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Abstract

We provide an overview of an emerging area of domination analy-
sis (DA) of combinatorial optimization algorithms and problems. We
consider DA theory and its relevance to computational practice.

1 Introduction

In the recently published book [19], Chapter 6 is partially devoted to dom-
ination analysis (DA) of the Traveling Salesman Problem (TSP) and its
heuristics. The aim of this chapter is to provide an overview of the whole
area of DA. In particular, we describe results that significantly generalize
the corresponding results for the TSP.

To make reading of this chapter more active, we provide questions that
range from simple to relatively difficult ones. Also, we add research questions
that supply the interested reader with open and challenging problems.

This chapter is organized as follows. In Subsection 1.1 of this section we
motivate the use of DA in combinatorial optimization. We provide a short
introduction to DA in Subsection 1.2. We conclude this section by giving
additional terminology and notation.

One of the goals of DA is to analyze the domination number or domina-
tion ratio of various algorithms. Domination number (ratio) of a heuristic H
for a combinatorial optimization problem P is the maximum number (frac-
tion) of all solutions that are not better than the solution found by H for
any instance of P of size n. In Section 2 we consider TSP heuristics of large
domination number. In Subsection 2.1 we provide a theorem that allows one
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to prove that a certain Asymmetric TSP heuristic is of very large domina-
tion number. We also provide an application of the theorem. In Subsection
2.2 we show how DA can be used in analysis of local search heuristics. Up-
per bounds for the domination numbers of Asymmetric TSP heuristics are
derived in Subsection 2.3.

Section 3 is devoted to DA for other optimization problems. We demon-
strate that problems such as the Minimum Partition, Max Cut, Max k-SAT
and Fixed Span Frequency Assignment admit polynomial time algorithms
of large domination number. On the other hand, we prove that some other
problems including the Maximum Clique and the Minimum Vertex Cover
do not admit algorithms of relatively large domination ratio unless P=NP.

Section 4 shows that, in the worst case, the greedy algorithm obtains
the unique worst possible solution for a wide family of combinatorial opti-
mization problems and, thus, in the worst case, the greedy algorithm is no
better than the random choice for such problems. We conclude the chapter
by a short discussion of DA practicality.

1.1 Why domination analysis ?

Exact algorithms allow one to find optimal solutions to NP-hard combina-
torial optimization (CO) problems. Many research papers report on solving
large instances of some NP-hard problems (see, e.g., Chapters 2 and 4 in
[19]). The running time of exact algorithms is often very high for large
instances, and very large instances remain beyond the capabilities of exact
algorithms.

Even for instances of moderate size, if we wish to remain within seconds
or minutes rather than hours or days of running time, only heuristics can be
used. Certainly, with heuristics, we are not guaranteed to find optimum, but
good heuristics normally produce near-optimal solutions. This is enough in
most applications since very often the data and/or mathematical model are
not exact anyway.

Research on CO heuristics has produced a large variety of heuristics es-
pecially for well-known CO problems. Thus, we need to choose the best ones
among them. In most of the literature, heuristics are compared in computa-
tional experiments. While experimental analysis is of definite importance,
it cannot cover all possible families of instances of the CO problem at hand
and, in particular, it normally does not cover the hardest instances.

Approximation Analysis [4] is a frequently used tool for theoretical evalu-
ation of CO heuristics. LetH be a heuristic for a combinatorial minimization
problem P and let In be the set of instances of P of size n. In approximation
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analysis, we use the performance ratio rH(n) = max{f(I)/f∗(I) : I ∈ In},
where f(I) (f∗(I)) is the value of the heuristic (optimal) solution of I. Un-
fortunately, for many CO problems, estimates for rH(n) are not constants
and provide only a vague picture of the quality of heuristics.

Domination Analysis (DA) provides an alternative and a complement to
approximation analysis. In DA, we are interested in the domination num-
ber or domination ratio of heuristics (these parameters have been defined
earlier). In many cases, DA is very useful. For example, we will see in
Section 4 that the greedy algorithm has domination number 1 for many CO
problems. In other words, the greedy algorithm, in the worst case, produces
the unique worst possible solution. This is in line with latest computational
experiments with the greedy algorithm, see, e.g., [28], where the authors
came to the conclusion that the greedy algorithm ’might be said to self-
destruct’ and that it should not be used even as ’a general-purpose starting
tour generator’.

The Asymmetric Traveling Salesman Problem (ATSP) is the problem of
computing a minimum weight tour (Hamilton cycle) passing through every
vertex in a weighted complete digraph on n vertices. See Figure 1. The
Symmetric TSP (STSP) is the same problem, but on a complete undirected
graph. When a certain fact holds for both ATSP and STSP, we will simply
speak of TSP. Sometimes, the maximizing version of TSP is of interest, we
denote it by max TSP.

APX is the class of CO problems that admit polynomial time approxi-
mation algorithms with a constant performance ratio [4]. It is well known
that while max TSP belongs to APX, TSP does not. This is at odds with
the simple fact that a ’good’ approximation algorithm for max TSP can
be easily transformed into an algorithm for TSP. Thus, it seems that both
max TSP and TSP should be in the same class of CO problems. The above
asymmetry was already viewed as a drawback of performance ratio already
in the 1970’s, see, e.g., [11, 30, 40]. Notice that from the DA point view
max TSP and TSP are equivalent problems.

Zemel [40] was the first to characterize measures of quality of approxi-
mate solutions (of binary integer programming problems) that satisfy a few
basic and natural properties: the measure becomes smaller for better solu-
tions, it equals 0 for optimal solutions and it is the same for corresponding
solutions of equivalent instances. While the performance ratio and even the
relative error (see [4]) do not satisfy the last property, the parameter 1− r,
where r is the domination ratio, does satisfy all of the properties.

Local Search (LS) is one of the most successful approaches in construct-
ing heuristics for CO problems. Recently, several researchers started inves-
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Figure 1: A complete weighted digraph

tigation of LS with Very Large Scale Neighbourhoods (see, e.g., [1, 12, 26]).
The hypothesis behind this approach is that the larger the neighbourhood
the better quality solution are expected to be found [1]. However, some com-
putational experiments do not support this hypothesis, see, e.g., [15], where
an LS with small neighbourhoods proves to be superior to that with large
neighbourhoods. This means that some other parameters are responsible for
the relative power of a neighbourhood. Theoretical and experimental results
on TSP indicate that one such parameter may well be the domination ratio
of the corresponding LS.

Sometimes, Approximation Analysis cannot be naturally used. Indeed,
a large class of CO problems are multicriteria problems [14], which have
several objective functions. (For example, consider STSP in which edges are
assigned both time and cost, and one is required to minimize both time and
cost.) We say that one solution s′ of a multicriteria problems dominates
another one s′′ if the values of all objective functions at s′ are not worse
than those at s′′ or the value of at least one objective function at s′ is better
than the value of the same objective function at s′′. This definition allows
us to naturally introduce the domination ratio (number) for multicriteria
optimization heuristics. In particular, an algorithm that always finds a
Pareto solution is of domination ratio 1.

In our view, it is advantageous to have bounds for both performance ratio
and domination number (or, domination ratio) of a heuristic whenever it is
possible. Roughly speaking this will enable us to see a 2D rather than 1D
picture. For example, consider the double minimum spanning tree heuristic
(DMST) for the Metric STSP (i.e., STSP with triangle inequality). DMST
starts from constructing a minimum weight spanning tree T in the complete
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graph of the STSP, doubles every edge in T , finds a closed Euler trail E
in the ’double’ T , and cancels any repetition of vertices in E to obtain a
TSP tour H. It is well-known and easy to prove that the weight of H is at
most twice the weight of the optimal tour. Thus, the performance ratio for
DMST is bounded by 2. However, Punnen, Margot and Kabadi [34] proved
that the domination number of DMST is 1.

1.2 Introduction to domination analysis

Domination Analysis was formally introduced by Glover and Punnen [16] in
1997. Interestingly, important results on domination analysis for the TSP
can be traced back to the 1970s, see Rublineckii [36] and Sarvanov [37].

Let P be a CO problem and let H be a heuristic for P. The domi-
nation number domn(H, I) of H for a particular instance I of P is the
number of feasible solutions of I that are not better than the solution s
produced by H including s itself. For example, consider an instance T
of the STSP on 5 vertices. Suppose that the weights of tours in T are
3,3,5,6,6,9,9,11,11,12,14,15 (every instance of STSP on 5 vertices has 12
tours) and suppose that the greedy algorithm computes the tour T of weight
6. Then domn(greedy, T ) = 9. In general, if domn(H, I) equals the num-
ber of feasible solutions in I, then H finds an optimal solution for I. If
domn(H, I) = 1, then the solution found by H for I is the unique worst
possible one.

The domination number domn(H, n) ofH is the minimum of domn(H, I)
over all instances I of size n. Since the ATSP on n vertices has (n − 1)!
tours, an algorithm for the ATSP with domination number (n−1)! is exact.
The domination number of an exact algorithm for the STSP is (n − 1)!/2.
If an ATSP heuristic A has domination number equal 1, then there is an
assignment of weights to the arcs of each complete digraph K∗

n, n ≥ 2, such
that A finds the unique worst possible tour in K∗

n.
When the number of feasible solutions depends not only on the size of the

instance of the CO problem at hand (for example, the number of independent
sets of vertices in a graph G on n vertices depends on the structure of G),
the domination ratio of an algorithm A is of interest: the domination ratio
of A, domr(A, n), is the minimum of domn(A, I)/sol(I), where sol(I) is
the number of feasible solutions of I, taken over all instances I of size n.
Clearly, domination ratio belongs to the interval (0, 1] and exact algorithms
are of domination ratio 1.

The Minimum Partition Problem (MPP) is the following CO problem:
given n nonnegative numbers a1, a2, . . . , an, find a bipartition of the set
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{1, 2, . . . , n} into sets X and Y such that d(X, Y ) = |∑i∈X ai −
∑

i∈Y ai|
is minimum. For simplicity, we assume that solutions X, Y and X ′, Y ′ are
different as long as X 6= X ′, i.e. even if X = Y ′ (no symmetry is taken into
consideration). Thus, the MPP has 2n solutions.

Consider the following greedy-type algorithm G for the MPP: G sorts the
numbers such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(n), initiates X = {π(1)}, Y =
{π(2)}, and, for each j ≥ 3, puts π(j) into X if

∑
i∈X ai ≤

∑
i∈Y ai, and

into Y , otherwise. It is easy to see that any solution X, Y produced by G
satisfies d(X,Y ) ≤ aπ(1).

Consider any solution X ′, Y ′ of the MPP for the input {a1, a2, . . . , an}−
{aπ(1)}. If we add aπ(1) to Y ′ if

∑
i∈X′ ai ≤

∑
i∈Y ′ ai and to X ′, otherwise,

then we obtain a solution X ′′, Y ′′ for the original problem with d(X ′′, Y ′′) ≥
d(X,Y ). Thus, the domination number of G is at least 2n−1 and we have
the following:

Proposition 1.1 The domination ratio of G is at least 0.5.

In fact, a slight modification of G is of domination ratio very close to 1,
see Section 3.

Let us consider another CO problem. In the Assignment Problem (AP),
we are given a complete bipartite graph B with n vertices in each partite
set and a non-negative weight wt(e) assigned to each edge e of B. We are
required to find a perfect matching (i.e., a collection of n edges with no
common vertices) in B of minimum total weight.

The AP can be solved to optimality in time O(n3) by the Hungarian
algorithm. Thus, the domination number of the Hungarian algorithm equals
n!, the total number of perfect matchings in B.

For some instances of the AP, the O(n3) time may be too high and thus
we may be interested in having a faster heuristic for the AP. Perhaps, the
first heuristics that comes into mind is the greedy algorithm (greedy). The
greedy algorithm starts from the empty matching X and, at each itera-
tion, it appends to X the cheapest edge of B that has no common vertices
with edges already in X. (A description of greedy for a much more general
combinatorial optimization problem is provided in Section 4.)

The proof of the following theorem shows that the greedy algorithm fails
on many ’non-exotic’ instances of the AP.

Theorem 1.2 For the AP, greedy has domination number 1.

Proof: Let B be a complete bipartite graph with n vertices in each partite
set and let u1, u2, ..., un and v1, v2, ..., vn be the two partite sets of B. Let
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Figure 2: Assignment of weights for n = 3; classification of edges

M be any number greater than n. We assign weight i×M to the edge uivi

for i = 1, 2, ..., n and weight min{i, j}×M + 1 to every edge uivj , i 6= j; see
Figure 2 for illustration in the case n = 3.

We classify edges of B as follows: uivj is horizontal (forward, backward)
if i = j (i < j, i > j). See Figure 2.

The greedy algorithm will choose edges u1v1, u2v2, ..., unvn (and in that
order). We denote this perfect matching P and we will prove that P is the
unique most expensive perfect matching in B. The weight of P is wt(P ) =
M + 2M + ... + nM.

Choose an arbitrary perfect matching P ′ in B distinct from P. Let
P ′ have edges u1vp1 , u2vp2 , ..., unvpn . By the definition of the costs in B,
wt(uivpi) ≤ M × i + 1. Since P ′ is distinct from P , it must have edges
that are not horizontal. This means it has backward edges. If ukvpk

is a
backward edge, i.e. pk < k, then wt(ukvpk

) ≤ M(k−1)+1 = (Mk+1)−M.
Hence,

wt(P ′) ≤ (M + 2M + ... + nM) + n−M = wt(P ) + n−M.

Thus, wt(P ′) < wt(P ). 2

Question 1.3 Formulate the greedy algorithm for the ATSP.

Question 1.4 Consider the following mapping f from the arc set of K∗
n

into the edge set of Kn,n, the complete bipartite graph on 2n vertices. Let
x1, . . . , xn be vertices of K∗

n, and let {u1, . . . , un} and {v1, . . . , vn} be partite
sets of Kn,n. Then f(xixj) = uivj−1 for each 1 ≤ i 6= j ≤ n, where v0 = vn.
Show that f maps every Hamilton cycle of K∗

n into a matching of Kn,n.

Question 1.5 Using the mapping f of Question 1.4 and Theorem 1.2, prove
that the greedy algorithm has domination number 1 for the ATSP.
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1.3 Additional terminology and notation

Following the terminology in [20], a CO problem P is called DOM-easy if
there exists a polynomial time algorithm, A, such that domr(A, n) ≥ 1/p(n),
where p(n) is a polynomial in n. In other words, a problem is DOM-easy, if,
in polynomial time, we can always find a solution, with domination number
at least a polynomial fraction of all solution. If no such algorithm exists, P
is called DOM-hard.

For a digraph D, V (D) (A(D)) denotes the vertex (arc) set of H. The
same notation are used for paths and cycles in digraphs. A tour in a digraph
D is a Hamilton cycle in D. A complete digraph K∗

n is a digraph in which
every pair x, y of distinct vertices is connected by the pair (x, y), (y, x) of
arcs. The out-degree d+(v) (in-degree d−(v)) of a vertex v of a digraph
D is the number of arcs leaving v (entering v). It is clear that |A(D)| =∑

v∈V (D) d+(v) =
∑

v∈V (D) d−(v).
We will often consider weighted digraphs, i.e., pairs (D, wt), where wt

is a mapping from A(D) into the set of reals. For an arc a = (x, y) in
(K∗

n, wt), the contraction of a results in a complete digraph with vertex set
V ′ = V (K∗

n) ∪ {va} − {x, y} and weight function wt′, where va /∈ V (K∗
n),

such that the weight wt′(u, w), for u,w ∈ V ′, equals wt(u, x) if w = va,
wt(y, w) if u = va, and wt(u,w), otherwise. The above definition has an
obvious extension to a set of arcs; for more details, see [6].

For an undirected graph G, V (G) (E(G)) denotes the vertex (edge) set
of H. A tour in a graph G is a Hamilton cycle in G. A complete graph Kn

is a graph in which every pair x, y of distinct vertices is connected by edge
xy. Weighted graphs have weights assigned to their edges.

For a pair of given functions f(k), g(k) of a non-negative integer argu-
ment k, we say that f(k) = O(g(k)) if there exist positive constants c and
k0 such that 0 ≤ f(k) ≤ cg(k) for all k ≥ k0. If there exist positive con-
stants c and k0 such that 0 ≤ cf(k) ≤ g(k) for all k ≥ k0, we say that
g(k) = Ω(f(k)). Clearly, f(k) = O(g(k)) if and only if g(k) = Ω(f(k)). If
both f(k) = O(g(k)) and f(k) = Ω(g(k)) hold, then we say that f(k) and
g(k) are of the same order and denote it by f(k) = Θ(g(k)).

2 TSP heuristics with large domination number

Since there is a recent survey on domination analysis of TSP heuristics [19],
we restrict ourselves to giving a short overview of three important topics. All
results will be formulated specifically for the ATSP or the STSP, but in many
cases similar results hold for the symmetric or asymmetric counterparts as
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well.

2.1 ATSP heuristics of domination number at least Ω((n−2)!)

We will show how the domination number of an ATSP heuristic can be re-
lated to the average value of a tour. This result was (up till now) used in all
proofs that a heuristic has domination number at least Ω((n−2)!). Examples
of such heuristics are the greedy expectation algorithm introduced in [21],
vertex insertion algorithms and k-opt (see [19]). Using the above-mentioned
result we will prove that vertex insertion algorithms have domination num-
ber at least Ω((n− 2)!).

A decomposition of A(K∗
n) into tours, is a collection of tours in K∗

n, such
that every arc in K∗

n belongs to exactly one of the tours. The following
lemma was proved for odd n by Kirkman (see [9], p. 187), and the even case
result was established in [39].

Lemma 2.1 For every n ≥ 2, n 6= 4, n 6= 6, there exists a decomposition
of A(K∗

n) into tours.

An automorphism, f , of V (K∗
n) is a bijection from V (K∗

n) to itself. Note
that if C is a tour in K∗

n then f(C) is also a tour K∗
n.

We define τ(K∗
n) as the average weight of a tour in K∗

n. As there are
(n− 1)! tours in K∗

n, and (n− 2)! tours in K∗
n, which use a given arc e (see

Question 2.2), we note that

τ(K∗
n) =

1
(n− 1)!

∑

e∈A(K∗
n)

wt(e)× (n− 2)!,

which implies that τ(K∗
n) = wt(K∗

n)/(n−1), where wt(K∗
n) is the sum of all

weights in K∗
n.

Question 2.2 Let e ∈ A(K∗
n) be arbitrary. Show that there are (n − 2)!

tours in K∗
n, which use the arc e.

Question 2.3 Let D = {C1, . . . , Cn−1} be a decomposition of A(K∗
n) into

tours. Assume that Cn−1 is the tour in D of maximum weight. Show that
wt(Cn−1) ≥ τ(K∗

n).

Question 2.4 Let D = {C1, . . . , Cn−1} be a decomposition of A(K∗
n) into

tours. Let α be an automorphism of V (K∗
n). Prove that α maps D into a

decomposition of A(K∗
n) into tours.
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We are now ready to prove the main result of this section.

Theorem 2.5 Assume that H is a tour in K∗
n such that wt(H) ≤ τ(K∗

n).
If n 6= 6, then H is not worse than at least (n− 2)! tours in K∗

n.

Proof: The result is clearly true for n = 2, 3. If n = 4, the result follows
from the fact that the most expensive tour, R, in K∗

n has weight at least
τ(K∗

n) ≥ wt(H). So the domination number of H is at least two (H and R
are two tours of weight at least wt(H)).

Assume that n ≥ 5 and n 6= 6. Let V (K∗
n) = {x1, x2, . . . , xn}. By

Lemma 2.1 there exists a decomposition, D = {C1, ..., Cn−1} of A(K∗
n) into

tours. Furthermore there are (n− 1)! automorphisms, {α1, α2, . . . , α(n−1)!},
of V (K∗

n), which map vertex x1 into x1. Now let Di be the decomposition
of A(K∗

n) into tours, obtained by using αi on D. In other words, Di =
{αi(C1), αi(C2), . . . , αi(Cn−1)} (see Question 2.4).

Note that if R is a tour in K∗
n, then R belongs to exactly (n− 1) decom-

positions in {D1, D2, . . . , D(n−1)!}, as one automorphism will map C1 into
R, another one will map C2 into R, etc. Therefore R will lie in exactly the
(n− 1) decompositions which we obtain from these (n− 1) automorphisms.

Now let Ei be the most expensive tour in Di. By Question 2.3 we see
that wt(Ei) ≥ τ(K∗

n). As any tour in the set E = {E1, E2, . . . , E(n−1)!}
appears at most (n− 1) times, the set E has at least (n− 2)! distinct tours,
which all have weight at least τ(K∗

n). As wt(H) ≤ τ(K∗
n), this proves the

theorem. 2

The above result has been applied to prove that a wide variety of ATSP
heuristics have domination number at least Ω((n − 2)!). Below we will
show how the above result can be used to prove that ATSP vertex insertion
algorithms have domination number at least (n− 2)!.

Let (K∗
n,wt) be an instance of the ATSP. Order the vertices x1, x2, . . . , xn

of K∗
n using some rule. The generic vertex insertion algorithm proceeds as

follows. Start with the cycle C2 = x1x2x1. Construct the cycle Cj from
Cj−1 (j = 3, 4, 5, . . . , n), by inserting the vertex xj into Cj−1 at the op-
timum place. This means that for each arc e = xy which lies on the
cycle Cj−1 we compute wt(xxj) + wt(xjy) − wt(xy), and insert xj into
the arc e = xy, which obtains the minimum such value. We note that
wt(Cj) = wt(Cj−1) + wt(xxj) + wt(xjy)− wt(xy).

Theorem 2.6 The generic vertex insertion algorithm has domination num-
ber at least (n− 2)!.
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Proof: We will prove that the generic vertex insertion algorithm pro-
duces a tour of weight at most τ(K∗

n) by induction. Clearly this is true for
n = 2, as there is only one tour in this case. Now assume that it is true for
K∗

n−1. This implies that wt(Cn−1) ≤ τ(K∗
n−xn). Without loss of generality

assume that Cn−1 = x1x2 . . . xn−1x1. Let wt(X,Y ) =
∑

x∈X, y∈Y c(xy) for
any disjoint sets X and Y . Since Cn was chosen optimally we see that its
weight is at most (where x0 = xn−1 in the sum)

(
∑n−2

i=0 wt(Cn−1) + wt(xixn) + wt(xnxi+1)− wt(xixi+1))/(n− 1)
= wt(Cn−1) + (wt(V − xn, xn) + wt(xn, V − xn)− wt(Cn−1))/(n− 1)
≤ ((n− 2)τ(K∗

n − xn) + wt(V − xn, xn) + wt(xn, V − xn))/(n− 1)
= (wt(K∗

n − xn) + wt(V − xn, xn) + wt(xn, V − xn))/(n− 1)
= wt(K∗

n)/(n− 1) = τ(K∗
n).

This completes the induction proof. Theorem 2.5 now implies that the
domination number of the generic vertex insertion algorithm is at least (n−
2)!. 2

2.2 Domination numbers of local search heuristics

In TSP local search (LS) heuristics, a neighborhood N(T ) is assigned to
every tour T , a set of tours in some sense close to T . The best improvement
LS proceeds as follows. We start from a tour T0. In the i’th iteration (i ≥ 1),
we search in the neighborhood N(Ti−1) for the best tour Ti. If the weights
of Ti−1 and Ti do not coincide, we carry out the next iteration. Otherwise,
we output Ti.

One of the first exponential size TSP neighborhoods (called assign in
[12]) was considered independently by Sarvanov and Doroshko [38], and
Gutin [17]. We describe this neighborhood and establish a simple upper
bound on the domination number of the best improvement LS based on
this neighborhood. We will see that the domination number of the best
improvement LS based on assign is significantly smaller than that of the
best improvement LS based on 2-opt, a well-known STSP heuristic.

Consider a weighted Kn. Assume that n = 2k. Let T = x1y1x2y2 . . . xkykx1

be an arbitrary tour in Kn. The neighborhood assign, Na(T ), is defined
as follows: Na(T ) = {x1yπ(1)x2yπ(2) . . . xkyπ(k)x1 : (π(1), π(2), . . . , π(k)) is
a permutation of (1, 2, . . . , k)}. Clearly, Na(T ) contains k! tours. We will
show that we can find the tour of minimum weight in Na(T ) in polynomial
time.
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Let B be a complete bipartite graph with partite sets {z1, z2, . . . , zn}
and {y1, y2, . . . , yn}, and let the weight of ziyj be wt(xiyj) + wt(yjxi+1)
(where xn+1 = x1). Let M be a perfect matching in B, and assume that
zi is matched to ym(i) in M . Observe that the weight of M is equal to the
weight of the tour x1ym(1)x2ym(2) . . . xnym(n)x1. Since every tour in Na(T )
corresponds to a perfect matching in B, and visa versa, a minimum weight
perfect matching in B corresponds to a minimum weight tour in Na(T ).
Since we can find a minimum weight perfect matching in B in O(n3) time
using the Hungarian method, we obtain the following theorem.

Theorem 2.7 The best tour in Na(T ) can be found in O(n3) time.

While the size of Na(T ) is quite large, the domination number of the
best improvement LS based on assign is relatively small. Indeed, consider
Kn with vertices {x1, x2, . . . , xk, y1, y2, . . . , yk}. Suppose that the weights of
all edges of the forms xiyj and yixj equal 1 and the weights of all other edges
equal 0. Then, starting from the tour T = x1y1x2y2 . . . xkykx1 of weight n
the best improvement will output a tour of weight n, too. However, there
are only (k!)2/(2k) tours of weight n in Kn and the weight of no tour in Kn

exceeds n. We have obtained the following:

Proposition 2.8 For STSP, the domination number of the best improve-
ment LS based on assign is at most (k!)2/(2k), where k = n/2.

The k-opt, k ≥ 2, neighborhood of a tour T consists of all tour that can
be obtained by deleting a collection of k edges (arcs) and adding another
collection of k edges (arcs). It is easy to see that one iteration of the best
improvement k-opt LS can be completed in time O(nk). Rublineckii [36]
showed that every local optimum for the best improvement 2-opt and 3-opt
for STSP is of weight at least the average weight of a tour and, thus, by an
analog of Theorem 2.5 is of domination number at least (n− 2)!/2 when n
is even and (n− 2)! when n is odd. Observe that this result is of restricted
interest since to reach a k-opt local optimum one may need exponential time
(cf. Section 3 in [27]). However, Punnen, Margot and Kabadi [34] managed
to prove the following result.

Theorem 2.9 For the STSP the best improvement 2-opt LS produces a
tour, which is not worse than at least Ω((n − 2)!) other tours, in at most
O(n3 logn) iterations.
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The last two assertions imply that after a polynomial number of it-
erations the best improvement 2-opt LS has domination number at least
Ω(2n/n3.5) times larger than that of the best improvement assign LS.

Theorem 2.9 is also valid for the best improvement 3-opt LS and some
other LS heuristics for TSP, see [26, 34].

2.3 Upper bounds for domination numbers of ATSP heuris-
tics

It is realistic to assume that any ATSP algorithm spends at least one unit
of time on every arc of K∗

n that it considers. We use this assumption in the
rest of this subsection.

Theorem 2.10 [24, 22] Let A be an ATSP heuristic of complexity t(n).
Then the domination number of A does not exceed max1≤n′≤n(t(n)/n′)n′.

Proof: Let D = (K∗
n, wt) be an instance of the ATSP and let H be the

tour that A returns, when its input is D. Let DOM(H) denotes all tours
in D which are not lighter than H including H itself. We assume that D
is the worst instance for A, namely domn(A, n) = |DOM(H)|. Since A
is arbitrary, to prove this theorem, it suffices to show that |DOM(H)| ≤
max1≤n′≤n(t(n)/n′)n′ .

Let E denote the set of arcs in D, which A actually examines; observe
that |E| ≤ t(n) by the assumption above. Let F be the set of arcs in H that
are not examined by A, and let G denote the set of arcs in D − A(H) that
are not examined by A.

We first prove that every arc in F must belong to each tour of DOM(H).
Assume that there is a tour H ′ ∈ DOM(H) that avoids an arc a ∈ F. If we
assign to a a very large weight, H ′ becomes lighter than H, a contradiction.

Similarly, we prove that no arc in G can belong to a tour in DOM(H).
Assume that an a ∈ G and a is in a tour H ′ ∈ DOM(H). By making a very
light, we can ensure that wt(H ′) < wt(H), a contradiction.

Now let D′ be the digraph obtained by contracting the arcs in F and
deleting the arcs in G, and let n′ be the number of vertices in D′. Note that
every tour in DOM(H) corresponds to a tour in D′ and, thus, the number
of tours in D′ is an upper bound on |DOM(H)|. In a tour of D′, there are
at most d+(i) possibilities for the successor of a vertex i, where d+(i) is the
out-degree of i in D′. Hence we obtain that
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|DOM(H)| ≤
n′∏

i=1

d+(i) ≤

 1

n′

n′∑

i=1

d+(i)




n′

≤
(

t(n)
n′

)n′

,

where we applied the arithmetic-geometric mean inequality. 2

Corollary 2.11 [24, 22] Let A be an ATSP heuristic of complexity t(n).
Then the domination number of A does not exceed max{et(n)/e, (t(n)/n)n},
where e is the basis of natural logarithms.

Proof: Let U(n) = max1≤n′≤n(t(n)/n′)n′ . By differentiating f(n′) =
(t(n)/n′)n′ with respect to n′ we can readily obtain that f(n′) increases for
1 ≤ n′ ≤ t(n)/e, and decreases for t(n)/e ≤ n′ ≤ n. Thus, if n ≤ t(n)/e, then
f(n′) increases for every value of n′ < n and U(n) = f(n) = (t(n)/n)n. On
the other hand, if n ≥ t(n)/e then the maximum of f(n′) is for n′ = t(n)/e
and, hence, U(n) = et(n)/e. 2

The next assertion follows directly from the proof of Corollary 2.11.

Corollary 2.12 [24, 22] Let A be an ATSP heuristic of complexity t(n).
For t(n) ≥ en, the domination number of A does not exceed (t(n)/n)n.

Note that the restriction t(n) ≥ en is important since otherwise the
bound of Corollary 2.12 can be invalid. Indeed, if t(n) is a constant, then
for n large enough the upper bound becomes smaller than 1, which is not
correct since the domination number is always at least 1.

Question 2.13 Fill in details in the proof of Corollary 2.11.

Question 2.14 Using Corollary 2.11 show that ATSP O(n)-time algorithms
can have domination number at most 2Θ(n).

Question 2.15 Show that there exist ATSP O(n)-time algorithms of dom-
ination number at least 2Ω(n). Compare the results of the last two questions.

We finish this subsection with the following:

Theorem 2.16 [34] Unless P=NP, there is no polynomial time ATSP al-
gorithm of domination number (n− 1)!− k for any constant k.
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Proof: Fix any m such that k < m! and consider weighted K∗
n−m, n > m.

Choose a pair u, v of distinct vertices in K∗
n−m. Let M be an arbitrary

number larger than n times the maximum weight of an arc in K∗
n−m. Add

m new vertices and necessary arcs to obtain K∗
n. The weight function wt′ in

K∗
n attains the same values on the arcs of K∗

n−m apart from the arc (u, v)
for which wt′(u, v) = M. Every arc xy between K∗

n−m − {u, v} and the m
new vertices has wt′(x, y) = M. The rest of the arcs in K∗

n are of weight 0.
Let A be a polynomial time ATSP algorithm of domination number

(n − 1)! − k. Using A we can find a tour T in K∗
n, which is not worse

than at least (n − 1)! − k − 1 other tours. Let T denote the set of tours
in K∗

n, each of which consists of the lightest Hamilton (u, v)-path in K∗
n−m

and arcs of weight 0. Clearly, any tour in T is lighter than any tour not in
T . Since |T | = m! < k, T ∈ T . Thus, after removal of the new m vertices
from T , we will get the lightest Hamilton (u, v)-path in K∗

n−m. However, it
is well-known that the problem to find a lightest Hamilton path from u to v
in a complete digraph, with fixed pair u, v of vertices, is NP-hard. We have
arrived to a contradiction with the assumption that P6=NP. 2

For a result that is stronger than Theorem 2.16, see [34].

3 Heuristics of large domination ratio for other
CO problems

In this section, we consider other CO problems which have heuristics with
relatively large domination ratios, as well as some CO problems which prov-
ably do not have heuristics with large domination ratios (unless P=NP).
Even though most initial research on domination analysis has been done on
TSP, there is now a wide variety of other problems, which have been studied
in this respect.

3.1 Minimum Partition and Multiprocessor Scheduling

We already considered the Minimum Partition Problem (MPP) in Subsec-
tion 1.2, where we described a simple algorithm of domination ratio at least
0.5. In this subsection we introduce a slightly more complicated algorithm
of domination ratio close to 1.

Let Bn be the set of all n-dimensional vectors (ε1, ε2, . . . , εn) with {−1, 1}
coordinates. The MPP can be stated as follows: given n nonnegative num-
bers {a1, a2, . . . , an}, find a vector (ε1, ε2, . . . , εn) ∈ Bn such that |∑n

i=1 εiai|
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is minimum.
Consider the following greedy-type algorithm B. Initially sort the num-

bers such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(n). Choose an integral constant p > 0
and fix k = bp log2 nc. Solve the MP to optimality for aπ(1), aπ(2), . . . , aπ(k),
i.e., find optimal values of επ(1), επ(2), . . . , επ(k). (This can be trivially done in
time O(np).) Now for each j > k, if

∑j−1
i=1 επ(i)aπ(i) < 0, then set επ(j) = +1,

and otherwise επ(j) = −1.

Theorem 3.1 [2] The domination ratio of B is at least 1 − ( k
bk/2c

)
/2k =

1−Θ( 1√
k
).

To prove this theorem, without loss of generality, we may assume a1 ≥ a2 ≥
. . . ≥ an.

Observe that if min |∑k
i=1 εiai| ≥

∑n
i=k+1 ai, then B outputs an optimal

solution. Otherwise, it can be easily proved by induction that the solu-
tion produced satisfies |∑n

i=1 εiai| ≤ ak+1. Thus, we may assume the last
inequality.

Now it suffices to prove the following:

Proposition 3.2 The number of vectors (ε1, . . . , εn) ∈ Bn for which |∑n
i=1 εiai| <

ak+1 is at most
( k
bk/2c

)
2n−k.

To prove this proposition, we will use the following lemma:

Lemma 3.3 [13] Let a1 ≥ a2 ≥ · · · ≥ ak and let (a, b) be an arbitrary open
interval such that b−a ≤ 2ak. Then the number of vectors (δ1, . . . , δk) ∈ Bk

such that
∑k

i=1 δiai ∈ (a, b) is at most
( k
bk/2c

)
.

Fix a vector (εk+1, . . . , εn) ∈ Bn−k. Denote the sum
∑n

i=k+1 εiai by S.

Now |∑n
i=1 εiai| < ak+1 if and only if

∑k
i=1 εiai belongs to the open in-

terval (−S − ak+1,−S + ak+1). However, by the lemma above, there are
at most

( k
bk/2c

)
vectors (ε1, . . . , εk) with this property. Since we can fix

(εk+1, . . . , εn) ∈ Bn−k in |Bn−k| = 2n−k ways, the assertion of the proposi-
tion follows, implying the assertion of Theorem 3.1 as well.

For an integer p ≥ 2, a p-partition of a set A is a collection A1, A2, . . . , Ap

of subsets of A such that ∪p
i=1Ai = A and Ai ∩ Aj = ∅ for each 1 ≤ i 6=

j ≤ p. Theorem 3.1 was generalized in [18], where the following minimum p-
processor scheduling problem was considered. We are given an integer p ≥ 2
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and a sequence w1, w2, . . . , wn of positive integers, and we are required to
find a p-partition N1, N2, . . . , Np of {1, 2, . . . , n} such that maxp

i=1

∑
j∈Ni

wj

is as small as possible. Notice that the minimum 2-processor scheduling
problem is equivalent to MMP from the Domination Analysis point of view.

3.2 Max Cut

The Max Cut (MC) is the following problem: given a weighted complete
graph G = (V, E,wt), find a bipartition (a cut) (X, Y ) of V such that the
sum of weights of the edges with one end vertex in X and the other in Y ,
called the weight of the cut (X, Y ), is maximum.

We will show that the MC is DOM-easy, just as TSP is. (For the
definition of DOM-easy problems, see Subsection 1.3.)

Theorem 3.4 [20] The MC is DOM-easy. In fact, there is an algorithm,
for the MC, of domination number at least Ω(2n/n).

Proof: Let G = (V, E) be a weighted complete graph with n = |V | vertices
and let W be the sum of the weights of the edges in G. Clearly, the average
weight of a cut of G is W = W/2.

Consider the following well-known approximation algorithm C that al-
ways produces a cut of weight at least W. The algorithm C considers the
vertices of G in any fixed order v1, v2, . . . , vn, initiates X = {v1}, Y = {v2},
and adds vi, i ≥ 3, to X or Y depending on whether the sum of the weights
of edges between v and Y or between v and X is larger. We will prove that C
is of domination number at least Ω(2n/n). To show this, it suffices to prove
that the cuts in G of weight at most W (we call them bad cuts) constitute
at least an O(1/n) part of all cuts.

We call a cut (X,Y ) of G a k-cut if |X| = k. We evaluate the fraction of
bad cuts among k-cuts when k ≤ n/2− 2

√
n.

For a fixed edge uv of G among
(n
k

)
k-cuts there are 2

(n−2
k−1

)
k-cuts that

contain uv. Thus, the average weight of a k-cut is W k = 2
(n−2
k−1

)
W/

(n
k

)
. Let

bk be the number of bad k-cuts. Then, (
(n
k

)− bk)W/
(n
k

) ≤ W k. Hence,

bk ≥
(

n

k

)
− 4

(
n− 2
k − 1

)
≥

(
n

k

) (
1− 4k(n− k)

n(n− 1)

)
.

It is easy to verify that 1 − 4k(n − k)/(n(n − 1)) > 1/n for all k ≤ n/2 −
2
√

n. Hence, G has more than 1
n

∑
k≤n/2−2

√
n

(n
k

)
bad cuts. By the famous

DeMoivre-Laplace theorem of probability theory, it follows that the last sum
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is at least c2n for some positive constant c. Thus, G has more than c2n/n
bad cuts. 2

Using a more advanced probabilistic approach Alon, Gutin and Krivele-
vich [2] recently proved that the algorithm C described above is of domina-
tion ratio larger than 0.025.

3.3 Max-k-SAT

One of the best-known NP-complete decision problems is 3-SAT. This prob-
lem is the following: We are given a set V of variables and a collection C
of clauses each with exactly 3 literals (a literal is a variable or a negated
variable in V ; in a clause, literals are separated by ”OR”’s). Does there
exist a truth assignment for V , such that every clause is true?

We will now consider the more general optimization problem max-k-SAT.
This is similar to 3-SAT, but there are k literals in each clause, and we want
to find a truth assignment for V which maximizes the number of clauses
that are true, i.e., satisfied. Let U = {x1, . . . , xn} be the set of variables in
the instance of max-k-SAT under consideration. Let {C1, . . . , Cm} be the
set of clauses. We assume that k is a constant.

Berend and Skiena [10] considered some well-known algorithms for max-
k-SAT and the algorithms turned out to have domination number at most
n + 1. However an algorithm considered in [20] is of domination number at
least Ω(2n/nbk/2c). We will study this algorithm.

Assign a truth assignment to all the variables at random. Let pi be the
probability that Ci (i’th clause) is satisfied. Observe that if some variable
and its negation belong to Ci, then pi = 1, otherwise pi = 1 − 2−k′ where
k′ is the number of distinct variables in Ci. Thus, the average number of
satisfied clauses in a random truth assignment is E =

∑m
i=1 pi.

For simplicity, in the sequel true (false) will be replaced by the binaries 1
(0). By a construction described in Section 15.2 of [3], there exists a binary
matrix A = (aij) with n columns and r = O(nbk/2c) rows such that the
following holds: Let B be an arbitrary submatrix of A, consisting of k of its
columns (chosen arbitrarily), and all r of its rows. Every binary k-vector
coincides with exactly r/2k rows of B. We give a short example below, with
n = 4 and k = 3 (r = 8). The matrix A can be constructed in polynomial
time [3].
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0 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 1

Note that no matter which 3 columns we
consider, we will always get the vectors
(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0),
(1,0,1), (1,1,0), (1,1,1) equally many times
(in this case, once) in the 8 rows.

Observe that each row, say row j, corresponds to a truth assignment
βj (where the i’th variable gets the truth assignment of the i’th column,
i.e. x1 = aj1, . . . , xn = ajn). Let Tj be the number of clauses satisfied by
βj . Consider a polynomial time algorithm S that computes T1, . . . , Tr and
outputs β∗(A) that satisfies T ∗(A) = maxr

j=1 Tj clauses.
We will prove that S has domination number at least Ω(2n/nbk/2c). Since

rpi of the r truth assignments will satisfy the i’th clause, we conclude that∑r
i=1 Ti = rE (recall that E =

∑m
i=1 pi; see also Question 3.6). Therefore

the truth assignment β∗(A) must satisfy at least E clauses. Furthermore
by a similar argument we conclude that the row β∗(A) corresponding to the
truth assignment with fewest satisfied clauses, which we shall call W (A),
has at most E satisfied clauses.

Let X ⊆ {1, 2, . . . , n} be arbitrary and let AX be the matrix obtained
from A by changing all 0’s to 1’s and all 1’s to 0’s in the i’th column in
A, for all i ∈ X. Note that AX has the same properties as A. Observe
that a truth assignment can appear at most r times in T = {β∗(AX) : X ⊆
{1, 2, . . . , n}}, as a truth assignment cannot appear in the j’th row of AX and
AY , if X 6= Y . Therefore T contains at least 2n/r distinct truth assignments
all with at most E satisfied clauses. Therefore, we have proved the following:

Theorem 3.5 [20] The algorithm S is of domination number at least Ω(2n/nbk/2c).

Question 3.6 Consider the given algorithm for max-k-SAT. Prove that rpi

rows will result in the i’th clause being true, so
∑r

i=1 Ti = rE.

Question 3.7 [20] Show that Theorem 3.5 can be extended to the weighted
version of max-k-SAT, where each clause Ci has a weight wi and we wish
to maximize the total weight of satisfied clauses.

Alon, Gutin and Krivelevich [2] recently proved, using an involved prob-
abilistic argument, that the algorithm of Theorem 3.5 is, in fact, of domi-
nation number Ω(2n).

19



3.4 Fixed span frequency assignment problem

In [31] the domination number is computed for various heuristics for the
Fixed Span Frequency Assignment Problem (fs-FAP), which is defined as
follows. We are given a set of vertices {x1, x2, . . . , xn} and an n× n matrix
C = (cij). We want to assign a frequency fi to each vertex xi, such that
|fi − fj | ≥ cij for all i 6= j. However when fi has to be chosen from a set
of frequencies {0, 1, . . . , σ − 1}, where σ is a fixed integer, then this is not
always possible. If |fi−fj | < cij , then let xij = 1, and otherwise let xij = 0.

We are also given a matrix W = (wij) of weights, and we want to
minimize the sum

∑n
i=1

∑n
j=1 xijwij . In other words we want to minimize

the weight of all the edges that are broken (i.e. which have |fi − fj | < cij).
Put cii = 0 for all i = 1, 2, . . . , n. Since every vertex may be assigned a
frequency in {0, 1, . . . , σ − 1}, the following holds.

Proposition 3.8 The total number of solutions for the fs-FAP is σn.

A heuristic for the fs-FAP, which has similarities with the greedy expec-
tation algorithm for the TSP (see [21]) is as follows (see [31] for details). We
will assign a frequency to each vertex x1, x2, . . . , xn, in that order. Assume
that we have already assigned frequencies to x1, x2, . . . , xi−1 and suppose
that we assign frequency fi to xi. For all j > i, let pij be the probability
that |fi − fj | < cij , if we assign a random frequency to j. For all j < i let
xij = 1 if |fi−fj | < cij and xij = 0 otherwise. We now assign the frequency
fi to xi, which minimizes the following:

i−1∑

j=1

wijxij +
n∑

j=i+1

wijpij .

In other words we choose the frequency which minimizes the weight of the
constraints that get broken added to the average weight of constraints that
will be broken by assigning the remaining vertices with random frequencies.
It is not too difficult to see that the above approach produces an assignment
of frequencies, such that the weight of the broken edges is less than or equal
to the average, taken over all assignments of frequencies. Koller and Noble
[31] proved the following theorem where G is the algorithm described above.

Theorem 3.9 [31] The domination number of G is at least σn−dlog2ne−1.

Note that the following holds.

σn−dlog2ne−1 ≥ σn−log2n−2 ≥ σn

σ2nlog2σ
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Therefore G finds a solution which is at least as good as a polynomial
fraction of all solutions (σ is a constant). This means that the fs-FAP is
DOM-easy.

In [31] it is furthermore shown that G has higher domination number than
the better-known greedy-type algorithm, which minimizes only

∑i−1
j=1 wijxij ,

in each step.

3.5 DOM-hard problems

In this section we consider two well-known graph theory problems, which are
somewhat different from the previous problems we have considered. Firstly,
the number of feasible solutions, for an input of size n, depends on the actual
input, and not just its size.

A clique in a graph G is a set of vertices in G such that every pair of
vertices in the set are connected by an edge. The Maximum Clique Problem
(MCl) is the problem of finding a clique of maximum cardinality in a graph.
A vertex cover in a graph G is a set S of vertices in G such that every edge
is incident to a vertex in S. The Minimum Vertex Cover Problem (MVC)
is the problem of finding a minimum cardinality vertex cover. It is easy to
see that the number of cliques in a graph depends on its structure, and not
only on the number of vertices. The same holds for vertex covers.

The problems we have considered in the previous subsections have been
DOM-easy. We will show that MCl and MVC areDOM-hard unless P=NP.

Theorem 3.10 [20] MCl is DOM-hard unless P=NP.

Proof: We use a result by H̊astad [29], which states that, provided that
P 6=NP, MCl is not approximable within a factor n1/2−ε for any ε > 0, where
n is the number of vertices in a graph.

Let G be a graph with n vertices, and let q be the number of vertices in
a maximum clique Q of G. Let A be a polynomial time algorithm and let A
find a clique M with m vertices in G.

Since the clique Q ’dominates’ all 2q of its subcliques and the clique M
’dominates’ at most

(n
m

)
2m cliques in G, the domination ratio r of A is at

most
(n
m

)
2m/2q. By the above non-approximability result of H̊astad [29], we

may assume that mn0.4 ≤ q. Thus,

r ≤
(n
m

)
2m

2q
≤ (en/m)m2m

2q
≤ (n/m)m(2e)m

2mn0.4 = 2s,

where s = m(log n− log m + 1 + log e− n0.4). Clearly, 2s is smaller than
1/p(n) for any polynomial p(n) when n is sufficiently large. 2
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An independent set in a graph is a set S of vertices such that no edge
is joins two vertices in S. The Maximum Independent Set problem (MIS) is
the problem of finding a minimum cardinality independent set in a graph.

Question 3.11 Using Theorem 3.10 prove that MIS is DOM-hard unless
P=NP.

Question 3.12 Let G = (V, E) be a graph. Prove that S in an independent
set in G if and only if V − S is a vertex cover in G.

Question 3.13 Using the results of the previous two questions prove that
MVC is DOM-hard unless P=NP.

3.6 Other problems

There are many other combinatorial optimization problems studied in the
literature that were not considered above. We will overview some of them.

In the Generalized TSP, we are given a weighted complete directed
or undirected graph G and a partition of its vertices into non-empty sets
V1, . . . , Vk. We are required to compute a lightest cycle in G containg ex-
actly one vertex from each Vi, i = 1, . . . , k. In the case when all Vi’s are of
the same cardinality, Ben-Arieh et al. [8] proved that the Generalized TSP
is DOM-easy.

The Quadratic Assignment Problem (QAP) can be formulated as follows.
We are given two n × n matrices A = [aij ] and B = [bij ] of integers. Our
aim is to find a permutation π of {1, 2, . . . , n} that minimizes the sum

n∑

i=1

n∑

j=1

aijbπ(i)π(j).

Using group-theoretical approaches, Gutin and Yeo [25] proved only that
QAP is DOM-easy when n is a prime power.

Conjecture 3.14 QAP is DOM-easy (for every value of n).

It was noted in [20] that Theorem 3.10 holds for some cases of the fol-
lowing general problem: the Maximum Induced Subgraph with Property Π
(MISP), see Problem GT25 in the compendium of [4]). The property Π
must be hereditary, i.e., every induced subgraph of a graph with property Π
has property Π, and non-trivial, i.e., it is satisfied for infinitely many graphs
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and false for infinitely many graphs. Lund and Yannakakis [32] proved that
MISP is not approximable within nε for some ε > 0 unless P=NP, if Π is
hereditary, non-trivial and is false for some clique or independent set (e.g.,
planar, bipartite, triangle-free). This non-approximability result can be used
as in the proof of Theorem 3.10.

4 Greedy algorithm

The main practical message of this section is that one should be careful while
using the classical greedy algorithm in combinatorial optimization (CO):
there are many instances of CO problems for which the greedy algorithm
will produce the unique worst possible solution. Moreover, this is true for
several well-known optimization problems and the corresponding instances
are not exotic, in a sense. This means that not always the paradigm of
greedy optimization provides any meaningful optimization at all.

In this section we provide a wide extension of Theorem 1.2, which slightly
generalizes the main theorem in [23]. Interestingly, the proof of the extension
is relatively easy.

An independence system is a pair consisting of a finite set E and a family
F of subsets (called independent sets) of E such that (I1) and (I2) are
satisfied.

(I1) The empty set is in F ;

(I2) If X ∈ F and Y is a subset of X, then Y ∈ F .

A maximal (with respect to inclusion) set of F is called a base. Clearly, an
independence system on a set E can be defined by its bases. Notice that
bases may be of different cardinality.

Many combinatorial optimization problems can be formulated as follows.
We are given an independence system (E,F) and a weight function wt that
assigns a real weight wt(e) to every element e ∈ E. The weight wt(S) of
S ∈ F is defined as the sum of the weights of the elements of S. It is required
to find a base B ∈ F of minimum weight. In this section, we will consider
only such problems and call them the (E,F)-optimization problems.

If S ∈ F , then let I(S) = {x : S ∪ {x} ∈ F}− S. The greedy algorithm
(or, greedy, for short) constructs a base as follows: greedy starts from an
empty set X, and at every step greedy takes the current set X and adds to
it a minimum weight element e ∈ I(X); greedy stops when a base is built.
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Consider the following example. Let E′ = {a, b, c, d}. We define an in-
dependence system (E′,F ′) by listing its two bases: {a, b, c}, {c, d}. Recall
that the independent sets of (E′,F ′) are the subsets of its bases. Let the
weights of a, b, c, d be 1, 5, 0, 2, respectively. (Notice that the weight assign-
ment determines an instance of the (E′,F ′)-optimization problem.) greedy
starts from X = ∅, then adds c to X. At the next iteration it appends a
to X. greedy cannot add d to X = {a, c} since d /∈ I(X). Thus, greedy
appends b to X and stops.

Since 6 = wt(a, b, c) > wt(c, d) = 2, the domination number of greedy
is 1 for this instance of the (E′,F ′)-optimization problem.

Note that if we add (I3) below to (I1),(I2), then we obtain one of the
definitions of a matroid [33]:

(I3) If U and V are in F and |U | > |V |, then there exists x ∈ U − V such
that V ∪ {x} ∈ F .

It is well-known that domination number of greedy for every matroid
(E,F) is |F|: greedy always finds an optimum for the (E,F)-optimization
problem. Thus, it is surprising to have the following theorem that generalizes
Theorem 1.2.

Theorem 4.1 [23, 24] Let (E,F) be an independence system and B′ =
{x1, . . . , xk}, k ≥ 2, a base. Suppose that the following holds for every base
B ∈ F , B 6= B′,

k−1∑

j=0

|I(x1, x2, . . . , xj) ∩B| < k(k + 1)/2. (1)

Then the domination number of greedy for the (E,F)-optimization problem
equals 1.

Proof: Let M be an integer larger than the maximal cardinality of a
base in (E,F). Let wt(xi) = iM and wt(x) = 1 + jM if x 6∈ B′, x ∈
I(x1, x2, . . . , xj−1) but x 6∈ I(x1, x2, . . . , xj). Clearly, greedy constructs B′

and wt(B′) = Mk(k + 1)/2.
Let B = {y1, y2, . . . , ys} be a base different from B′. By the choice of wt

made above, we have that wt(yi) ∈ {aM, aM + 1} for some positive integer
a.

Clearly
yi ∈ I(x1, x2, . . . , xa−1),
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but yi 6∈ I(x1, x2, . . . , xa). Hence, by (I2), yi lies in I(x1, x2, . . . , xj) ∩ B,
provided j ≤ a−1. Thus, yi is counted a times in

∑k−1
j=0 |I(x1, x2, . . . , xj)∩B|.

Hence,

wt(B) =
s∑

i=1

wt(yi) ≤ s + M
k−1∑

j=0

|I(x1, x2, . . . , xj) ∩B|

≤ s + M(k(k + 1)/2− 1) = s−M + wt(B′),

which is less than the weight of B′ as M > s. Since A finds B′, and B is
arbitrary, we see that greedy finds the unique heaviest base. 2

The strict inequality (1) cannot be relaxed to the non-strict one due to
Question 4.3.

Question 4.2 Let (E,F) be a matroid. Using (I3), show that for two dis-
tinct bases B and B′ = {x1, x2, . . . , xk}, we have that |I(x1, x2, . . . , xj)∩B| ≥
k − j for j = 0, 1, . . . , k. Thus,

k−1∑

j=0

|I(x1, x2, . . . , xj) ∩B| ≥ k(k + 1)/2.

Question 4.3 [23] Consider a matroid (E′,F ′) in which E′ consists of the
columns of matrix M = (I|2I), where I is the k × k identity matrix, and
F ′ consists of collections of linearly independent columns of M. (Check that
(E′,F ′) is a matroid.) Let B and B′ = {x1, x2, . . . , xk} be two distinct bases
of our matroid. Show that

∑k−1
j=0 |I(x1, x2, . . . , xj) ∩B| = k(k + 1)/2.

Recall that by the Assignment Problem (AP) we understand the problem
of finding a lightest perfect matching in a weighted complete bipartite graph
Kn,n.

Question 4.4 Prove Corollary 4.5 applying Theorem 4.1

Corollary 4.5 [23] Every greedy-type algorithm A is of domination number
1 for the Asymmetric TSP, Symmetric TSP and AP.

Research Question 4.6 Describe new wide families of the (E,F)-optimization
problems for which greedy is of domination number 1.
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Bang-Jensen, Gutin and Yeo [7] considered the (E,F)-optimization prob-
lems, in which every base is of the same cardinality and wt assumes only
a finite number of integral values. For such problems, the authors of [7]
completely characterized all cases when greedy may construct the unique
worst possible solution. Here the word may means that greedy may choose
any element of E of the same weight.

5 Practicality of domination analysis

Earlier in this chapter we have seen that domination analysis (DA) provides
theoretical explanations of the poor computational behavior of greedy for
certain optimization problems and of the fact that some very large neighbor-
hoods in local search are computationally much weaker than some ’small’
neighborhoods.

One might wonder whether a heuristic A, that is significantly better
that another heuristic B from the point of view of DA, is better that B
in computational experiments. In particular, whether greedy is worse, in
computational experiments, than any ATSP heuristic of domination number
at least (n − 2)! ? Generally speaking the answer to this natural question
is negative. This is because computational experiments and domination
analysis indicate different aspects of quality of heuristics. Nevertheless, it
seems that many heuristics of very small domination number such as greedy
for TSP fail also in computational experiments and thus are not very robust.

Koller and Noble [31] showed that the heuristic G that they introduced
for the frequency assignment problem is of larger domination number than
the well-known greedy algorithm. However, the greedy algorithm is usually
better in computational experiments than G. Judging only by the computa-
tional experiments, G is of no interest. However, G might well be of interest
when difficult instances of the frequency assignment problem are considered.

Ben-Arieh et al. [8] studied some heuristics for the Generalized TSP
defined above. They investigated three modifications of a generic heuristic.
In the computational experiment in [8] one of the modifications was clearly
inferior to the other two. The best two behaved very similarly. Nevertheless,
the authors of [8] managed to ’separate’ the two modifications by showing
that one of the modifications was of much larger domination number.
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