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Abstract

We survey results concerning various generalizations of tournaments. The reader will see that
tournaments are by no means the only class of directed graphs with a very rich structure. We
describe, among numerous other topics mostly related to paths and cycles, results on hamiltonian
paths and cycles. The reader will see that although these problems are polynomially solvable for all
of the classes described, they can be highly non-trivial, even for these ”tournament-like” digraphs.

1 Introduction

Tournaments are no doubt the most well understood class of directed graphs. They have a very rich
structure, in particular with respect to cycles and paths; see e.g. recent survey papers [16, 75]. Some of
this rich structure comes from the simple fact that tournaments have no pair of non-adjacent vertices
and at first glance it may seem as if this must be the case for most of the nice structure (knowing that
for general digraphs very little is known about the structure of paths and cycles). However, it is not the
case as one can see from some results on generalizations of tournaments discussed in this survey.

In [51], a surprisingly simple characterization of those semicomplete multipartite digraphs that have
a hamiltonian path was obtained. This characterization implies that the hamiltonian path problem
is tractable for this important class of digraphs that remained for a long time the only generalization
of tournaments (other than the semicomplete digraphs ) to be studied. It was also known, see e.g.
[55], that the hamiltonian cycle problem for semicomplete multipartite digraphs was quite difficult. A
polynomial algorithm for this problem was recently found [22]. This algorithm is based on results from
[85].

In [6] the class of locally semicomplete digraphs was introduced and it was proved that a number of
structural properties of tournaments are still valid for this much larger class of digraphs. In particular
the hamiltonian path and cycle problems are both easy for locally semicomplete digraphs : every
connected (strongly connected, respectively) locally semicomplete digraph has a hamiltonian path
(cycle, respectively). The introduction of locally semicomplete digraphs has stimulated a significant
amount of work, whose purpose has been to discover and study classes of digraphs that contain the
tournaments and share many of their properties. In particular two entire Ph. D. theses have been
devoted to this project [42, 64]. It is the purpose of this survey to report on the current status of the
research on these recent generalizations of tournaments.

The reader will see that tournaments are far from being the only digraphs with a rich path and
cycle structure. We will also show that, even though some of the classes introduced (e.g. extended
semicomplete digraphs) may seem, at first glance, to be just one more generalization with no particular
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importance of its own, this is by no means the case. In Section 8 (see also [10, 13, 14]) we show how the
results on paths and cycles for many of these classes of generalizations of tournaments can be combined
to show that the hamiltonian path and cycle problem and even the heaviest path and cycle problems
(with respect to vertex weights) can be solved for some classes of digraphs that are quite general.

Apart from some very recent development on semicomplete multipartite digraphs we will not cover
this class of digraphs since this was done recently in two survey papers [55, 84]. We do however wish to
refer the reader to a recent application of Yeo’s results on semicomplete multipartite digraphs in [85] to
a problem on hamiltonian cycles avoiding prescribed arcs in tournaments [20]. In this paper it is shown
how one can obtain a highly non-trivial result on tournaments using a result on cycles in semicomplete
multipartite digraphs. This is a good example showing that results on generalizations of tournaments
may be useful even if one is only interested in tournaments themselves.

2 Terminology

We shall assume that the reader is familiar with standard terminology on directed graphs (see e.g. [33]).
For a given digraph D we use V (D) (E(D)) to denote the vertex set (arc set) of D. We always use n
(m) to denote the number of vertices (arcs) in the digraph currently under consideration. Sometimes
we will also use the notation |D| for the number of vertices in D.

The underlying undirected graph U(D) is the graph obtained from D by omitting all orientations
and removing multiple edges if any; D is connected if U(D) connected; α(D) denotes the size of a largest
independent set of vertices in U(D).

If there is an arc from x to y in the digraph D, then we say that x dominates y and we shall use the
notation x → y to denote this; x→y also denotes an arc from x to y. For a given vertex v ∈ V (D) we
use N+(v) (N−(v)) to denote the set of out-neighbours (in-neighbours) of v and let d+(v) = |N+(v)|,
d−(v) = |N−(v)|. A digraph D is k-diregular (or, just, diregular) if d+(v) = d−(v) = k for every
v ∈ V (D). If A and B are disjoint subsets of V (D), then we use the notation A⇒B to denote the fact
that a→b for all a ∈ A and all b ∈ B and there is no arc from B to A.

For any subset A of V (D) ∪ E(D), D − A denotes the subgraph obtained by deleting all vertices
of A and their incident arcs and then deleting the arcs of A still present. If A ⊆ V (D), then we let
D〈A〉 = D − (V (D)−A). We write D − x instead of D − {x} when x ∈ V (D) ∪ E(D).

Paths and cycles are always directed. A path from x to y is called an (x, y)-path. If P is a path
containing a subpath from x to y, then we let P [x, y] denote the part of P from x to y. A k-path-cycle
subgraph, k ≥ 0, is a collection of k paths and some (possibly zero) cycles all vertex disjoint. The order
of a k-path-cycle subgraph is the number of vertices that it covers. A k-path-cycle factor, k ≥ 0, is a k-
path-cycle subgraph that covers all the vertices of D. When k = 0 we use the names cycle subgraph and
cycle factor. Clearly, a cycle factor is a spanning 1-diregular subgraph. When a k-path-cycle subgraph
(factor) contains no cycles we use the name k-path subgraph (k-path factor).

A strong component D′ of a digraph D is a maximal subdigraph, such that for any two vertices
x, y ∈ D′ , D′ contains an (x, y)−path and a (y, x)−path. A digraph D is strongly connected if it has
only one strong component. D is k-strongly connected if for any set A of at most k − 1 vertices, D −A
is strong.

An out-branching (in-branching) T rooted at v in a digraph is a spanning tree such that each
x ∈ V (T ) − v has one arc coming in (going out). A digraph D is transitive if, for any triple x, y, z of
distinct vertices of D such that xy and yz are arcs of D, the arc xz is in D. Clearly, a transitive oriented
graph has no cycle.

We finish this section by recalling two well-studied classes of graphs. A graph is a comparability graph
if it can be oriented as a transitive digraph. A graph G is a circular-arc graph if it can be represented
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by closed intervals (arcs) on a circle, i.e. each vertex corresponds to an interval on the circle and two
vertices are adjacent just if their intervals have non-empty intersection. If the representation can be
chosen such that no interval is contained in any other interval, then G is a proper circular-arc graph.

3 Various generalizations of tournaments

In this section we define a number of classes of digraphs all of which are generalizations of tournaments.

A semicomplete digraph is a digraph with no non-adjacent vertices. A tournament is an oriented
graph with no non-adjacent vertices. Thus tournaments are a special subclass of the semicomplete
digraphs.

A digraph D is locally in-semicomplete (locally out-semicomplete, respectively) if, for every vertex x
of D, the in-neighbourhood of x (its out-neighbourhood, respectively) induces a semicomplete digraph.
A digraph D is locally semicomplete if it is both locally in- and locally out-semicomplete. Clearly
every semicomplete digraph is locally semicomplete. Similarly we can define locally in-tournament
digraphs, locally out-tournament digraphs and locally tournament digraphs by merely replacing the words
”semicomplete” or semicomplete digraph” by ”tournament” in the definitions above.

A digraph D is a semicomplete k-partite digraph (k ≥ 2) or a semicomplete multipartite digraph if
U(D) is a complete k-partite graph.

A digraph D is an arc-local tournament digraph if it satisfies that for every pair of adjacent vertices
x, y ∈ V (D) every vertex of N+(x) (N−(x)) is adjacent to every vertex of N+(y) (N−(y)).

A digraph D is quasi-transitive if, for any triple x, y, z of distinct vertices of D such that xy and yz are
arcs of D, there is at least one arc between x and z. Clearly a semicomplete digraph is quasi-transitive.
Note that if there is only one arc between x and z, it can go in any direction, hence a quasi-transitive
digraphs are generally not transitive.

A digraph D is k-path-mergeable for some integer k ≥ 2, if for any choice of vertices x, y ∈ V (D)
and any pair of internally disjoint (x, y)-paths P, P ′, each of length at most k, there exists an (x, y)-
path P ∗ in D, such that V (P ∗) = V (P ) ∪ V (P ′). A digraph D of order n is path-mergeable if it is
n-path-mergeable.

The following very useful proposition is easy to prove.

Proposition 3.1 [9] Every locally in-semicomplete (out-semicomplete) digraph is path-mergeable.

Let D be a digraph on p vertices v1, ..., vp and let L1, ..., Lp be a disjoint collection of digraphs. Then
D[L1, ..., Lp] is the new digraph obtained from D by replacing each vertex vi of D by Li and adding an
arc from every vertex of Li to every vertex of Lj if and only if vi→vj is an arc of D (1 ≤ i 6= j ≤ p).

Let Φ be a set of digraphs, we call the elements of Φ Φ−graphs. A digraph D is called an extended
Φ−graph if either it has only one vertex, or there is a decomposition D = R[H1, ...,Hr] such that R ∈ Φ,
each of the digraphs Hi, i = 1, ..., r has no arcs, and r ≥ 2. A set Φ is extension-closed if each extended
Φ-graph is in Φ. In particular, semicomplete multipartite digraphs are extension-closed, whereas the
set of semicomplete digraphs is not extension-closed.

4 Strong components

The strong component digraph SC(D) of a digraph D is obtained by contracting each strong component
of D to a single vertex. The strong component digraph of a tournament is just a transitive tournament.
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The structure of strong component digraphs of generalizations of tournaments are not so simple but we
still have some nice and useful properties here.

The following theorem on strong components in a non-strong extended locally semicomplete digraph
generalizes the corresponding result for locally semicomplete digraphs [6].

Proposition 4.1 [14] Let D be a connected non-strongly connected extended locally semicomplete di-
graph.

1. If A and B are distinct strong components of D, then either A⇒B, or B⇒A, or there are no arcs
between A and B.

2. There is a unique ordering D1, . . . , Ds, s ≥ 2 of the strong components of D so that there is no
arc from Dj to Di for j > i.

3. Furthermore with this ordering we have D1⇒D2⇒ . . .⇒Ds.

When 2. holds for a digraph D, then we call the ordering D1, D2, . . . , Ds the strong decomposition of
D.

Another kind of decomposition theorem for non-strong locally semicomplete digraphs was described
in [45].

Theorem 4.2 [45] Let D be a connected locally semicomplete digraph that is not strongly connected
and let D1, ..., Dp be the strong decomposition of D. Then D can be decomposed in r ≥ 2 subdigraphs
D′

1, D
′
2, ..., D

′
r as follows:

D′
1 = Dp, λ1 = p,

λi+1 = min{ j | N+(Dj) ∩ V (D′
i) 6= ∅}, and

D′
i+1 = D〈V (Dλi+1) ∪ V (Dλi+1+1) ∪ · · · ∪ V (Dλi−1)〉.

The subdigraphs D′
1, D

′
2, ..., D

′
r satisfy the properties below:

(a) D′
i consists of some strong components of D and is semicomplete for i = 1, 2, ..., r;

(b) D′
i+1 dominates the initial component of D′

i and there exists no arc from D′
i to D′

i+1 for i =
1, 2, ..., r − 1;

(c) if r ≥ 3, then there is no arc between D′
i and D′

j for i, j satisfying |j − i| ≥ 2.

For a connected, but not strongly connected locally semicomplete digraph D, the unique sequence
D′

1, D
′
2, ..., D

′
r defined in Theorem 4.2 is called the semicomplete decomposition of D.

Some properties of the strong components of a locally in-semicomplete digraph are described in the
following two results from [27].

Theorem 4.3 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertex a ∈ A dominates some vertex in B,
then a⇒B. Furthermore A ∩N−(b) induces a semicomplete digraph for each b ∈ B.
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(ii) If D is connected, then SC(D) has an out-branching. Furthermore, if R is the root of that out-
branching and A is any other component, there is a path from R to A containing all the components
that can reach A.

Corollary 4.4 Let D be a strongly connected locally in-semicomplete digraph and let S be a minimal
separating set (w.r.t inclusion). There is a unique order D1, ..., Dk of the strong components of D − S,
such that there are no arcs from Dj to Di for j > i and Di has an arc to Dj for i = 1, ..., k − 1.

The structure of the strong components of quasi-transitive digraphs is described in Theorem 6.1.

5 Structure of underlying graphs and recognition

We first discuss the question of which graphs can be the underlying graphs of the various classes of
digraphs defined in Section 2 and the question of deciding whether a given digraph belongs to one of
those classes.

It turns out that locally semicomplete digraphs and quasi-transitive digraphs have very well-known
underlying graphs.

Theorem 5.1 [76] The underlying graphs of locally semicomplete digraphs are precisely the proper
circular-arc graphs.

Theorem 5.2 [38] The underlying graphs of quasi-transitive digraphs are precisely the comparability
graphs.

In a series of papers [34, 35, 62] Hell, Huang and others have used this close relation between locally
semicomplete digraphs and proper circular-arc graphs to devise fast algorithms for many problems for
proper circular-arc graphs. See also [24].

The precise structure of the underlying graphs of locally in-semicomplete digraphs is currently not
known. In [81] a characterization was given in terms of intersection graphs and a characterization by
forbidden induced subgraphs was described. However, these obstructions seem difficult to recognize and
the intersection graph characterization is not very useful for studying structural properties of locally
in-semicomplete digraphs. Thus it would be useful to obtain other more ’structural’ characterizations
of the underlying graphs of locally in-semicomplete digraphs.

It was shown in [27] that all chordal and all circular-arc graphs can be oriented as locally in-
semicomplete digraphs. Furthermore a topological property of graphs orientable as locally in-semicomplete
digraphs was obtained. It was also shown that every graph which can be represented in a uni-cyclic
graph can be oriented as a locally in-semicomplete digraph. We refer the interested reader to [27].

For graphs that can be oriented as path-mergeable digraphs not much is known other than the fact
that, by Proposition 3.1 every graph that is orientable as an locally in-semicomplete digraph can be
oriented as path-mergeable digraph.

Problem 5.3 Characterize the underlying graphs of path-mergeable digraphs. Is there a polynomial
algorithm to recognize these graphs?

It is not difficult to see that there is a polynomial algorithm to decide whether a given digraph is
quasi-transitive, locally in-semicomplete, or locally out-semicomplete: the restriction is locally defined
and concerns only two arcs. Thus, recognition of the three classes of digraphs above can be done in
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time O(∆m), where ∆ denotes the maximum degree of the underlying graph. Similarly, the underlying
graphs of these classes can be recognized in time O(∆m), using a reduction to 2-satisfiability (see [27,
Theorem 5.1] for details). In [24] an optimal O(n + m) algorithm to recognize locally semicomplete
digraphs is given. This is based on Theorem 6.7 and an optimal O(n+m) algorithm to recognize proper
circular-arc graphs in [34, 35]. It is worth noting that the algorithm in [34, 35] explicitly uses the fact
that a graph is a proper circular-arc graph if and only if it can be oriented as a round locally tournament
digraph (the definition of a round locally tournament digraph is given in the next section). Another
O(∆m) algorithm for recognizing comparability graphs was given in [62].

It is not quite as simple to see that path-mergeable digraphs are also recognizable in polynomial
time, but using a more detailed analysis of their structure this is possible and an O(m3) recognition
algorithm is described in [9].

6 Structural characterizations

The following theorem characterizes quasi-transitive digraphs in a recursive fashion.

Theorem 6.1 [25] A digraph D is quasi-transitive if and only if the following holds.

(1) If D is not strongly connected, then there exist a natural number q ≥ 2, a transitive oriented
graph Q on q vertices and strongly connected quasi-transitive digraphs W1,W2, . . . ,Wq such that
D = Q[W1,W2, . . . ,Wq].

(2) If D is strongly connected, then there exist a natural number q ≥ 2, a strongly connected semi-
complete digraph Q on q vertices and quasi-transitive digraphs W1,W2, . . . ,Wq, where each Wi

is either a single vertex or a non-strongly connected quasi-transitive digraph, such that D =
Q[W1,W2, . . . ,Wq]. Furthermore, if Q has a cycle of length two induced by vertices vi and vj,
then the corresponding digraphs Wi and Wj are trivial, i.e., each of them has only one vertex.

Despite being much more general than semicomplete digraphs, quasi-transitive digraphs still have
structure tightly linked to that of semicomplete digraphs. The above characterization has turned out
to be very useful for proving results about quasi-transitive digraphs, see [10, 17, 25, 58].

For locally semicomplete digraphs there is also a very useful structure theorem and a very interesting
relation between the different locally semicomplete digraphs with the same underlying graph. In order
to explain these results we need some more definitions.

A digraph on n vertices is round if we can label its vertices v0, v1, . . . , vn−1 so that for each i,
N+(vi) = {vi+1, . . . , vi+d+(vi)} and N−(vi) = {vi−d−(vi), . . . , vi−1} (all indices are modulo n). Note
that every strongly connected round digraph is hamiltonian.

Alspach and Tabib characterized round tournaments [1] (they used the name ”domination ori-
entable”, but we think the name round is more appropriate, since we are not reorienting the graph,
but rather labeling its vertices). The first author extended this characterization to locally tournament
digraphs (Theorem 6.2).

It was pointed out in [6] that the characterization in Theorem 6.2 does not extend to locally semi-
complete digraphs. There are examples of round locally semicomplete digraphs where some vertex has
a cycle in its out-neighbourhood.

Theorem 6.2 [6] A locally tournament digraph is round if and only if N+(v) and N−(v) induce
transitive tournaments for all vertices v ∈ V (D).
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Hence, if a locally tournament digraph D is round, then there exists a unique (up to cyclic permu-
tations) round labeling of D. We refer to this as the round labeling of D.

A locally semicomplete digraph D is round decomposable if there exists a round locally tournament
digraph R on r ≥ 3 vertices such that D = R[S1, . . . , Sr], where each Si is a semicomplete digraph. We
call R[S1, . . . , Sr] a round decomposition of D.

Proposition 6.3 [11] If a locally semicomplete digraph D is round decomposable, then it has a unique
round decomposition D = R[S1, . . . , Sr], where each Si is a strongly connected semicomplete digraph.

We shall call this the round decomposition of D and whenever we use the phrase ’the round decom-
position’ below it is to be understood that we think of this decomposition.

Proposition 6.4 [11] There exists a polynomial algorithm to decide if a given locally semicomplete
digraph D has a round decomposition and find this decomposition if it exists.

In [11] a complete characterization of locally semicomplete digraphs is given. This characterization
involves the structure of the strong components of a certain induced subgraph of the locally semicomplete
digraph and is therefore not easy to state in a short form. Hence we shall only state the following easy
corollary of the complete characterization of locally semicomplete digraphs in [11]. Already in this form
the characterization is very useful; see e.g. [10, 11].

Theorem 6.5 [11] Let D be a locally semicomplete digraph. The exactly one of the following possibilities
hold. Furthermore, given a locally semicomplete digraph D we can decide in polynomial time which of
the possibilities holds for D.

1. D is semicomplete and not round decomposable.

2. D is round decomposable with a unique round decomposition D = R[S1, S2, . . . , Sr], where R
is a round locally tournament digraph on r ≥ 3 vertices and each Si is a strongly connected
semicomplete digraph.

3. α(D) = 2 and D is not round decomposable.

Recall that α(D) is the independence number of U(D).

Prior to Theorem 6.5 Huang [63] had given another characterization of locally semicomplete digraphs
which implicitly contains the information given in Theorem 6.5. We state his main result below in a
slightly reformulated way.

For a given proper circular-arc graph G with a prescribed circular-arc representation we get a natural
order on the vertices of G by fixing a point on the circle and labeling the vertices v1, v2, . . . , vn according
to the clockwise ordering of the right endpoints of their intervals (circular arcs) on the circle with respect
to this point. Since every proper circular-arc graph has a representation in which no two arcs cover the
whole circle [39], we may assume that we are working with such a representation. Now it is not difficult
to see that the following leads to a round local tournament orientation of G: orient the edge between
vi and vj from vi to vj just if the left endpoint of the jth interval is contained in the ith interval. Thus
we have

Proposition 6.6 [6, 61, 63] Every proper circular-arc graph has an orientation as a round local tour-
nament. Furthermore this orientation is unique up to a full reversal (reversing the orientation of all
arcs).
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Theorem 6.7 [63] Let G be a proper circular-arc graph, let Ḡ denote the complement graph of G and
let C1, . . . , Ck denote the connected components of Ḡ.

• If Ḡ is not bipartite, then k = 1 and (up to a full reversal) G has only one orientation as a locally
tournament digraph, namely the round orientation.

• If Ḡ is bipartite then every orientation of G as a locally tournament digraph can be obtained
from the round locally tournament digraph orientation D of G by repeatedly applying one of the
following operations:

1. reverse all arcs in D that go between two different Ci’s.

2. reverse all arcs in D that lie inside some Ci.

It is also possible to derive a similar result for all orientations of G as locally semicomplete digraphs.
We refer the reader to [63] for the details.

Although locally in-semicomplete digraphs are much more general than locally semicomplete di-
graphs, we suspect that they have a nice structural characterization.

Problem 6.8 Find a non-trivial structural characterization of locally in-semicomplete digraphs.

7 Longest paths and cycles in locally semicomplete digraphs,
locally in-semicomplete digraphs, arc-local tournament di-
graphs and their extensions

By Camion and Redei’s theorems, the longest cycle and path problems for tournaments are trivially
transformed into the corresponding hamiltonian path and cycle problems, respectively. For general
digraphs no such reduction exists.

The following generalization of Camion’s theorem is due to Bang-Jensen, Huang and Prisner [27].

Theorem 7.1 Every strongly connected locally in-semicomplete digraph has a hamiltonian cycle.

Note that the last result allows us to transform the longest cycle problem for locally in-semicomplete
digraphs to the hamiltonian cycle problem. In the same paper, the following characterization of locally
in-semicomplete digraphs containing a hamiltonian path was obtained.

Theorem 7.2 [27] A locally in-semicomplete digraph has a hamiltonian path if and only if it contains
a vertex that can be reached by all other vertices by a directed path.

The last theorem also allows us to transform the longest path problem for locally in-semicomplete
digraphs to the hamiltonian path problem: find an in-branching of maximum order. Since every
connected locally semicomplete digraph has an in-branching (by Proposition 4.1) we have

Theorem 7.3 [6] Every connected locally semicomplete digraph has a hamiltonian path.

Note the following generalization of Theorem 7.1 (compare with Proposition 3.1):
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Theorem 7.4 [9] A path-mergeable digraph D is hamiltonian if and only if D is strongly connected and
U [D] is 2-connected. There is an O(n2m)-algorithm for finding a hamiltonian cycle in a hamiltonian
path-mergeable digraph D.

The problem of deciding whether a path-mergeable digraph has a hamiltonian path seems much harder
than that of deciding the existence of a hamiltonian cycle. This is because the path-merging property
does not imply anything for paths with only one endvertex in common. For example, any orientation of
a tree is a path-mergeable digraph, but among these only an undirected path oriented as (directed) path
has a hamiltonian path. Also note that there exist infinitely many strongly connected path-mergeable
digraphs without a hamiltonian path. For example, take four disjoint cycles C1, ..., C4 and identify a
vertex from each of C2, C3, C4 with different vertices of C1. The resulting digraph is a strongly connected
path-mergeable digraph and clearly has no hamiltonian path.

Problem 7.5 Characterize those path-mergeable digraphs that have a hamiltonian path. Is there a
polynomial algorithm to decide the existence of such a path?

Bang-Jensen and Hell [23] studied the complexity of the longest path and cycle problems for locally
in-semicomplete digraphs. They proved the following:

Theorem 7.6 Let D be a locally in-semicomplete digraph with n vertices and m arcs. Given an in-
branching of D represented by lists of in-neighbours, one can find a hamiltonian path of D in time
O(n log n). Moreover, there is an O(m + n log n) algorithm for finding a longest path in D.

They also generalized an algorithm of Manoussakis [68] for tournaments and proved the following:

Theorem 7.7 There is an O(m + n log n) algorithm for finding a longest cycle in a strongly connected
locally in-semicomplete digraph.

Obviously, for most digraphs strong connectivity is not sufficient to merit the existence of a hamilto-
nian cycle. It is natural to add another necessary condition: the digraph considered has a cycle factor.
It is easy to check, in polynomial time, the existence of a such subgraph in a given (general) digraph
and find one, if it exists, (see [3, 54, 55, 56]) using any polynomial maximum matching algorithm (for
bipartite graphs). In particular, we can do it in time O(n2.5/

√
log n) applying the algorithm from [2].

Theorem 7.8 [14] An extended locally semicomplete digraph is hamiltonian if and only if it is strongly
connected and has a cycle factor. Given a spanning cycle subgraph of an extended locally semicomplete
digraph D, a hamiltonian cycle of D can be found in time O(n2), where n is the number of vertices in
D.

Results analogous to Theorem 7.8 have been obtained for semicomplete bipartite digraphs [49, 60, 69],
for extended semicomplete digraphs [56], for arc-local tournament digraphs [3], and for extended locally
in-semicomplete digraphs [15]. We point out here that Theorem 7.8 does not hold for semicomplete
multipartite digraphs as one can see from the examples in [19, 56] (see, also, [55]). Very recently the
authors and A. Yeo gave a polynomial algorithm for the hamiltonian cycle problem in semicomplete
multipartite digraphs.

Theorem 7.9 [22] There is an O(n7) algorithm to decide whether a given semicomplete multipartite
digraph has a hamiltonian cycle and find one if it exists.

This algorithm is based on some sufficient conditions for semicomplete multipartite digraphs to
contain a hamiltonian cycle obtained by Yeo in [85]. The fact that the hamiltonian cycle problem for
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semicomplete multipartite digraphs is polynomial time solvable suggests a possibility for the existence
of a characterization of hamiltonian semicomplete multipartite digraphs. We would like to state this as
a problem.

Problem 7.10 Find a characterization of hamiltonian semicomplete multipartite digraphs.

Yeo’s sufficient conditions [85] are strengthenings of those obtained in [19]. While the conditions in
[19] were mostly used to find short proofs of some known results on semicomplete multipartite digraphs,
Yeo used his conditions to prove the following new results:

Theorem 7.11 Every diregular semicomplete multipartite digraph is hamiltonian.

Zhang [86] had conjectured that every diregular multipartite tournament is hamiltonian.

Theorem 7.12 Every k-strongly connected semicomplete multipartite digraph with at most k vertices
in each partite set is hamiltonian.

The last result was conjectured by Guo and Volkmann [82].

Theorem 7.8 can be generalized as follows.

Theorem 7.13 [14] Let D be a strongly connected extended locally semicomplete digraph. Given a cycle
subgraph F = C1 ∪ ... ∪ Ct of D of maximum order one can find a (longest) cycle C of D such that
V (C) = V (C1) ∪ ... ∪ V (Ct) in time O(n2).

Unlike Theorem 7.8, the last result is not true for semicomplete bipartite digraphs. We can obtain
only a slightly weaker result.

Theorem 7.14 [56] Let D be a strongly connected semicomplete bipartite digraph. Given a cycle sub-
graph F = C1 ∪ ... ∪ Ct of D of maximum order one can find a (longest) cycle C of D such that
|V (C)| = |V (C1) ∪ ... ∪ V (Ct)| in time O(n2).

The difference between the last two theorems is reflected, in particular, in Theorem 8.5, where we deal
with weights on the vertices.

Note that a cycle subgraph of maximum order of an arbitrary digraph D can be found in time O(n3)
solving an auxiliary assignment problem [54, 55, 56].

Gutin [51] (see also [19, 54, 55]) found simple necessary and sufficient conditions for a semicomplete
multipartite digraph to have a hamiltonian path. Analogous results are true for arc-local tournament
digraphs [3] and extended locally semicomplete digraphs [14]. We formulate this result for the last
family of digraphs.

Theorem 7.15 A connected extended locally semicomplete digraph D has a hamiltonian path if and only
if it contains a 1-path-cycle factor. Given a 1-path-cycle factor of D, one can construct a hamiltonian
path of D in time O(n2).

Note that, by Theorem 7.15, a hamiltonian path in an extended locally semicomplete digraph D (if one
exists) can be constructed in time O(n2.5/

√
log n). Indeed, it is easy to see that a digraph H has a 1-

path-cycle factor F if and only if the digraph H ′, obtained from H by adding a new vertex x dominating
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and being dominated by every vertex of H, has a cycle factor. Hence, the problem of finding a 1-path-
cycle factor is easily transformed to that for finding a cycle factor. The last problem was considered
above.

Unlike Theorem 7.8, Theorem 7.15 cannot be generalized to extended locally in-semicomplete di-
graphs as one can see from the following example [15]. Define the extended locally in-semicomplete
digraph L on 6 vertices as follows:

V (L) = {1, 2, 3, 4, 5, 6}, A(L) = {1→2, 2→3, 3→4, 4→2, 3→1, 3→5, 3→6, 5→6, 6→5}.

L contains a 1-path-cycle factor consisting of a path 1→2→3→4) and a cycle 5→6→5 (and even an
in-branching rooted in the vertex 6), but has no hamiltonian path. It is natural to pose the following:

Problem 7.16 (1) Find a characterization of extended locally in-semicomplete digraphs containing
hamiltonian paths;

(2) Find the complexity of the problem of deciding whether an extended locally in-semicomplete digraph
has a hamiltonian path.

Theorem 7.15 can easily be generalized to longest paths.

Theorem 7.17 [14] The order of a longest path in an extended locally semicomplete digraph D equals
to the order of a 1-path-cycle subgraph of D with maximum number of vertices. Moreover, given a 1-
path-cycle subgraph F of an extended locally semicomplete digraph D, a path P such that V (P ) = V (F )
can be found in time O(n2).

Results analogous to Theorem 7.17 hold for semicomplete multipartite digraphs [54] and arc-local
tournament digraphs [3].

8 Longest paths and cycles in quasi-transitive digraphs and
their generalizations

Bang-Jensen and Huang [25] characterized both quasi-transitive digraphs containing hamiltonian cy-
cles and hamiltonian paths (Theorem 8.1) using the analogues of Theorems 7.8 and 7.15 for extended
semicomplete digraphs as well as Theorem 6.1.

Theorem 8.1 [25] Let D be a connected quasi-transitive digraph. Then

(1) D is hamiltonian if and only if it is strongly connected and has a cycle factor C1 ∪ ... ∪ Ct (Ci is
a cycle in D, i = 1, 2, ..., t) such that there is no Ci whose vertices is completely contained in a
connected component of the complement of U(D).

(2) D contains a hamiltonian path if and only if it has a 1-path-cycle factor P ∪ C1 ∪ ... ∪ Ct, t ≥ 0
(P is a path and Ci is a cycle in D, i = 1, ..., t) such that neither V (P ) nor V (Ci) is completely
contained in a connected component of the complement of U(D).

Bang-Jensen and Huang [25] noted that Theorem 8.1 does not seem to imply polynomial algorithms
and conjectured that there exist such algorithms. In [58], Gutin developed an approach which solves the
conjecture in affirmative. Below we describe basic aspects of this approach for more general, so-called
totally Φ-decomposable, digraphs. First, we define such digraphs.
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Let Φ be a set of digraphs containing the digraph with one vertex. A digraph D is called Φ-
decomposable if either D has only one vertex or there is a decomposition D = H[S1, ..., Sh], h ≥ 2 such
that H ∈ Φ and h = |H| (we call this decomposition a Φ-decomposition). Note that every Φ-graph is
Φ-decomposable: just take each Si as the graph with one vertex.

A digraph D is called totally Φ-decomposable if either D ∈ Φ or there is a Φ-decomposition D =
H[S1, ..., Sh] such that h ≥ 2, and each Si is totally Φ-decomposable. In this case, a Φ-decomposition of
D, Φ-decompositions Si = Hi[Si1, ..., Sihi

] of all Si which have more than one vertex, Φ-decompositions
of those of Sij who has more than one vertex, and so on, form a set of digraphs which will be called a
total Φ-decomposition of D.

Let Φ0 be the union of all semicomplete multipartite, extended locally semicomplete and acyclic
digraphs, Φ1 be the union of all extended locally semicomplete and acyclic digraphs, and Φ2 be the
union of all semicomplete bipartite, extended locally semicomplete and acyclic digraphs. It was proved
[13, 14] that in time O(n4), one can check if a given digraph D is totally Φi-decomposable (i = 0, 1, 2)
and (in case it is so) construct a total decomposition of D. Note that Φ1 ⊂ Φ2 ⊂ Φ0. Moreover, every
quasi-transitive digraph is totally Φ1-decomposable (by Theorem 6.1).

The first step of the approach in [58] is to generalize the hamiltonian path problem. The path-
covering number of a digraph D (denoted by pc(D)) is the least positive integer k such that D has a
k-path factor. The path-cycle-covering number of a digraph D (denoted by pcc(D)) is the least positive
integer k such that D has a k-path-cycle factor. The path-cycle-covering number of a digraph can easily
be found in polynomial time using, in particular, algorithms on flows in networks [13, 17, 58]. The
path-covering number is hard to calculate: note that pc(D) = 1 iff D has a hamiltonian path. Thus,
the path-covering number problem generalizes the hamiltonian path problem.

For some digraphs D, pc(D) = pcc(D). Fortunately, this is true for every Φ0-graph by Theorem
7.17 and its analogue for semicomplete multipartite digraphs. This fact leads to the solution of the
path-covering number problem for quasi-transitive digraphs given below.

Let D be a totally Φ0-decomposable digraph and D = R[H1, ...,Hr] be a Φ0-decomposition of D
(which is the part of a total Φ0-decomposition of D), and let Ep be a digraph of order p having no
arcs. A pc(D)-path factor of D passes through every Hi several, say ni, times. Clearly, ni satisfies the
following inequality: pc(Hi) ≤ ni ≤ |Hi|. Therefore,

pc(D) = min{pc(R[En1 , ..., Enr
]) : pc(Hi) ≤ ni ≤ |Hi|, i = 1, ..., r}.

Since Φ0 is extension-closed, and since, for every Φ0-graph Q, pc(Q) = pcc(Q), we obtain

pc(D) = min{pcc(R[En1 , ..., Enr ]) : pc(Hi) ≤ ni ≤ |Hi|, i = 1, ..., r}. (1)

The recursive formula (1) allows one to compute pc(D) in polynomial time. To show that, it suffies
to demonstrate how to find, in polynomial time, the minimum in formula (1) given all values of pc(Hi)
(and |Hi|). Construct a network NR containing the digraph R and two additional vertices (source and
sink) s and t such that s and t are adjacent to every vertex of V (R) and the arcs between s (t, resp.) and
R are oriented from s to R (from R to t, resp.). Associate with each vertex vi of R (corresponding to Hi

in D) the lower and upper bounds pc(Hi) and |V (Hi)| (i = 1, ..., r) on the amount of flow that can pass
through vi. It is not difficult to see that the value of a minimum flow from s to t, m, is related to the
minimum in (1), i.e. pc(D), as follows: pc(D) = max{1,m}. This, in particular, solves, in polynomial
time, the hamiltonian path problem for quasi-transitive digraphs. For more details we refer the reader
to [58].

To solve, in polynomial time, the hamiltonian cycle problem for totally Φ2-decomposable digraphs,
we shall use the following general proposition which can be justified analogously to formula (1).
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Proposition 8.2 Let D = R[H1, ...,Hr] be a decomposition of a digraph D (r ≥ 2). Then, D is
hamiltonian if and only if the following family S of digraphs contains a hamiltonian digraph:

S = {R[En1 , ..., Enr
] : pc(Hi) ≤ ni ≤ |Hi|, i = 1, ..., r}.

Actually, if D = R[H1, ...,Hr] such that R ∈ Φ2 and every Hi is totally Φ0-decomposable, then we
can check whether D is hamiltonian in polynomial time. Indeed, we can, in polynomial time, calculate
all pc(Hi) and |Hi|, verify whether R is strongly connected, and check whether one of the members of
S has a cycle factor (it has a cycle factor iff the network NR without s and t admits a circulation, i.e. a
flow of value 0). Note that a member of S, which is a Φ2-graph, has a hamiltonian cycle iff it contains
a cycle factor and it is strongly connected, i.e. R is strongly connected (due to Theorem 7.8 and its
analogue for semicomplete bipartite digraphs).

This means that the hamiltonian cycle problem is polynomial time solvable for totally Φ2-decomposable
digraphs, in particular, for quasi-transitive digraphs. Since the analogue of Theorem 7.8 is not true for
the class of semicomplete multipartite digraphs we cannot conclude that the hamiltonian cycle problem
is polynomial time solvable for totally Φ0-decomposable digraphs. However, we suspect that this is the
case.

Conjecture 8.3 The hamiltonian cycle problem is polynomial time solvable for totally Φ0-decomposable
digraphs.

It is impossible to construct polynomial time algorithms for finding a longest path and a longest cycle
in a quasi-transitive digraph using the approach above. Nevertheless, Alon (personal communication)
conjectured that there exist polynomial algorithms for finding a longest path and a longest cycle in a
quasi-transitive digraph. A new method allowing one to construct such algorithms was proposed by
Bang-Jensen and Gutin [13, 17].

In the rest of the section, we assume that every digraph D we consider has non-negative weights
w(.) on the vertices. The weight w(H) of a subgraph of D is the sum of the weights of its vertices. For
a positive integer k, the symbol wk(D) denotes the weight of a heaviest k-path subgraph of D, i.e. one
with the maximum weight among k-path subgraphs. For convenience we define w0(D) = 0. We consider
the following problem called the HPS problem: Given a digraph D on n vertices, find a heaviest k-path
subgraph of D for every k = 1, 2, ..., n.

In [17], the following general theorem was obtained.

Theorem 8.4 Let Φ be a set of digraphs including the trivial digraph on one vertex. Suppose that Φ is
extension-closed and, for every D ∈ Φ on n vertices,

wk+1(D)− wk(D) ≤ wk(D)− wk−1(D),

for each k = 1, 2, ..., n − 1. If there is a constant s ≥ 2 so that, for every L ∈ Φ, the HPS problem
can be solved in time O(|V (L)|s), then, for every totally Φ-decomposable digraph D, the HPS problem
can be solved in time O(|V (D)|s+1), provided we are given a total Φ-decomposition of D.

Using Theorem 8.4 along with Theorems 7.13, 7.14,7.17 as well as the analogue of Theorem 7.17 for
semicomplete multipartite digraphs, one can quite easily prove the following result.

Theorem 8.5 [14] Let D be a digraph with nonnegative real weights on the vertices.

(1) If D is totally Φ0-decomposable, then the HPS problem for D can be solved in time O(n5);

13



(2) If D is totally Φ1-decomposable, then a maximum weight cycle of D can be found in time O(n5);

(3) If D is totally Φ2-decomposable, then a longest cycle of D can be found in time O(n5).

The second part of Theorem 8.5 allows us to generalize a result from [19] on cycles through a given
set of vertices in extended semicomplete digraphs.

Theorem 8.6 Let D be a totally Φ1-decomposable digraph and X be a non-empty subset of V (D). Then
one can check whether D has a cycle through all the vertices of X and find such a longest one (if it
exists) in time O(n5).

This result follows from Theorem 8.5. Indeed, set w(x) = n for every vertex x in X and w(y) = 1
for every y /∈ X, and find a maximum weight cycle C in D. Obviously, D has a cycle through X iff
w(C) ≥ n|X|.

9 Hamiltonian connectivity

A digraph D is strongly hamiltonian-connected (weakly hamiltonian-connected, resp.) if it has a hamil-
tonian (x, y)-path ((x, y)-path or (y, x)-path, resp.) for every choice of distinct vertices x, y ∈ V (D).
Bang-Jensen, Guo and Volkmann [12] generalized Thomassen’s characterization of weakly hamiltonian
connected tournaments to locally semicomplete digraphs. To describe the main result of [12], we intro-
duce a few families of locally semicomplete digraphs. The unique strongly connected tournament with
four vertices is denoted by T 1

4 . The semicomplete digraphs T 1
4 , T 2

4 , T 3
4 , and T 4

4 are shown in Figure 1
in that order from left to right.

Figure 1: The digraphs T 1
4 , T 2

4 , T 3
4 and T 4

4 .

We denote the set {T 1
4 , T 2

4 , T 3
4 , T 4

4 } by T4. It is easy to see that every digraph of T4 has a unique
hamiltonian cycle and no hamiltonian path between two vertices which are not consecutive on this
hamiltonian cycle (such two vertices are called opposite).

Let T6 be the set of semicomplete digraphs with vertex set {x1, x2, a1, a2, a3, a4}, each member
D of T6 has a cycle a1→a2→a3→a4→a1 and D〈{a1, a2, a3, a4}〉 is isomorphic to one member of T4,
in addition, xi⇒{a1, a3}⇒x3−i⇒{a2, a4}⇒xi for i = 1 or i = 2. Since every digraph of T4 has no
hamiltonian path connecting any two opposite vertices, every digraph of T6 has no hamiltonian path
between x1 and x2. It is straightforward to verify that T6 contains only two tournaments (denoted by
T ′

6 and T ′′
6 ).

For every even integer n ≥ 4 there is only one 2-strongly connected, 2-diregular locally semicomplete
digraph (denoted by R2

n) on n vertices. We define

T ∗ = { R2
n | n is even and n ≥ 4}.

We observe that every digraph of T ∗ has a unique hamiltonian cycle and is not weakly hamiltonian con-
nected (see [7]). For instance, if the unique hamiltonian cycle of R2

6 is denoted by u1→u2→u3→u4→u5→u6→u1,
then u1→u3→u5→u1 and u2→u4→u6→u2 are two cycles of R2

6 and there is no hamiltonian path between
any two vertices of {u1, u3, u5} or of {u2, u4, u6}.

Let T 1
8 be the digraph consisting of R2

6 together with two new vertices x1 and x2 such that

x1⇒{u1, u3, u5}⇒x2⇒{u2, u4, u6}⇒x1.
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Furthermore, T 2
8 (T 3

8 , respectively) is defined as the digraph obtained from T 1
8 by adding the arc x1x2

(the arcs x1x2 and x2x1, respectively). We denote the set {T 1
8 , T 2

8 , T 3
8 } by T8. It is obvious that every

element of T8 is a 3-strongly connected locally semicomplete digraph and has also no hamiltonian path
between x1 and x2.

Theorem 9.1 [12] A locally semicomplete digraph D with at least three vertices is weakly hamiltonian-
connected, if and only if it satisfies (i), (ii) and (iii) below:

(i) D is strongly connected,

(ii) the digraph D − x has at most two strong components for each vertex x of D,

(iii) D is not isomorphic to any member of T6 ∪ T8 ∪ T ∗.

It is easy to see that the last theorem provides a polynomial algorithm for checking if a locally semicom-
plete digraph is weakly hamiltonian-connected. The proof of Theorem 9.1 in [12] is based on Theorem
6.5 and a complete characterization of those locally semicomplete digraphs that have two vertices x
and y which are not connected by a hamiltonian path. This characterization generalizes [78, Theorem
2.1] see [12, Theorem 3.3].

Bang-Jensen, Gutin and Huang obtained the following characterization of weakly hamiltonian-
connected extended tournaments.

Theorem 9.2 [18] Let D be an extended tournament. D is weakly hamiltonian-connected if and only
if it satisfies (1), (2), (3), and (4) below.

(1) D is strongly connected.

(2) For every pair of distinct vertices x and y of D, there is a path P connecting x and y so that D−P
has a cycle factor.

(3) For each vertex x of D, D − x has at most two strong components and, for each vertex y in the
initial (respectively, terminal) strong component, there is a (y, x) (respectively, (x, y))-path P ′ such
that D − P ′ has a cycle factor.

(4) D is not isomorphic to one of the two tournaments in T6.

An analogous characterization of weakly hamiltonian-connected semicomplete bipartite digraphs
without 2-cycles was obtained by Bang-Jensen and Manoussakis [28]. The only difference between these
two characterizations is in Condition 4: in Bang-Jensen’s and Manoussakis’ theorem the set of forbidden
digraphs is absolutely different and moreover infinite.

In the case of strongly hamiltonian-connectivity no characterization is known even for the case of
tournaments. Thomassen proved that every 4-strongly connected semicomplete digraph is strongly
hamiltonian-connected and gave an infinite family of 3-strongly connected tournaments which are not
strongly-hamiltonian connected [78]. Recently Guo extended this to locally semicomplete digraphs. His
main result is the following.

Theorem 9.3 [44] Let D be a 2-strongly connected locally semicomplete digraph and let x, y be two
distinct vertices of D. Then D contains a hamiltonian path from x to y if (a) or (b) below is satisfied.

(a) The digraph D has two internally disjoint (x, y)-paths P1, P2, each of which is of length at least 2
and a path P which either starts in x, or ends in y and has only x or y in common with P1, P2

such that V (D) = V (P1) ∪ V (P2) ∪ V (P ). Furthermore, for any vertex z 6∈ V (P1) ∪ V (P2), z has
a neighbour on P1 − {x, y} if and only if it has a neighbour on P2 − {x, y}.
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(b) There are three internally disjoint (x, y)-paths in D, each of which is of length at least 2 and D is
not isomorphic to any of the first two members of T8.

In [42] Guo used this theorem to give a complete characterization of those 3-strongly connected arc-
3-cyclic locally tournament digraphs with no hamiltonian path from x to y for specified vertices x and
y (the definition of arc-3-cyclic digraphs is given in the next section). In particular this characterization
shows that there exist infinitely many 3-strongly connected digraphs which are locally tournament
digraphs but not tournaments and are not strongly hamiltonian-connected.

In [29] a polynomial algorithm for deciding whether a given semicomplete digraph has a hamiltonian
path with specified initial and terminal vertices was described. It is interesting to note that this algorithm
cannot be easily modified to solve the problem of finding the longest path with specified initial and
terminal vertex in a semicomplete digraph. There also does not seem to be any simple reduction of this
problem to the problem of deciding the existence of a hamiltonian path from x to y.

Conjecture 9.4 There exists a polynomial algorithm which given a semicomplete digraph D and two
distinct vertices x and y of D finds a longest (x, y)-path.

We believe that the result in [29] can be generalized to extended semicomplete digraphs and locally
semicomplete digraphs.

Conjecture 9.5 There exists a polynomial algorithm which given an extended semicomplete digraph (a
locally semicomplete digraph, resp.) D and two distinct vertices x and y of D decides whether D has a
hamiltonian path from x to y and finds such a path if one exists.

In conclusion we give the following natural generalization of a result by Thomassen [78] which has
been used a number of times for solving problems concerning paths and cycles in tournaments.

Proposition 9.6 [9] Let D be a path-mergeable digraph. Then D has a hamiltonian (x, y)-path if and
only if D contains a spanning acyclic digraph H with a source x and a sink y so that, for every vertex
z ∈ V (D), H contains an (x, z)-path and a (z, y)-path.

10 Pancyclicity and its generalizations

A digraph D is pancyclic if it has cycles of all lengths 3, 4, . . . , n. D is vertex-pancyclic (arc-pancyclic,
respectively) if for any v ∈ V (D) (a ∈ E(D), respectively) and any k ∈ {3, ..., n} there is a cycle of
length k containing v (a, respectively). D is called arc-3-cyclic if each arc of D is contained in a cycle
of length 3. Let x, y be a pair of distinct vertices of D. We say that D has an (x, y)-path system if D
contains both an (x, y)-path of length k and a (y, x)-path of length k for every k = 2, 3, ..., n− 1.

Gutin [57] (see, also, [55]) characterized pancyclic and vertex-pancyclic extended semicomplete di-
graphs. Bang-Jensen and Huang [25] reformulated this theorem (see below) and, using the result,
found characterizations of pancyclic and vertex pancyclic quasi-transitive digraphs. They introduced
the following notion. A digraph D is triangular with partition V0, V1, V2, if the vertex set of D can be
partitioned into three disjoint sets V0, V1, V2 with V0⇒V1⇒V2⇒V0.

Theorem 10.1 [55, 57] Let D be a hamiltonian extended semicomplete digraph with k partite sets
(k ≥ 3) of order n ≥ 4.

(i) D is pancyclic if and only if D is not triangular with a partition V0, V1, V2, two of which induce
independent sets, such that either |V0| = |V1| = |V2| or no D〈Vi〉 (i = 0, 1, 2) contains a path of
length 2.
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(ii) D is vertex-pancyclic if and only if it is pancyclic and either k > 3 or k = 3 and D contains two
cycles Z,Z ′ of length 2 such that Z ∪ Z ′ has vertices in the three partite sets.

The last theorem extends the well-known results of Moser and Moon that every strongly connected
tournament is both pancyclic and vertex-pancyclic.

Theorem 10.2 [25] Let D be a hamiltonian quasi-transitive digraph on n ≥ 4 vertices.

(i) D is pancyclic if and only if it is not triangular with a partition V0, V1, V2, two of which induce
independent sets, such that either |V0| = |V1| = |V2|, or no Vi (i = 0, 1, 2) contains a path of length
2.

(ii) D is not vertex-pancyclic if and only if D is not pancyclic or D is triangular with a partition
V0, V1, V2 such that one of the following occurs:

1. |V1| = |V2|, both D〈V1〉 and D〈V2〉 are independent sets, and there exists a vertex x ∈ V0 such that
x is not contained in any path of length 2 in D〈V0〉 (in which case x is not contained in a cycle of
length 5).

2. one of D〈V1〉 and D〈V2〉 is an independent set and the other contains no path of length 2, and
there exists a vertex x ∈ V0 such that x is not contained in any path of length 1 in D〈V0〉 (in which
case x is not contained in a cycle of length 5).

Using Theorem 6.5 the following characterization of pancyclic and vertex-pancyclic locally semicom-
plete digraphs was derived in [11]. Below we use g(R) to denote the the length of a shortest directed
cycle in R and gri

(R) to denote the length of a shortest directed cycle through the vertex ri ∈ V (R).
Note that, in particular, it follows from Theorem 10.3 that any strongly connected locally semicomplete
digraph which is not vertex-pancyclic must be round decomposable.

Theorem 10.3 A strongly connected locally semicomplete digraph D is pancyclic if and only if it
is not of the form D = R[S1, . . . , Sr], where R is a round locally tournament digraph with g(R) >
max{2, |V (S1)|, ..., |V (Sr)|} + 1. D is vertex pancyclic if and only if D is not of the form D =
R[S1, . . . , Sr], where R is a round locally tournament digraph with gri

(R) > max{2, |V (Si)|} + 1 for
some i ∈ {1, ..., r}, where ri is the vertex of R corresponding to Si.

Problem 10.4 Characterize arc-pancyclic locally semicomplete digraphs.

Note that even for semicomplete digraphs this problem is still open.

Problem 10.5 Characterize pancyclic (vertex-pancyclic, arc-pancyclic, resp.) locally in-semicomplete
digraphs.

Bu and Zhang [31] obtained the following characterization of arc-pancyclic locally tournament di-
graphs.

Theorem 10.6 Let T be connected, arc-3-cyclic locally tournament digraph. Then T is arc-pancyclic if
and only if T is not isomorphic to T 2

8 (a member of the set T8 introduced in the previous section) or to a
D6-type digraph or to D8-type digraph (see Figure 2). In particular, at most one edge of an arc-3-cyclic
locally tournament digraph is not in cycles of all possible lengths.
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Figure 2: The arc from y to x can be left out and edges with no orientation may be oriented arbitrarily

The following two theorems in [41] deal with the existence of (x, y)-path systems.

The first theorem provides further properties of all but one arc-pancyclic locally tournament digraphs.
A relatively short proof of this theorem together with Theorem 10.6 is given by Guo in [41].

Theorem 10.7 An arc-pancyclic locally tournament digraph D contains an (x, y)-path system for every
pair of non-adjacent vertices x, y if and only if D is not isomorphic to T 1

8 (a member of the set T8

introduced in the previous section).

A D3-type digraph D consists of two vertex disjoint arc-3-cyclic tournaments T ′ and T ′′ and another
vertex x such that x⇒V (T ′)⇒V (T ′′)⇒x.

Theorem 10.8 Let D be connected, arc-3-cyclic locally tournament digraph such that, for every arc
x→y, D contains a vertex z which dominates y and is dominated by x. Then D has an (x, y)-path
system for pair x, y of distinct vertices if and only if D is not isomorphic to a D3-type digraph or to
a D∞

8-type digraph (see Figure 3) or to one member of {T 1
8 , T 2

8 } (see the definition of T8 given in the
previous section).

In [40] Guo studied 3-strongly 3-arc-connected locally tournament digraphs . He characterized when
such a locally tournament digraph D does not have (x, y)-paths of all lenghts 3 ≤ k ≤ |D| − 1 for
specified vertices x, y satisfying that there is no arc from y to x in D. We refer the reader to [40] for
the characterization.

One consequence of Guo’s characterization is the following:

Theorem 10.9 [40] Let D be a 5-strongly connected 3-arc-cyclic locally tournament digraph . Then
the following is true

1. D is arc-pancyclic.

2. For every arc x→y D contains (x, y)-paths of all lengths 3 ≤ k ≤ |D| − 1.

3. For every pair of non-adjacent vertices x and y D has an (x, y)-path system.
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Figure 3: T0 is an arc-3-cyclic tournament

11 Disjoint paths

Recall two classical NP-complete problems for directed graphs:

Problem 11.1 (The 2-path problem) Given a digraph D and distinct vertices u, v, x, y ∈ V (D).
Decide if D has a pair of vertex-disjoint paths Pu,v, Px,y where Pu,v (Px,y) is a (u, v)-path ((x, y)-path).

Problem 11.2 (The weak 2-path problem) Given a digraph D and distinct vertices u, v, x, y ∈
V (D). Decide if D has a pair of arc-disjoint paths Pu,v, Px,y where Pu,v (Px,y) is a (u, v)-path ((x, y)-
path).

Theorem 11.3 [30] The 2-path problem is polynomially solvable for semicomplete digraphs.

Theorem 11.4 [5] The weak 2-path problem is polynomially solvable for semicomplete digraphs.

Using Theorem 6.1 it was shown in [10] that for quasi-transitive digraphs both problems can be
reduced to the semicomplete case.

Theorem 11.5 [10] The 2-path problem and the weak 2-path problem are polynomially solvable for
quasi-transitive digraphs.

In fact the following much more general results were shown in [10]:

Theorem 11.6 [10] The 2-path problem and the weak 2-path problem is polynomially solvable for all
digraphs that can be obtained from strong semicomplete digraphs by substituting arbitrary digraphs for
vertices.

Theorem 11.7 [10] Let Φ be a class of strongly connected digraphs, let Φext denote the class of all
extensions of graphs in Φ and let

Φ∗ = {F [D1, . . . , D|F |] : F ∈ Φ, each Di is a general digraph}.

There is a polynomial algorithm for the 2-path problem in Φ∗ if and only if there is a polynomial algorithm
for the 2-path problem for all digraphs in Φext.
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This result shows again that studying extensions of digraphs can be quite useful.

It is important to note here that Φ must consist of strongly connected digraphs, since it is not
difficult to reduce the 2-path problem for general digraphs (which is NP-complete [36]) to the 2-path
problem for those digraphs that can be obtained from the digraph H consisting of just an arc u→v by
substituting arbitrary digraphs for the vertex v.

Corollary 11.8 [10] The 2-path problem and the weak 2-path problem are polynomially solvable for
extended semicomplete digraphs.

Conjecture 11.9 The weak 2-path problem and the 2-path problem are polynomially solvable for locally
semicomplete digraphs.

For semicomplete multipartite digraphs these problems seem quite difficult, but we suspect that
these problems are tractable at least for some subclasses of semicomplete multipartite digraphs.

Conjecture 11.10 The 2-path problem and the weak 2-path problem are polynomially solvable for semi-
complete bipartite digraphs.

A digraph D is k-linked if for any set of 2k distinct vertices x1, x2, . . . , xk, y1, y2, . . . , yk, D contains
k vertex-disjoint paths P1, P2, . . . , Pk such that Pi is an (xi, yi)−path.

The following result extends a result by Thomassen [79] to locally semicomplete digraphs and quasi-
transitive digraphs.

Theorem 11.11 [10] For every natural number k there exists a natural number g(k) (h(k)) such that
every g(k)-strongly connected locally semicomplete digraph ( h(k)-strongly connected quasi-transitive
digraph) is k-linked.

Conjecture 11.12 For every natural number k there exists a natural number f(k) such that every
f(k)-strongly connected semicomplete multipartite digraph is k-linked.

Even the case k = 2 of Conjecture 11.12 seems highly non-trivial.

Consider now the problem of finding internally vertex-disjoint (arc-disjoint) (x, y)-, (y, z)-paths in a
digraph. This problem is easily seen to be NP-complete, since there is a trivial reduction of the 2-path
problem to this problem. It was shown in [10] that in the case of arc-disjoint paths the characterization
for semicomplete digraphs given in [5] still holds for quasi-transitive digraphs and locally in-semicomplete
digraphs.

Theorem 11.13 [10] Let D be a digraph which is either a quasi-transitive digraph, or an locally in-
semicomplete digraph and let x, y, z ∈ V (D) be distinct vertices. D has a pair of arc-disjoint (x, y)-,
(y, z)-paths if and only if there is no arc in E(D) that lies on all (x, y)-paths and on all (y, z)-paths.
Furthermore there is a polynomial algorithm to find the desired paths if they exist.

In the case of internally vertex-disjoint paths (i.e. when we want an (x, z)-path that passes through
y) it was pointed out in [10] that the complete characterization for semicomplete digraphs given in [4]
is also valid for quasi-transitive digraphs. Hence it follows that this problem is polynomially solvable
for quasi-transitive digraphs. We refer the reader to [4, 10] for the details.
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12 Arc-disjoint in- and out-branchings

Problem 12.1 Given a digraph D and vertices u, v (not necessarily distinct). Decide whether D has
a pair of arc-disjoint branchings F+

u , F−
v such that F+

u is an out-branching rooted at u and F−
v is an

in-branching rooted at v.

For general digraphs Problem 12.1 is NP-complete [5]. However, in [5] the problem was solved for the
case of tournaments and the result implies the existence of a polynomial algorithm to find the desired
branchings if they exist. In [25] it was shown that provided u = v and v is adjacent to all other vertices,
the problem is still polynomially solvable, even for general digraphs, and the following holds:

Theorem 12.2 [25] Let D be a strongly connected digraph and v a vertex of D such that V (D) =
{v} ∪ I(v) ∪O(v). Let A = {A1, A2, . . . Ak} (B = {B1, B2, . . . , Br}) denote the set of terminal (initial)
components in D〈O(v)〉 (D〈I(v)〉). Then D contains a pair of arc-disjoint branchings F+

v , F−
v such that

F+
v is an out-branching rooted at v and F−

v is an in-branching rooted at v if and only if there exist two
disjoint arc sets EA, EB ⊂ E(D) such that all arcs in EA∪EB go from O(v) to I(v) and every component
in Ai ∈ A (Bj ∈ B) is incident with an arc from EA (EB). Furthermore, there exists a polynomial
algorithm to find the desired branchings, or demonstrate the non-existence of such branchings.

It was also shown in [25] that for quasi-transitive digraphs and u = v the problem can be reduced
to the case when v is adjacent to all other vertices.

Proposition 12.3 [25] A quasi-transitive digraph D contains arc-disjoint branchings F+
v , F−

v rooted at
a vertex v if and only if D′ = D({v} ∪ I(v) ∪O(v)) has arc-disjoint branchings F ′+

v , F ′−
v rooted at v.

Problem 12.4 Characterize those locally semicomplete digraphs D that have arc-disjoint branchings
F+

v , F−
v for a given vertex v ∈ V (D).

Conjecture 12.5 The arc-disjoint in and out-branching problem is polynomially solvable for locally
semicomplete digraphs.

The following much harder problem may also be tractable.

Problem 12.6 Characterize those locally semicomplete digraphs (respectively, quasi-transitive digraphs)
D that have arc-disjoint branchings F+

u , F−
v for given vertices u, v ∈ V (D).

This problem is open even for semicomplete digraphs, since the characterization given in [5] is only
valid for tournaments.

Problem 12.7 Characterize those quasi-transitive digraphs D that have arc-disjoint branchings F+
u , F−

v

for given vertices u, v ∈ V (D).

Conjecture 12.8 Problem 12.1 is polynomially solvable for quasi-transitive digraphs.

Recall that this was shown in [25] for the special case when u = v.

A digraph D is k-strongly arc-connected if D − B is strongly connected for every set B of at most
k − 1 arcs in D.
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Conjecture 12.9 [80] There exists a natural number N such that every digraph D which is N -strongly
arc-connected has arc-disjoint branchings F+

v , F−
v for every choice of v ∈ V (D).

We believe that something much stronger holds for tournaments:

Conjecture 12.10 There exists a function f : N→N such that for every natural number k every f(k)-
strongly arc-connected tournament T has 2k arc-disjoint branchings F+

v,1, . . . , F
+
v,k, F−

v,1, . . . , F
−
v,k such

that F+
v,1, . . . , F

+
v,k are out-branchings rooted at v and F−

v,1, . . . , F
−
v,k are in-branchings rooted at v, for

every vertex v ∈ V (T ).

It was shown in [5] that f(1) = 2.

13 Complementary cycles

Two cycles C and C ′ of a digraph D are complementary if V (D) = V (C) ∪ V (C ′). A digraph D is
cycle-complementary if D has two complementary cycles, each of which has length at least 3. Let γ be
an integer satisfying 3 ≤ γ ≤ |D|

2 . If for each integer t with γ ≤ t ≤ |D| − γ, the digraph D contains
complementary cycles of lengths t and |D| − t respectively, then D is complementary γ-pancyclic. In
the special case γ = 3 we call D complementary pancyclic. Answering a special case of a question of
Thomassen (see [74]) and building upon a partial result by Reid [74], Song [77] proved that except for
one tournament on 7 vertices, all 2-strongly connected tournaments are complementary pancyclic.

The kth power of a cycle C is the digraph obtained from C by adding an arc from x ∈ V (C) to
y ∈ V (C) if and only if the length of the (x, y)-path contained in C is less than or equal to k. Hence
the 1st power of C is C itself.

Theorem 13.1 [46] A 2-strongly connected locally semicomplete digraph on at least 8 vertices is cycle
complementary if and only if it is not the second power of an odd cycle.

Problem 13.2 [42] Let k be a positive integer. What is the least integer f(k) such that all but a
finite number of f(k)-strongly connected locally semicomplete digraphs can be decomposed into k vertex
disjoint cycles, each of which is of length at least 3?

Conjecture 13.3 [42] Let k be a positive integer and let D be a k-strongly connected locally semicom-
plete digraph on at least 3k vertices. Then D can be decomposed in k vertex disjoint cycles, each of
which is of length at least 3, unless D is a member of a finite family of k-strongly connected locally
semicomplete digraphs .

Guo and Volkmann generalized Songs’ result for tournaments [77] to locally semicomplete digraphs.
Recall that for a digraph D we use the notation g(D) to denote the length of a shortest directed cycle
of length at least 3 in D

Theorem 13.4 [47] Let D be a 2-strong locally semicomplete digraph on at least 6 vertices, then D is
complementary g(D)-pancyclic, unless D is the second power of an odd cycle, or one of 6 specific locally
semicomplete digraphs (we refer the reader to [47] for the definition of these).

In [42] Guo posed the following problem which generalizes a question of Song for tournaments:
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Problem 13.5 [42] Let k be a positive integer. What is the least integer h(k) such that all but a
finite number of h(k)-strongly connected locally semicomplete digraphs on n vertices can be decomposed
into k vertex disjoint cycles of lengths n1, n2, . . . , nk, where n1, n2, . . . , nk are any integers satisfying
ni ≥ g(D), for i = 1, 2, . . . , k and

∑k
i=1 ni = n?

By Theorem 13.4, h(2) = 2. For all k ≥ 3 the problem is open even for tournaments.

Conjecture 13.6 [42] h(k) = f(k) for all k, where f(k) is defined as in Problem 13.2.

14 Miscellaneous results, problems and conjectures

Jackson and Thomassen have the following conjecture [80].

Conjecture 14.1 [80] Every 2k-strongly connected digraph contains a spanning k-strongly connected
oriented graph (i.e. a digraph without cycles of length two).

Even the weaker conjecture that there exists some function f(k) such that every f(k)-strongly
connected digraph contains a spanning k-strongly connected oriented graph is completely open for
general digraphs. For locally semicomplete digraphs it is only known that f(k) ≤ 3k−2 [43] (f(k) ≤ 5k
was proved earlier in [6]). In [25] it is shown how this and Theorem 6.1 imply that the same f(k) works
for quasi-transitive digraphs as for semicomplete digraphs.

We believe that the following special cases of Conjecture 14.1 may be proved. It is however worth
noting that even the very special case of semicomplete digraphs is open.

Conjecture 14.2 Every 2k-strongly connected semicomplete multipartite digraph contains a spanning
k-strongly connected multipartite tournament.

Conjecture 14.3 Every 2k-strongly connected locally in-semicomplete digraph contains a spanning
k-strongly connected locally in-tournament digraph.

Thomassen also posed the following conjecture for tournaments.

Conjecture 14.4 For all natural numbers r, s there exists a natural number f(r, s) such that the vertex
set of every f(r, s)-strongly connected tournament T can be partitioned into two sets V1, V2 such that
the tournament induced by V1 is r-strongly connected and the tournament induced by V2 is s-strongly
connected.

We believe that a similar property holds for quasi-transitive digraphs and locally semicomplete
digraphs.

A kernel in a digraph D = (V,A) is an independent set X ⊂ V such that every vertex y ∈ V −X is
dominated by some vertex from X. Kernel is the problem of deciding whether a given digraph has a
kernel.

Conjecture 14.5 Kernel is polynomially solvable for locally in-semicomplete digraphs .

Kernel is polynomially solvable for locally semicomplete digraphs [11]. It is easy to see that Kernel
is polynomially solvable for semicomplete multipartite digraphs, since any kernel must be a subset of a
colour class of the semicomplete multipartite digraphs.
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Problem 14.6 Determine the complexity of Kernel for path-mergeable digraphs.

We finish this section by discussion of some results on radius and diameter of some generalizations
of tournaments. The diameter of a strongly connected digraph D is the least integer d such that, for
every ordered pair x, y of distinct vertices of D, D has an (x, y)-path of length at most d.

Let f(m1, ...,mk) be the minimum possible diameter of a k-partite tournament with partite sets
of sizes m1, ...,mk. For k = 2 the value of this function was determined by Soltes (for details see
[55]). For k ≥ 3 the function was investigated independently in [53, 65, 73]. It is easy to show that
2 ≤ f(m1, ...,mk) ≤ 3 for every k ≥ 3 and all positive integers m1, ...,mk (see [53, 65, 73]). The
following natural question was posed in [73] and [53]: Determine all k tuples of integers m1, ...,mk such
that f(m1, ...,mk) = 2. In [53, 65, 73], it was shown that f(m1, ...,mk) = 2 for all m1 = m2 = ... = mk

except m1 = m2 = m3 = m4 = 1. This result was extended in [66].

A pair p, q of integers is called a co-pair if 1 ≤ p ≤ q ≤
(

p
bp/2c

)
. A triple p, q, r of positive integers is

called a co-triple if p, q and p, r are co-pairs. The following theorem is due to Koh and Tan [66]

Theorem 14.7 If m1, ...,mk can be partitioned into co-pairs when k is even and into co-pairs and a
co-triple when k is odd, then f(m1, ...,mk) = 2.

The following notion is closely related to the notion of radius. A vertex x of a digraph D is a
r-king if for every vertex y 6= x there exists an (x, y)-path of length at most r. It is well known that
every tournament has a 2-king. The first result on kings in multipartite tournaments was obtained
independently in [50] and [72]: every multipartite tournament T with at most one vertex of indegree
zero has a 4-king (i.e. the radius of T is at most four). This result was strengthened by Koh and Tan
(see [67, 75]):

Theorem 14.8 Every k-partite tournaments without vertices of indegree zero contains at least four
4-kings when k = 2 and at least three 4-kings when k ≥ 3.

The case of k = 2 in Theorem 14.8 was independently proved in [48] and [71]. Moreover, this case
is a simple consequence of the following result.

Theorem 14.9 [52] Let T be a multipartite tournament. If T has no vertex x dominating all vertices
of a partite set of T , then every partite set of T has at least two 4-kings.

Note that there exist infinitely many k-partite tournaments without 3-kings for every k ≥ 2 [50].
Some further results on r-kings in multipartite tournaments are well described in [75].

Bang-Jensen and Huang [26] considered kings in quasi-transitive digraphs. The main result of [26]
is the following:

Theorem 14.10 A quasi-transitive digraph D has a 3-king if and only if it has a finite radius. Fur-
thermore, if D has a 3-king, then every vertex in D of maximum out-degree is a 3-king.

Note that there exist infinitely many quasi-transitive digraphs with 3-kings but without 2-kings.
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