
Paths and cycles in extended and decomposable

digraphs

Jørgen Bang-Jensen
Gregory Gutin∗

Department of Mathematics and Computer Science
Odense University, Denmark

Abstract

We consider digraphs – called extended locally semicomplete di-
graphs, or extended LSD’s, for short – that can be obtained from lo-
cally semicomplete digraphs by substituting independent sets for ver-
tices. We characterize Hamiltonian extended LSD’s as well as extended
LSD’s containing Hamiltonian paths. These results as well as some ad-
ditional ones imply polynomial algorithms for finding a longest path
and a longest cycle in an extended LSD. Our characterization of Hamil-
tonian extended LSD’s provides a partial solution to a problem posed
by R. Häggkvist in [14]. Combining results from this paper with some
general results derived for so-called totally Φ-decomposable digraphs
in [3], we prove that the longest path problem is polynomially solvable
for totally Φ0-decomposable digraphs - a fairly wide family of digraphs
which is a common generalization of acyclic digraphs, semicomplete
multipartite digraphs, extended LSD’s and quasi-transitive digraphs.
Similar results are obtained for the longest cycle problem and other
problems on cycles in subfamilies of totally Φ0-decomposable digraphs.
These polynomial algorithms are a natural and fairly deep generaliza-
tion of algorithms obtained for quasi-transitive digraphs in [3] in order
to solve a problem posed by N. Alon.

∗This work was supported by the Danish Research Council under grant no. 11-0534-1.
The support is gratefully acknowledged.

1

1 Introduction

The purpose of this paper is twofold. First, we introduce and investigate
extended locally semicomplete digraphs1 (extended LSD’s, for short) - a
common generalization of two well-studied families of digraphs, locally semi-
complete digraphs (see e.g. [1, 2, 8, 16]) and extended semicomplete digraphs
(see e.g. [4, 11, 12]). It is shown that extended LSD’s inherit some useful
properties of both ”parents”. Second, combining the results obtained for ex-
tended LSD’s with some general results derived for totally Φ-decomposable
digraphs in [3] we prove the longest path problem is polynomially solvable for
totally Φ0-decomposable digraphs, a fairly wide family of digraphs which is
a common generalization of acyclic digraphs, semicomplete multipartite di-
graphs (see e.g. [4, 10, 11, 16]), extended LSD’s and quasi-transitive digraphs
(see e.g. [3, 5, 13]). Similar results are obtained for the longest cycle prob-
lem and other problems on cycles in subfamilies of totally Φ0-decomposable
digraphs. These polynomial algorithms are a natural and fairly deep gener-
alization of algorithms obtained for quasi-transitive digraphs in [3] in order
to solve a problem posed by N. Alon.

We list some results obtained for extended LSD’s: In Sections 4 and 5
we show that an extended LSD has a Hamiltonian path (cycle) if and only
if it has a path and a collection of cycles, all pairwise disjoint, which span
the vertex set (is strong and has a spanning collection of disjoint cycles).
These characterizations imply O(n3) algorithms for finding a Hamiltonian
path and a Hamiltonian cycle in an extended LSD D with n vertices (if
D contains one). R. Häggkvist [14] posed the problem of characterizing
those digraph families for which a member is Hamiltonian if and only if it is
strongly connected and contains a spanning collection of disjoint cycles. Our
characterization of Hamiltonian extended LSD’s provides a partial solution
to this problem.

We point out that the algorithm for constructing a longest cycle in case
of extended LSD’s is much more difficult than that in case of extended semi-
complete digraphs. Using the algorithms above as well as some additional
results we construct polynomial algorithms for finding a longest path and a
longest cycle in an extended LSD.

2 Terminology and preliminaries

We shall assume that the reader is familiar with the standard terminology
on graphs and digraphs and refer the reader to [6],[7].

For any digraph D, the underlying graph of D is the graph obtained by
ignoring the orientations of arcs in D and deleting parallel edges. We say
that D is connected if its underlying graph is connected.

If U ⊂ V (D) then we denote by D < U > the subgraph of D induced
by the vertices in U . We use n (m) to denote the number of vertices (arcs)
of the actual digraph studied.

Let D be a digraph. If there is an arc from a vertex x to a vertex y in D
we say that x dominates y and use the notation x → y to denote this. If A

1For definitions see the next section

2

and B are disjoint subsets of vertices of D such that there is no arc from B
to A and a→b for every choice of a ∈ A and b ∈ B, then we denote this by
A⇒B. If a→b and b→a for all a ∈ A and b ∈ B, then we write A⇔B. We let
Ix (respectively, Ox) denote the set of vertices dominating x (respectively,
dominated by) x in D. We call |Ix| (|Ox|) the in-degree (out-degree) of x.
Two vertices x and y are called similar if they are not adjacent and Ix = Iy,
Ox = Oy.

A path (cycle) will always mean a directed path (cycle). If x and y are
vertices of D and P is a path from x to y, we say that P is an (x, y)−path.
If P is a path containing a subpath from x to y we let P [x, y] denote that
subpath. Similarly, if C is a cycle containing vertices x and y, C[x, y] denotes
the subpath of C from x to y.

A digraph D is said to be semicomplete if every pair of vertices of D is
joined by an arc or by a pair of mutually opposite arcs. A semicomplete mul-
tipartite digraph is a digraph that can be obtained from a complete r-partite
graph, for some r ≥ 2, by giving each edge an orientation, or replacing it
with two oppositely oriented arcs. A locally semicomplete digraph (LSD, for
short) is a digraph for which the following holds: for every vertex x the ver-
tices dominated by x induce a semicomplete digraph and the vertices that
dominate x induce a semicomplete digraph. It was proved [1] that every
connected LSD has a Hamiltonian path.

A digraph D is strongly connected (or just strong) if there exists an
(x, y)−path and a (y, x)−path in D for every choice of distinct vertices x, y
of D. It was shown [1] that every strong LSD has a Hamiltonian cycle. If a
digraph is not strong then we can label its strong components D1, . . . , Ds,
s ≥ 2, such that there is no arc from Dj to Di if j > i. In general this
labelling is not unique, but it is so for LSD’s [1, Theorem 3.1].

A k-path-cycle subgraph of a digraph D is a subgraph of D consisting a
disjoint collection of k paths and some cycles. If the number of cycles is zero
we call it a k-path subgraph. A cycle subgraph is a nonempty 0-path-cycle
subgraph.

A trivial digraph is a digraph without arcs. Let R be a digraph on
r vertices v1, ..., vr and let H1, ..., Hr be a disjoint collection of digraphs.
Then D = R[H1, ...,Hr] is the new digraph obtained from R by replacing
each vertex vi of R by Hi and adding an arc from every vertex of Hi to
every vertex of Hj if and only if (vi, vj) is an arc of R (1 ≤ i 6= j ≤ r). If
each of H1, ...,Hr is trivial, D is called an extension of R. In particular, a
digraph D is an extended locally semicomplete digraph (extended LSD, for
short) if there exists a LSD R such that D = R[H1, . . . ,Hr], where each Hi

is an independent set of vertices (possibly of size 1).
Let Φ be a set of digraphs containing the trivial digraph with one vertex.

A digraph D is called totally Φ-decomposable if either D has only one vertex,
or there is a decomposition D = R[H1, ...,Hr], r ≥ 2 so that R ∈ Φ and
each of H1, ..., Hr is totally Φ-decomposable. In this case, the decomposition
D = R[H1, ...,Hr], appropriate decompositions Hi = Ri[Hi1, ..., Hiri] of all
Hi except trivial ones on one vertex, appropriate decompositions of all Hij

except trivial ones of order 1, and so on, form a total Φ-decomposition of D.
A digraph D is called quasi-transitive if for any triple x, y, z of distinct

vertices of D such that (x, y) and (y, z) are arcs of D there is at least one

3

arc from x to z or from z to x. Let Ψ be the union of all acyclic and all
semicomplete digraphs. The following is a weakening of a decomposition
theorem from [5]: Every quasi-transitive digraph is totally Ψ-decomposable.
One can find a total Ψ-decomposition of D in time O(n3).

The following claim was proved in [10, 11].

Proposition 2.1 For every connected digraph D, a spanning cycle sub-
graph respectively, a spanning 1-path-cycle subgraph, can be found (if it ex-
ists) in time O(n

5
2). Furthermore a maximum order cycle subgraph respec-

tively, a maximum order 1-path-cycle subgraph can be found in time O(n3).

3 Basic properties of extended LSD’s

The following two claims can be easily obtained from the definition of a
LSD.

Lemma 3.1 Let D be a connected extended LSD with decomposition
D = R[H1, . . . ,Hr], r ≥ 2. If x and y are similar vertices of D, then
{x, y} ⊂ V (Hi) for some i.

Proposition 3.2 A connected extended LSD has a unique decomposi-
tion D = R[H1, . . . ,Hr], r ≥ 2, where R is a LSD. 2

Lemma 3.3 Let D be a digraph and let C1 = x1x2 . . . xrx1 and C2 =
y1 . . . ysy1 be disjoint cycles in D. If xi and yj are similar vertices, then
there exists a cycle C∗ in D with V (C∗) = V (C1) ∪ V (C2).

Proof: If xi and yj are similar, then xi→yj+1 and yj→xi+1, so we
can take C∗ = C1[xi+1, xi]C2[yj+1, yj]xi+1. 2

Lemma 3.4 Let D be an extended LSD and let P1 be an (x, y)-path and
P2 an (x, z)-path (possibly with y = z) which is internally disjoint from P1.
If no vertex of V (P1) \ V (P2) is similar to a vertex of V (P2) \ V (P1), then
the following holds:

1. D contains a path P starting in x and ending in either y or z such
that V (P) = V (P1) ∪ V (P2).

2. Furthermore, on P the relative order of vertices from Pi, i = 1, 2 is
preserved.

3. P can be found in time O(q), where q is the number of arcs between
P1 and P2.

Similarly, paths ending in the same vertex and otherwise disjoint can be
merged, provided they have no pair of similar vertices.

4

Proof: Let P1 = x1x2 . . . xk and P2 = y1y2 . . . yr where x1 = y1 = x,
xk = y and yr = z. If k = 1, or r = 1, the claim is trivial, so we can assume
k ≥ 2 and r ≥ 2. Note that x2 and y2 are adjacent, because they are not
similar. Suppose x2→y2, then the claim follows by induction applied to the
paths P1[x2, xk] and x2P2[y2, yr]. Similarly, if y2→x2. It is easy to see that
the proof implies an O(q) algorithm to merge the paths. 2

Proposition 3.5 Let D be a connected non-strong extended LSD.

1. If A and B are distinct strong components of D, then either A⇒B, or
B⇒A, or there are no arcs between A and B.

2. There is a unique ordering D1, . . . , Ds, s ≥ 2 of the strong components
of D so that there is no arc from Dj to Di for j > i.

3. Furthermore with this ordering we have D1⇒D2⇒ . . .⇒Ds.

Proof: First note that no two distinct strong components A and B
can contain vertices a ∈ A and b ∈ B such that a and b are similar. Now
1. follows from the fact that D is an extended LSD. From 1. it follows
that the digraph obtained from D by contracting each strong component to
one vertex is a non-strong connected LSD. By [1, Theorem 3.1(c)] it follows
that the vertices u′1, . . . , u′k of this LSD can be ordered in a unique way
u1, . . . , uk such that there is no arc from uj to ui for j > i and ui→ui+1 for
i = 1, 2, . . . , k − 1. Now 2. and 3. follow immediately. 2

Corollary 3.6 If D is a connected extended LSD which is not strong,
then each strong component of D is an extended semicomplete digraph. 2

4 Longest cycles in extended LSD’s

Lemma 4.1 If C1 and C2 are disjoint cycles in an extended LSD such
that no vertex on C1 has a similar vertex on C2 and V (C1)∪V (C2) induces
a strong digraph, then D has a cycle C∗ such that V (C∗) = V (C1)∪V (C2).
Furthermore C∗ can be found in time O(|EC1,C2 |), where EC1,C2 is the set
of arcs with one end-vertex in C1 and the other in C2 provided we are given
two arcs e12, e21 such that e12 goes from C1 to C2 and e21 from C2 to C1.

Proof: Let e12 be an arc from C1 to C2 and e21 be an arc from C2

to C1. If e12 and e21 are not disjoint, then it is easy to see that, using the
fact that there is no pair of similar vertices x ∈ V (C1), y ∈ V (C2), we can
find a new disjoint pair e′12, e

′
21 in time O(|EC1,C2 |).

Let C1 = x1x2 . . . xkx1 and C2 = y1y2 . . . yry1. The labelling is chosen
such that x1→y1 and yi→xj for some i > 1, j > 1. It is not difficult to see
that this can be done when D is an extended LSD. Applying Lemma 3.4 to
the paths C1[x1, xj] and x1C2[y1, yi]xj , we obtain an (x1, xj)-path P with
V (P) = {x1, x2, . . . , xj , y1, y2, . . . , yi}. Furthermore, the vertices appear in

5

the same order in P as they did on C1 respectively C2. Hence, P [x1, y1]
contains only the vertex y1 from C2 and P [yi, xj] contains only yi from C2.
This implies that the paths C2[yi, y1] and P [yi, xj]C1[xj , x1]P [x1, y1] contain
no similar vertices u and v such that u and v belong to different paths. Thus
applying Lemma 3.4 to these paths we obtain the desired cycle C∗.

Now the complexity claim follows from the proof and Lemma 3.4. 2

The following characterization generalises the characterization of Hamil-
tonian extended semicomplete digraphs [11, 12] and is analogous to that of
Hamiltonian semicomplete bipartite digraphs [9, 15].

Theorem 4.2 An extended LSD is Hamiltonian if and only if it is
strong and has a spanning cycle subgraph. Given a spanning cycle sub-
graph of a strong extended LSD D, one can find a Hamiltonian cycle in
time O(n3).

Proof: The necessity is clear. To prove the sufficiency we suppose
that F = C1 ∪ ...∪Ck is a spanning cycle subgraph of D. By Lemma 4.1 we
can assume that no two cycles of F induce a strong digraph. By Proposition
3.5, if two cycles Ci and Cj are adjacent, then either Ci⇒Cj , or Cj⇒Ci.
Now it is easy to see that the digraph obtained by contracting each cycle Ci

into one vertex ci is a LSD D′. Since D′ is strong it has a Hamiltonian cycle
[1]. Let c1c2 . . . ckc1 be such a cycle, where we have relabelled the cycles to
allow the numbering. Now in D we have C1⇒C2⇒ . . .⇒Ck⇒C1 and it is
easy to see that D is Hamiltonian.

It is not difficult to see that the proof above implies an O(n3) algorithm
to find a Hamiltonian cycle, given a spanning cycle subgraph C1, ..., Ck of a
strong extended LSD. 2

We can prove that the complexity in Theorem 4.2 can be decreased to
O(n2). However, we shall not give a proof of this result here since our proof
is rather long, complicated and involves some advanced data structures.

Corollary 4.3 There exists an O(n3)-algorithm which, given any ex-
tended locally semicomplete digraph D, decides whether D is Hamiltonian
and finds a Hamiltonian cycle if it exists.

Proof: To check the existence of a spanning cycle subgraph we need
O(n

5
2) time, by Proposition 2.1. Checking whether D is strong can be done

in linear time O(n + m). If D is not strong, or has no spanning cycle sub-
graph, then we stop. Otherwise use the algorithm of Theorem 4.2. 2

Extended LSD’s inherit the following property of extended semicomplete
digraphs. Note that semicomplete bipartite digraphs, in general, do not
satisfy this property [11].

Theorem 4.4 If D is a strong extended LSD and C1, . . . , Ck is a collec-
tion of disjoint cycles of D, then D has a cycle C with V (C1)∪. . .∪V (Ck) ⊂
V (C).

6

Proof: The proof is by induction on k. The case k = 1 is trivial,
so assume k ≥ 2. By Theorem 4.2, we can assume that D′ = D < V (C1) ∪
. . .∪V (Ck) > is not strong, and by induction we can assume that C1, . . . , Ck

form the strong components of D′.
Suppose first that D′ is connected. Then, by Proposition 3.5, we can as-

sume, by relabelling if necessary, that C1⇒C2⇒ . . .⇒Ck. Since D is strong,
there exists a path P starting in a vertex x on Ck and ending in a ver-
tex y on Ci, for some i < k such that P has only x and y in common with
V (C1)∪. . .∪V (Ck). Then P together with Ci∪. . .∪Ck induce a Hamiltonian
digraph and the claim follows by induction.

Now suppose that D′ is not connected. Let D′
1, . . . , D

′
r, r ≥ 2, be the

connected components of D′. Again, we can relabel C1, . . . , Ck such that
C1, . . . , Ci1 are in D′

1, Ci1+1, . . . , Ci2 are in D′
2 and so on until Cir−1+1, . . . , Cir =

Ck which are in D′
r. We can also assume, by Proposition 3.5, that if

ij − ij−1 ≥ 2, then we have Cij−1+1⇒ . . .⇒Cij for j = 1, 2, . . . r, where
i0 = 0 and ir = k.

Claim : If P = xx′ . . . y′y (where possibly x′ = y′) is any shortest
path starting in a vertex x ∈ V (D′

s) and ending in a vertex y ∈ V (D′
t),

1 ≤ s 6= t ≤ r, such that P has only x and y in common with V (D′), then
Cis⇒x′ and y′⇒Cit−1+1. Hence we can replace x by a vertex in Cis and y
by a vertex in Cit−1+1.

Proof of the claim: By the minimality of P , no vertex of V (P)−{x, y}
can be similar to a vertex in V (D′

s) ∪ V (D′
t). This implies that x′ cannot

dominate any vertex of V (D′
s), because this would lead to a contradiction

on either the minimality of P , or the fact that there is no arc between V (D′
s)

and V (D′
t). Using this and Proposition 3.5 (1) , we conclude that V (Cq)⇒x′,

where x ∈ V (Cq). If is−1 + 1 ≤ q < is, then we use the fact that V (Cq)⇒x′

and V (Cq)⇒V (Cq+1) to conclude that Cq+1⇒x′ and, hence, by induction
Cis⇒x′. The second part of the claim is proved similarly. 2

Since D is strong, there exists an (x, y)-path P with x ∈ V (Ci1) and
y ∈ V (Cit−1+1), for some t > 1, such that P is shortest possible and has
only x and y in common with V (D′). Using the claim and the fact that D
is strong we can conclude that there is also a (u, v)-path P ′ with u ∈ V (Cit)
and v ∈ C1 with the following properties :

1. P ′ has only u and v in common with V (D′
1) ∪ V (D′

t),

2. if P ′ enters a D′
j j 6= 1, t, then it enters in V (Cij−1+1) and leaves in

V (Cij) and contains all vertices of V (D′
j),

If P and P ′ are disjoint, except for their endvertices, then D has a cycle C
containing all vertices of V (P)∪V (P ′) and all vertices of those components
D′

j that P ′ enters. Thus we can finish the proof by induction.
Suppose P and P ′ intersect in some vertex z 6∈ V (D′). Then it is easy

to see that we can either replace some cycles from C1, . . . , Ck by one and
apply induction, or we can include some vertices of V (D)− V (D′) in a new
collection of k cycles. Hence the claim follows by induction on the number

7

of vertices in V (D)− V (D′). 2

Corollary 4.5 There exists an O(n3) algorithm to find the cycle C
above if C1, . . . , Ck are given.

Proof: This follows from a close inspection of the proof above. 2

Combining Proposition 2.1 and Corollary 4.5, we obtain.

Corollary 4.6 There exists an O(n3) algorithm which finds a longest
cycle in any extended LSD. 2

5 Longest paths in extended LSD’s

Lemma 5.1 Let D be a LSD. If P is a path in D and C a cycle in D
disjoint from P such that there is an arc between P and C, then D contains
a path P ∗ such that V (P ∗) = V (P) ∪ V (C). If no vertex of P is similar to
a vertex of C and we are given an arc between P and C, P ∗ can be found
in time O(q), where q is the number of arcs between P and C.

Proof: Let P = x1x2 . . . xk and C = y1y2 . . . yry1. It is easy to prove
the claim if P and C contain similar vertices xi and yj . Suppose such vertices
do not exist. If there is an arc xi→yj , then our claim follows from Lemma
3.4 applied to the paths P [xi, xk] and xiC[yj , yj−1]. The proof when there is
an arc yj→xi is analogous. The complexity claim follows from Lemma 3.4. 2

Theorem 5.2 An extended LSD D has a Hamiltonian path if and only
if it is connected and has a spanning 1-path-cycle subgraph. Furthermore,
given a spanning 1-path-cycle subgraph of D, one can find a Hamiltonian
path in D in time O(n2).

Proof: Let P, C1, . . . , C`, ` ≥ 1, be a 1-path-cycle subgraph L of D.
Mark all cycles of L containing vertices similar to vertices of P . Then, re-
place P and the marked cycles by one path P ′(covering the vertices of P
and the marked cycles). It is easy to see that P ′ can found in time O(n2).
Now we can apply Lemma 5.1. Since we can attribute the cost of merging a
path P and a cycle C to the arcs between P and C, the total cost will not
be more than O(n2). 2

Theorem 5.3 Let D be a connected extended LSD. If P1, . . . , Pk, C1, . . . , C`,
k, ` ≥ 1, is a k-path-cycle subgraph L of D, then D contains a k-path sub-
graph F covering all the vertices of V (P1)∪ . . .∪V (Pk)∪V (C1)∪ . . .∪V (C`).
Moreover, one can find F in time O(n2).

8

Proof: As in Theorem 5.2 we can mark all cycles of L containing
vertices similar to vertices of P1 ∪ ... ∪ Pk and, then, add the vertices of the
marked cycles to the corresponding paths. All this takes time O(n2). Now
we can assume that no vertex of a cycle of L similar to a vertex of a path
of L.

If the digraph D′ induced by V (P1) ∪ . . . ∪ V (Pk) ∪ V (C1) ∪ . . . ∪ V (C`)
is connected, then the theorem follows easily from Lemma 5.1. In fact, if a
vertex of a cycle Ci is adjacent to a vertex of a path Pj , then, by Lemma
5.1, we may replace these by a new path P ′

j with V (P ′
j) = V (Pj) ∪ V (Ci).

Now suppose that D′ is not connected and that there is no arc between
a path Pj and a cycle Ci. Since D is connected, there must exist i and j
such that, in the underlying graph of D, there is a path P between V (Pj)
and V (Ci) which does not contain any vertices from V (P1) ∪ . . . ∪ V (Pk) ∪
V (C1)∪ . . .∪V (C`), other than the two endvertices. We can assume that P
is chosen shortest possible among all undirected paths with endvertices in
V (Pj) and V (Ci). This implies that P is a directed path in D, because D is
an extended LSD (there can be no similar vertices on P by the minimality).
Now we can apply the same technique as we did in the proof of Lemma 5.1
to get a path P ′

j with V (P ′
j) = V (Pj) ∪ V (Ci) ∪ V (P) (the minimality of P

implies that there are no similar vertices x and y such that x ∈ V (Pj)∪V (Ci)
and y ∈ V (P) \ (V (Pj) ∪ V (Ci))). Thus we have reduced ` by one and the
result follows by induction.

To see that F can be found in time O(n2), it suffices to perform a breadth
first search from the set V (P1 ∪ ... ∪ Pk). This will provide us with the arcs
we need for the merging. Again we attribute the cost of the merging to
different arcs. 2

6 Recognition of extended LSD’s

In order for our results in the previous sections to have some practical value,
it is important to show that one can decide effectively, whether a given
digraph is an extended LSD.

Call a pair of vertices x and y bad if x and y are not adjacent and there
exist some z ∈ V (D)− {x, y} such that z→x and z→y, or x→z and y→z.

Now we can state an easy characterization of extended LSD’s in terms
of bad pairs:

Proposition 6.1 Let D be an arbitrary connected digraph and let G(D)
be the graph with vertex set V (D) and edges all the bad pairs of D. Let
U1, . . . , Uk, k ≥ 1, be the vertex sets of the connected components of G(D).
D is an extended LSD if and only if

1. D < Ui > is an independent set for each i = 1, ..., k and

2. for each pair Ui, Uj, i 6= j, either there is no arc between Ui and Uj,
or one of the following holds Ui⇒Uj, or Uj⇒Ui, or Ui⇔Uj.

Proof: Suppose D is an extended LSD with decomposition D =
R[H1, . . . ,Hr], where R is a LSD and each Hi is an independent set of

9

vertices. It is clear that each Hi induces a connected component in G(D)
and that 2. is satisfied.

Conversely, suppose G(D) satisfies 1. and 2. Then D = R[U1, . . . , Uk]
where R is the digraph obtained from D by contracting each Ui to one vertex
ui. H is locally semicomplete, because, by definition of Ui and Uj , there is
no bad pair x and y such that x ∈ Ui and y ∈ Uj for i 6= j. Hence D is an
extended LSD. 2

Corollary 6.2 Let D be an arbitrary connected digraph. It can be de-
cided in time O(nm) whether D is an extended LSD.

Proof: This is a direct consequence of Theorem 6.1: We can find all
bad pairs in time O(nm) by considering Ix and Ox for all vertices x ∈ V (D).
We can find the connected components of G(D) in time O(n2) and check if
each induces an independent set in D in the same time. Checking whether
2. holds can easily be done in time O(nm) (in fact faster, but we do not
need this here, since we already used O(nm) time above). 2

7 Recognition of totally Φi-decomposable digraphs

In the next section we describe results on paths and cycles in totally Φ-
decomposable digraphs for some special sets Φ: Φ0 is the union of all semi-
complete multipartite digraphs, all connected extended LSD’s and all acyclic
digraphs, Φ1 be the union of all semicomplete bipartite digraphs, all con-
nected extended locally semicomplete digraphs and all acyclic digraphs, and
Φ2 be the union of all connected extended LSD’s and all acyclic digraphs.
It is easy to check that, for every i = 0, 1, 2, the family of totally Φi-
decomposable digraphs coincides with the family of totally Φ′i-decomposable
digraphs, where Φ′i is defined similarly to Φi with the only difference that the
former includes all extended LSD’s while the later contains only connected
extended LSD’s. We consider Φi instead of Φ′i for technical reasons (see the
proof of the first part of Theorem 8.2).

In this section we propose a polynomial algorithm for checking if a given
digraph D is Φi-decomposable for i = 0, 1, 2. Note that every Φi, i = 1, 2, 3
is a hereditary set in the following sense. A set Φ of digraphs is hereditary
if D ∈ Φ implies that every induced subgraph of D is in Φ.

Lemma 7.1 Let Φ be a hereditary set of digraphs closed with respect
to the extension. If a given digraph D is totally Φ-decomposable, then
every induced subgraph D′ of D is totally Φ-decomposable. I.e. total Φ-
decomposability is a hereditary property.

Proof: We prove this by induction on the number of vertices of D.
The claim is obviously true if D has less than 3 vertices.

If D ∈ Φ, then our claim follows from the fact that Φ is hereditary. So
we may assume that D = R[H1, . . . Hr], r ≥ 2, where R ∈ Φ and each of
H1, . . . , Hr is totally Φ-decomposable.

10

Let D′ be an induced subgraph of D. If there is an index i so that
V (D′) ⊂ V (Hi), then D′ is totally Φ-decomposable by induction. Other-
wise, D′ = R′[T1, . . . , Tr′], where r′ ≥ 2 and R′ ∈ Φ is the subgraph of H
induced by those vertices i of R, whose Hi has a nonempty intersection with
V (D′) and the Tj ’s are the corresponding Si’s restricted to the vertices of
D′. Note that R′ ∈ Φ, since Φ is hereditary and closed with respect to
the extension. Moreover, by induction, each Tj is totally Φ-decomposable,
hence so is D′. 2

Lemma 7.2 There exists an O(mn + n2)-algorithm for checking if a
digraph D with n vertices and m arcs has a decomposition D = R[H1, ...,Hr],
r ≥ 2, where Hi is an arbitrary digraph and the digraph R is either acyclic or
semicomplete multipartite or semicomplete bipartite or connected extended
locally semicomplete.

Proof: If D is not connected and D1,...,Dc are its components, then
D = R[D1, ..., Dc], where R is a trivial (i.e. acyclic) digraph. Hence, in
the rest of the proof we assume that D is connected. Consider the different
kinds of R, we are interested in, step by step.

Check if R can be acyclic:

First find the strong components D1, . . . , Dk of D. If k = 1 then R
cannot be acyclic and we can stop verifying that possibility. So suppose
k ≥ 2.

If we find two strong components Di and Dj such that there is an arc
between them but there are nonadjacent vertices x ∈ Di and y ∈ Dj , then
we replace Di and Dj by their union. This is justified because Di and Dj

cannot be in different sets Hs and Ht in a possible decomposition. Repeat
this step but now check also the possibility for a pair D′ and D′′ of new
”components” to have arcs between D′ and D′′ in different directions. In
last case we also replace D′ and D′′ by their union. Continue this procedure
until all remaining sets satisfy that either there is no arc between them, or
there are all possible arcs from one to the other. Let V1, . . . , Vr, r ≥ 1 denote
the distinct vertex sets of the obtained ”components”. If r = 1, then we
cannot find an acyclic graph as R. Otherwise D = R[V1, ..., Vr], r ≥ 2 and
we obtain R by contracting each Vi to a vertex.

Check if R can be a semicomplete multipartite digraph:

Find the connected components Ḡ1, . . . , Ḡc, c ≥ 1, of the complement of
the underling graph G(D) of D. If c = 1, then R cannot be semicomplete
multipartite. So suppose c ≥ 2 below. Let Gj be the subgraph of G(D)
induced by the vertices Vj of the j’th component Ḡj of the complement of
G(D). Furthermore, let Gj1, . . . , Gjnj , nj ≥ 1, be the connected components
of Gj . Denote Vjk = V (Gjk).

Starting with the collection W = {V1, . . . , Vc}, we identify two of the
sets Vi and Vj if there exist Via and Vjb a ∈ {1, ..., ni}, b ∈ {1, ..., nj} such
that we have none of the possibilities Via⇒Vjb, Vjb⇒Via or Via⇔Vjb. Clearly
the obtained set Vi ∪ Vj induces a connected subgraph of D. Let Q1, ..., Qr

denote the sets obtained, by repeating this process until no more changes

11

occur. If r = 1, then R cannot be semicomplete multipartite. Otherwise,
H is the semicomplete multipartite digraph obtained by contracting each
connected component of Qi into a vertex.

Check if R can be a semicomplete bipartite digraph:
First verify if R can be a semicomplete multipartite digraph. If not, then
R can not be semicomplete bipartite either. Suppose that we have found
semicomplete r-partite R such that D = R[H1, ..., Hr]. If r = 2 we have the
desired R. If r > 2, then still there is a possibility for another R which is
semicomplete bipartite (and will be denoted by R′), but it is easy to see the
last possibility means that the semicomplete bipartite digraph R′ must be
a semicomplete digraph of order two with either one or two arcs.

So, first we verify if there is semicomplete R such that D = R[H1, ..., Hr].
Starting with the collection V1, . . . , Vc, obtained as in the previous verifica-
tion, identify two of the sets Vi and Vj if none of the following occurs Vi⇒Vj ,
Vj⇒Vi or Vi⇔Vj . Let H1, . . . , Hr, r ≥ 1 denote the sets obtained in this
process. If r = 1, then R cannot be semicomplete. Otherwise, let R be
the semicomplete digraph obtained by contracting each Hi into a vertex.
Suppose we find a semicomplete R with more than two vertices.

If R is not strong then, obviously one can find a decomposition R =
R′[M1, M2], where R′ is the semicomplete digraph with two vertices and one
arc. If R is strong, then we try to find a decomposition R = R′[M1,M2],
where R′ is the semicomplete digraph with two vertices which induce a 2-
cycle. To check the last possibility, construct the following graph G. The
vertex set of G coincides with V (R), and two vertices are adjacent in G if
and only if they do not form a cycle of length two in R. If G is connected
then obviously the last possibility cannot take place. On the other hand, if
G is not connected, then we can easily find R′ which is semicomplete and
has two vertices and two arcs.

Check if R can be a connected extended LSD:
Find components of the graph G(D) defined in Proposition 6.1. Let V1, ..., Vc

be the vertex sets of these components. If c = 1, then R cannot be extended
LSD. So suppose c ≥ 2 bellow. Let Dj = D < Vj >, let Dj1, ..., Djnj be
connected components of Dj and Vjk = V (Djk). Now we proceed as in the
second paragraph of the semicomplete multipartite digraph case.

It is not difficult to see that, for all considered kinds of R, the procedures
above can be realized as an O(nm + n2)-algorithm. 2

Theorem 7.3 There exists an O(n2m + n3)-algorithm for checking if a
digraph with n vertices and m arcs is totally Φi-decomposable for i = 0, 1, 2.

Proof: We give a description of a recursive algorithm to check
Φi-decomposability. We have shown in Lemma 7.2 how to verify if D =
R[H1, . . . ,Hr], r ≥ 2, where H is acyclic, semicomplete multipartite, semi-
complete bipartite or connected extended locally semicomplete. Whenever
we find an R that could be used, the algorithm checks total Φi-decomposability
of H1, . . . , Hh in recursive calls.

12

Notice how the algorithm exploits the fact that total Φi-decomposability
is a hereditary property (see Lemma 7.1): if some R seems to work, then it
is safe to proceed in that direction, because if D is totally Φi-decomposable,
then each of H1, . . . , Hr (being an induced subgraph of D) must also be to-
tally Φi-decomposable. Since there are O(n) recursive calls, the complexity
of the algorithm is O(n2m + n3). 2

8 Paths and cycles in totally Φi-decomposable di-
graphs

In this section we generalize theorems on heaviest and longest paths and
cycles in quasi-transitive digraphs obtained in [3]. To obtain the general-
izations given in Theorem 8.2 we use both results shown in the previous
sections of this paper and an approach suggested in [3]. Since the schemes
of the proofs of the generalizations are the same as those of the original
theorems on quasi-transitive digraphs, we shall give only a sketch for the
first two claims of Theorem 8.2 and a few remarks on the rest of the claims.

From now on, assume that every digraph D we consider has non-negative
weights w(.) on the vertices. The weight w(H) of a subgraph of D is the
sum of the weights of its vertices. For a positive integer k, the symbol
wk(D) denotes the weight of a heaviest k-path subgraph of D, i.e. one with
the maximum weight among k-path subgraphs. For convenience we define
w0(D) = 0. We consider the following problem called the HPS problem:
Given a digraph D on n vertices, find a heaviest k-path subgraph of D for
every k = 1, 2, ..., n.

We need the following:

Theorem 8.1 [3] Let Φ be a set of digraphs including the trivial digraph
on one vertex. Suppose that Φ = Φext and, for every D ∈ Φ on n vertices,

wk+1(D)− wk(D) ≤ wk(D)− wk−1(D), (1)

where k = 1, 2, ..., n − 1. If there is a constant s ≥ 2 so that, for every
L ∈ Φ, the HPS problem can be solved in time O(|V (L)|s), then, for every
totally Φ-decomposable digraph D, the HPS problem can be solved in time
O(|V (D)|s+1), provided we are given a total Φ-decomposition of D.

Theorem 8.2 Let D be a digraph of order n with nonnegative integer
weights on the vertices. One can check whether D is totally Φi-decomposable
for i = 0, 1, 2 in time O(n4). Moreover,

(1) If D is totally Φ0-decomposable, then for all k = 1, ..., n, some maxi-
mum weight k-path subgraphs of D can be found in time O(n5);

(2) If D is totally Φ0-decomposable and X ⊂ V (D), then we can check if
D has a path covering all the vertices of X and find one (if it exists)
in time O(n5);

(3) If D is totally Φ2-decomposable, then a maximum weight cycle of D
can be found in time O(n5);

13

(4) If D is totally Φ2-decomposable and X ⊂ V (D), then a cycle of D
containing all vertices of X can be found in time O(n5) (if it exists);

(5) If D is totally Φ1-decomposable, then a longest cycle of D can be found
in time O(n5).

Proof (sketch):
1. By Theorems 8.1 and 7.3, we can prove the first part of Theorem 8.2

by showing that a digraph D from Φ0 satisfies the conditions of Theorem
8.1 with s = 4.

Using the algorithm on maximum cost flows in networks described in
[3], find, for every k = 1, ..., n, a heaviest k-path-cycle subgraph Lk of D.
This can be done in time O(n4) [3]. Since D ∈ Φ0, for every k = 1, ..., n, we
can construct a k-path subgraph Qk of D so that V (Lk) = V (Qk). Indeed,
if D is acyclic, then just set Qk = Lk. If D is an extended LSD, then
we find Qk using Theorem 5.3. If D is semicomplete multipartite, then
we use an analog of Theorem 5.2 for semicomplete multipartite digraphs
(every non-trivial induced subgraph of a semicomplete multipartite digraph
is connected). Obviously, Qk is a heaviest k-path subgraph of D. Note that
Q1, ..., Qn can be found in time O(n4). The inequality (1) now follows from
the inequality (2) on flows given in [3].

2. Change the weights of the vertices of D as follows. w(x) = 1 if x ∈ X
and w(x) = 0, otherwise. Obviously, D has a path covering all the vertices
of X if and only if a heaviest path of D has weight |X|.

3. The proof of this claim is the same as the proof of the second part of
Theorem 3.1 in [3] except for the fact that in [3] we use the second part of
Theorem 3.6 [3] and here we use a generalization of the last result given in
Theorem 4.5 and Corollary 4.6 of this paper.

4. The proof is similar to that of the second claim of the theorem.

5. The proof of this claim differs from the proof of Claim 3 only in the
case when we consider semicomplete bipartite digraphs. For the last family
of graphs, the property given in Theorem 4.5 is not true, in general. Hence,
we use its weakening [11]: Let D be a strong semicomplete bipartite digraph
and let C1, ..., Ct be a maximum order cycle subgraph of D. Then D has
a (longest) cycle C so that |V (C)| = |V (C1)| + ... + |V (Ct)| and C can be
constructed in time O(n2) given the subgraph C1, ..., Ct. 2

References

[1] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of
tournaments, J.Graph Theory 14 (1990) 371-390.

[2] J.Bang-Jensen, On the structure of locally semicomplete digraphs, Dis-
crete Math. 100 (1992) 243-265.

[3] J. Bang-Jensen and G. Gutin, Vertex heaviest paths and cycles in quasi-
transitive digraphs, Discrete Math., to appear.

14

[4] J. Bang-Jensen, G. Gutin and J. Huang, Weakly Hamiltonian-
connected ordinary multipartite tournaments, Discrete Math. 138
(1995) 63-74.

[5] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph The-
ory 20 (1995) 141-161.

[6] L.W. Beineke and R.J. Wilson, Selected Topics in Graph Theory
3, Academic Press, 1988.

[7] J. A. Bondy and U. S. R. Murty, Graph Theory with applications,
MacMillan Press (1976).

[8] Y. Guo and L. Volkmann, Connectivity properties of locally semicom-
plete digraphs, J. Graph Theory, 18 (1994) 269-280.

[9] G. Gutin, A criterion for complete bipartite digraphs to be Hamiltonian.
Vestsi Acad. Navuk BSSR Ser. Fiz.-Mat. Navuk No. 1 (1984) 99-100
(In Russian).

[10] G. Gutin, Finding a longest path in a complete multipartite digraph,
SIAM J. Disc. Math. 6 (1993) 270-273.

[11] G. Gutin, Paths and cycles in directed graphs, Ph.D Thesis, Tel-Aviv
University, 1993.

[12] G. Gutin, Characterizations of vertex pancyclic and pancyclic ordinary
complete multipartite digraphs, Discrete Math. 141 (1995) 153-162.

[13] G. Gutin, Polynomial algorithms for finding Hamiltonian paths and
cycles in quasi-transitive digraphs, Australasian J. Combin., 10 (1994)
231-236.

[14] R. Häggkvist, Hamilton cycles in oriented graphs, Combinatorics, Prob-
ability and Computing 2 (1993) 25-32.

[15] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tour-
naments with spanning configuration, Combinatorica 9 (1989) 33-38.

[16] J. Huang, Tournament-like oriented graphs, Ph.D thesis, Simon Fraser
University, 1992.

15

