49.01 13.14

14£t70 14.31 21.32 15.70
15ftv70 1.18 49.83 25.59

20kro124p 19.63 20.21 10.78

35ftv170 27.72 80.83 15.10

65rbg323 26.96 64.76 3291

72rbg358 14.86 57.72 20.20

81rbg403 5.30 22.56 8.21

80rbgdd3 | 37.34 7310 | 31.01

Average 12.28 29.97 12.88

Max 37.34 80.83 32.91

Table 3: Results of insertion

are restricted to some polynomial running time, in which case they may not even find a local minimum
yet) [11, 21, 22]. The k # 6 constraint is due to a minor shortcoming of a method that allows us to
obtain such bounds on domination number, and thus we strongly believe that the k # 6 constraint is
unnecessary. Moreover, in constant time, one can consider all tours for k = 6, if needed.

In this section, it will be more convenient to consider the GTSP on the complete k-partite digraph
obtained from a complete digraph K with clusters Vi, ..., Vi by deleting arcs between vertices from
the same cluster. (The operation of deletion does not change the problem since no deleted arc can be
in a tour of GTSP.) In what follows, D is a weighted complete k-partite digraph with weight function
c¢: A(D)—R, where A(D) is the arc set of D; Vi, Va,...,V} are the partite sets of D, each of the
same cardinality m > 2.

The following three lemmas will be used to prove Theorem 6.4 that provides a lower bound on
dom(averFST).

Lemma 6.1 The number of k-cycles in D equals (k — 1)! m*.

Proof: To avoid counting any k-cycle of D more than once, we assume that every such cycle starts
at a vertex in V;. It remains to observe that there are m* k-cycles in C(Vi,Vi,,...,V;,) for every
permutation ia, i3, ..., of 2,3,...,k and there are (k — 1)! such permutations. ]

Lemma 6.2 There exists a decomposition of A(C(V,...,Vi)) into k-cycles.

Proof: We prove this lemma by induction on k. The lemma is clearly true for k = 2, as we simply
take all possible 2-cycles.

We will now show that it is true for £k = 3. It is well-known that the edge set of any complete
bipartite graph, with m vertices in each partite set, can be decomposed into m perfect matchings.
So let My, Ms, ..., M, be the perfect matchings obtained, when we consider the underlying graph
of the subdigraph of C(Vi, Va2, V3) induced by V4 U V,. Now let Vaz = {x1,2z2,...,2,}, and for each
1€ {1,2,...,m} orient all arcs from V;j to V5 in M;, and for each arc obtained in this way, add the
2-path, starting at the end-point of the arc, going through x;, and ending at the starting point of the
arc. In this manner we obtain a number of 3-cycles. If we do this for all ¢, then we obtain the desired
decomposition.



Instance | min (%) | avgl0 (%) | avg (%)
4brl7 0.00 0.00 0.00
Titv33 10.92 11.34 11.34
8ftv3h 21.90 10.29 10.29
8ftv38 17.42 10.57 10.57

9p43 0.05 0.77 0.05
9ftv44 21.18 22.16 8.43
10ftv47 0.00 25.83 10.54

10ry48p 2.74 0.00 1.24

11£t53 24.02 22.24 9.18
12ftv55 1.16 34.69 0.00
13ftv64 13.42 70.90 13.28

14£t70 13.26 17.67 12.65
15ftv70 0.00 108.42 13.30

20kro124p 11.22 14.83 7.43

35ftv170 26.64 43.65 15.85

65rbg323 10.83 58.39 17.20

72rbg358 7.50 45.17 16.31

81rbg403 3.33 22.65 5.73

89rbgd43 17.56 55.70 29.27

Average 10.69 30.28 10.14

Max 26.64 108.42 29.27

Table 4: Results of karp

We will now prove the induction step, so assume that k > 4. Let DC = C; UCy U ... UC,,2
be a (k — 2)-cycle decomposition of C(Vi,...,Vi_2) that exists by the induction hypothesis. Let
Vi = {af, 2%, ..., 20}, i = 1,2,...,k and let Z;; be the cycle in DC' that passes through the arc

(xfo, le), for any given 7, j. We can insert, in every Z;;, the path xfdm;“lex} obtaining a k-cycle
decomposition of C'(Vy,..., V). ]
Lemma 6.3 There are at least m*=2 k-cycles in C(V4,..., Vi), with weight greater than the average

weight of a k-cycle in C(Vi,..., Vi), which is c(A(C(V4,...,Vi)))/m>.

Proof: By Lemma 6.2 we can find a k-cycle decomposition, DC; = C1UCsU. . .UCy, of A(C'(V1,..., Vi),
where d = |A(C(V1,...,Vi))|/k = m?. Let a: V(D) — V(D) be an automorphism, such that vertices
of V; are mapped into vertices of V;, for all i = 1,2,..., k. There exist [ = (m!)* such automorphisms
as the vertices in each partite set can be permuted in m! ways. Let DC = {DC1, DCs,...,DC;} be
the I decompositions of A(C(V1,..., V%)) into k-cycles by using all possible automorphisms described
above.

Let T = x129...25x1 be a k-cycle in A(C(V4,..., V%)) and let a cycle C; from DC; be C; =
c1¢z ... cxer. Observe that if some automorphism maps C; into T, then the vertices {c1,ca,..., ¢k}
are mapped into the vertices {x1, za, ..., 2, }. However for all other m — 1 vertices in each partite set,
there is total freedom, so there are exactly ((m —1)!)* automorphisms that map C; into T'. Since there
are d = m? cycles in DCy, we conclude that 7T lies in exactly m?((m — 1)!)* different decompositions
in DC.

Observe that the average weight of a cycle in a decomposition DC; is ¢(A(C(V, ..., Vy)))/d which
is also the average weight of a k-cycle in A(C(V4,...,Vi)). Therefore, the heaviest cycle in a decom-
position DC;, has weight greater than or equal to the average weight of a k-cycle in A(C'(Vy, ..., Vi)).

Now let @Q; be the heaviest k-cycle in DC; for every ¢ = 1,2,...,1l. Note that there are at least
1/(m?((m — 1)!)*) distinct tours in {Q1,Qa,...,Q;}. So we are now done as [/(m?((m — 1))¥) =
(m)*/ (m?((m = 1)) = m#-2,

O

Theorem 6.4 dom(averFST) > m* + ((k — 2)! — 1)m*~2 for every k,m > 2.



Proof: Let K} be the complete digraph constructed on Step 1 of averFST. Let H; be the tour in K}
found on Step 2 of averFST, and let H = {Hy, Hs, ..., Hx_2)} be (k—2)! distinct tours in K, which
have weight more or equal to that of Hy. Let H; = v;1v;2...0; Vi 1, where v, s € V; ;. By Lemma
6.1, every C(Vi1,..., Vi, Vi1) has exactly mF k-cycles.

Let @ be the k-cycle which averFST finds. By the definition of Step 3 of averFST, we see that
there are m* k-cycles in C(Vi1,..., Vi, V1,1) with weight greater than or equal to ¢(Q) (as Q is
optimal in C'(Vi1,...,Vik, Vi1)). For any H; € H — Hy, Lemma 6.3 implies that there are at least
m*~2 k-cycles with weight at least

(ACViny ., Vig, Vin)))/m? > c(A(CVi,.. ., Vig, Vii)))/m? > c(Q).

Since there are (k —2)! — 1 tours in H — H, this implies that there are at least m* + ((k —2)! — 1)m*~2
k-cycles with weight greater than or equal to ¢(Q) in D. |

The following lemma will be used in Theorem 6.6.

. k
Lemma 6.5 (k;’) </ = (HT‘ﬁ) , holds for all0 < k < mn/2.
Since a complete proof of this lemma is quite long and very technical, and not of great interest
for this paper, we will only give a short outline of the proof. Let (i) = (ki_l)7 and by evaluating

(i 4+ 1) — (i) we note that (i) takes its maximum value at io = | 27— ?182+10k+gj. When k > 36

we note that ig € [0.25k,0.29%k]. Now using Stirling’s formula we see that (k_i) < % x g(a)k,

where i = ak, f(a) = ﬁ and g(a) = Mﬁ In the interval [0.25,0.29], the maximum of

f(a) is at @ = 0.25, and the maximum of g(«) is at « = 10 . So substituting these values into the
above inequality, we get the inequality of Lemma 6.5. When k < 35, the lemma can be checked by
computer.

Theorem 6.6 Let z;, be the number of Hamilton cycles in K;; — A(H), where H is a Hamilton cycle
in Kj;. Then

dom(@infST) < m*+ S [(7) (5 + (7)) =t @)
< mP 4 maxgeic oy {2(477) (k — 1)1 }mA=2 (ii)
< S (355) |5 - 1)t xomt (iif)

Proof: Let v} and v? be distinct vertices in V;, for all i = 1,2, ..., k. Define the following weights,
where M is a number larger than n:

c(vll,le) =0, foralli=1,2,...,k (v, = v}, by definition).

c(vZ,v) =2M, for all v € VZ+1 {U?_H} and i =1,2,....k (Vigy1 = V1).

The weight of every arc in C'(V4,...,V, V1) not considered above is M.

All arcs outside of C(V4,..., Vi, V1) have weight one.

We will now show the inequality (i). Observe that minFST finds the tour H = 12...(k — 1)kl in
K} on Step 2, as all the arcs in this tour have weight zero. The k-cycle found on Step 3 must have
weight at least kM, as if the k-cycle uses an arc of weight less than M (namely, zero), then, before
it uses another arc of weight 0, it must use an arc of weight 2M. In fact, minFST finds a k-cycle of
weight exactly kM (vivivs .. vkv% has weight kM). This means that dom(minFST) < f(k) is the
number of k-cycles in D with weight at least kM.

Observe that every k-cycle Z of D of weight at least kM must have at least as many arcs of
weight 2M as Z has arcs of weight 1. Indeed, let ¢’ and ¢” be the number of arcs of weight 1 and 2M
respectively in Z. Then kM < ¢(Z) < ¢ +2Mq" 4+ (k— ¢ — ¢")M. Thus, ¢" > ¢’ — ¢'/M. Since ¢
and ¢” are both integral, we may conclude that ¢ > ¢'. Thus, dom(minFST) < g(k), where g(k) is
the number of k-cycles in D in which the number of arcs of weight 1 does not exceed the number of
arcs of weight 2M.



Observe that g(k) = Z}i{fj |G (K, )|, where G(k, ©) is the set of k-cycles in D in which the number
of arcs of weight 1 equals ¢ and the number of arcs of weight 2M is at least ¢. The following construction
generates all cycles in G(k,1).

Let W1 be any set of ¢ arcs in H = 12...(k — 1)k1 such that no two arcs share a vertex and let
Wy be any set of 4 arcs in H, which are disjoint from W;. Replace the arcs of Wy in H by a collection
Ry of |W3| arcs such that Ro N Wy = 0 and (A(H) — Ws) U Ry form a Hamilton cycle R in K}. To
construct a k-cycle Z € G(k, i), replace every arc ij of R by any arc v;v; of D from V; to V; such
that every arc ij € W is replaced by an arc of weight 2M and all the arcs v;v; form a k-cycle. It
is not difficult to see that every cycle in G(k,4) can be built by this construction (just reverse the
construction).

There are m* k-cycles in D visiting the partite sets in the order given by R, and at most m”*~*
of these use an arc of weight 2M between every two partite sets which have an arc from W; between
them (since to have such arcs only vertices v € V; can be in the corresponding places of the cycle). By

Theorem 17 in [11], W can be chosen in (k 7_1) + (k:Il) different ways. Observe that W5 can clearly

be chosen in (kz_l) ways, while Ry can be picked in z; ways. So [(k:l) ((k:z) + (kl_izl)) zimkﬂ} is
an upper bound on |G(k, )| and, thus, on the number of k-cycles in D with exactly ¢ arcs of weight
1, and total weight greater than or equal to kM. When i = 0, the number of such cycles is m*, and

when ¢ = 1 or ¢ = 2, there are no such cycles. Therefore we obtain the inequality (i).

We will now show the inequalities (ii) and (iii). Firstly observe that (k;z) > (k;_lzl), when ¢ < k/2.
2
Secondly observe that z; < (i — 1)! and (HT‘/‘F’) = % Now the fact that m > 2 and Lemma 6.5
imply the following:
dom(minFST) < m* + W (70 (*7)) + (’“‘i‘l)) Zymbi

7 7 i—1

<mb 4+ DER(T) (2057) = 1) xomi

K2 ?

—in2,. —1
g mk + maXBSiSLk/QJ {2(k2 )2(l - 1)'} X Z}iézj mk
<mk + mangig[k/kZJQ(ki_z) (i = D} x mF=2
<mb+ S <3+2x/5) |5 — 1)1 x mk—2

Theorem 6.7 For every m > 2 and k > 4, we have dom(minFST) < dom(averFST).

Proof: By Theorem 6.4, we have dom(averFST) > mF + ((k — 2)! — 1)m*=2. Tt is not difficult to
k
show that when k& > 12, S 3+v5 )

|4 — 1]! grows slower than than (k — 2)! — 1. It is easy to

) 7k 2
check by computer that the latter is larger than the former for £ = 12 and the latter is larger than
the coefficient of m*~2 in (ii) of Theorem 6.6. 0
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