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Abstract

We survey results on the sequential and parallel complexity of hamiltonian
path and cycle problems in various classes of digraphs which generalize tourna-
ments. We give detailed informations on the difference in difficulties for these
problems for the various classes as well as prove new results on hamiltonian paths
starting in a specified vertex for a quite general class of digraphs.

1 Introduction

This paper is based in part on a invited plenary talk given by the first author at
ODSA ’97 in Rostock, September 8-10 1997. The purpose of the paper is to survey
results on the complexity of hamiltonian path and cycle problems in generalizations
of tournaments and point out similarities and differences among the various classes.
There have been recent surveys by the authors on tournaments and generalizations
of tournaments, respectively [10, 11], but contrary to those papers, in this paper we
focus explicitly on the complexity on hamiltonian path and cycle problems and give
a number of quite detailed explanations which we hope will inspire many readers to
explore this rich area by themselves and in any case will give the readers a feeling for
the techniques used in this area. As another difference to [10, 11] this current survey
contains a number of results on the parallel complexity of hamiltonian path and cycle
problems for generalizations of tournaments and finally we include proofs of new results
on hamiltonian paths starting or ending at a specified vertex in a quite general class
of digraphs.

It is well known that the hamiltonian path and cycle problems for general digraphs
as well as their numerous modifications are NP-complete. Hence, it makes sense to
investigate classes of digraphs where the hamiltonian path and cycle problems can be
solved in polynomial time. A well known example of such class is tournaments. In
this paper, we describe algorithmic results obtained for this class of digraphs as well as
for wider classes of digraphs which generalize tournaments, including the rather wide
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classes of totally Φi-decomposable digraphs (i = 0, 1) defined in Section 6. Moreover,
we state some challenging open problems and conjectures.

We consider the following problems: Given a digraph D and two vertices x, y in D,
decide if there exists

1. a hamiltonian path of D (the hamiltonian path problem, or the HP problem, for
short);

2. a hamiltonian cycle of D (the HC problem);

3. a hamiltonian path of D starting at x (the HPx problem);

4. a hamiltonian path of D between x and y (the order of x and y is not specified)
(the HP[x,y] problem);

5. a hamiltonian path of D from x to y (the HPxy problem).

For many of the cases we consider, one can construct polynomial algorithms using
complete theoretical characterizations and their constructive proofs. In other, more
difficult cases, polynomial algorithms are obtained by using either partial theoretical
results (the HPxy problem for tournaments, for example) or by transforming a problem
into ones having theoretical characterizations ( for example the HP and HC problems
for totally Φi-decomposable digraphs).

2 Terminology

For terminology on parallel algorithms we refer the reader to [40]. The class NC is
the class of problems for which there exits a parallel algorithm solving the problem
in polylogarithmic time and using a polynomial number of processors (both wrt the
size of the problem). The graph-theoretical terminology is fairly standard, generally
following [25]. We shall always use the number n to denote the number of vertices
in the digraph currently under consideration. Digraphs are finite, have no loops or
multiple arcs. V (D) and A(D) denote the vertex set and the arc set of a digraph D.
The number of vertices in a digraph is its order. We shall denote the arc from a vertex
x to a vertex y by xy. If xy ∈ A(D), we shall say that x dominates y and denote
it by x→y. The out-neighbourhood (in-neighbourhood) of a vertex x in a digraph D
is the set of all vertices of D dominated by (dominating) x. We shall denote the in-
neighbourhood and out-neighbourhood of vertex x by N−(x) and N+(x), respectively.
For disjoint subsets H, K ⊂ V (D) we use the notation H⇒K to denote that there are
no arcs from K to H.

By a cycle (path, respectively) we mean a directed (simple) cycle (path, respec-
tively). If C is a cycle and x is a vertex on C, then we denote by x− (respectively, x+)
the predecessor (respectively, the successor) of x on C. Sometimes we shall use this
notation for vertices on different cycles, but the meaning should always be clear. If R
is a cycle or a path with two vertices u, v such that u can reach v on R, then R[u, v]
denotes the subpath of R from u to v. A cycle (path) of a digraph D is hamiltonian if
it contains all the vertices of D. A digraph is hamiltonian if it has a hamiltonian cycle.
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An (x, y)-path is a path from x to y. A digraph D is strongly connected (or just
strong) if there exists an (x, y)-path and a (y, x)-path for every choice of distinct vertices
x, y of D. The digraph D is k-strongly-connected if |V (D)| ≥ k+1 and D−X is strongly
connected for any X ⊂ V (D) with |X| ≤ k − 1.

The underlying graph of a digraph D is the graph obtained from D by disregarding
the orientations of all arcs of D. We shall denote the underlying graph of D by U [D]
and say that D is connected if U [D] is connected. A digraph T is semicomplete if U [T ]
is complete. A tournament is a semicomplete digraph with no cycles of length 2.

A collection F of pairwise vertex disjoint paths and cycles of a digraph D is called
a k-path-cycle factor of D if F covers V (D) and has exactly k ≥ 0 paths. F is called
a k-path factor if it is contains only paths. We shall call a 0-path-cycle factor a cycle
factor.

An out-branching (respectively, in-branching) rooted at some vertex v in a digraph
D is a spanning tree in U(D) which is oriented (in D) in such a way that every vertex
x 6= v has precisely one arc coming in (respectively, going out).

3 Various classes of generalizations of tournaments

A digraph D is locally in-semicomplete (locally out-semicomplete, respectively) if, for
every vertex x of D, the in-neighbourhood of x (its out-neighbourhood, respectively)
induces a semicomplete digraph. A digraph D is locally semicomplete if it is both
locally in- and out-semicomplete. We shall use the abbreviation LSD’s (LISD’s and
LOSD’s, respectively) for locally semicomplete digraphs (locally in-semicomplete and
out-semicomplete digraphs, respectively). A digraph D is called a semicomplete k-
partite digraph (k ≥ 2) or a semicomplete multipartite digraph (abbreviated to SMD) if
U [D] is a complete k-partite graph. The special case when k = 2 is called a semicom-
plete bipartite digraph (abbreviated to SBD). If D is a semicomplete k-partite digraph
we call the maximal independent sets of D the colour classes of D and denote these
V1, . . . , Vk.

A digraph D is path-mergeable if, for every choice of vertices x, y ∈ V (D) and every
pair of internally disjoint (x, y)-paths P, P ′, there exists an (x, y)-path P ∗ in D, such
that V (P ∗) = V (P ) ∪ V (P ′).

A digraph D is called quasi-transitive if, for every triple x, y, z of distinct vertices
of D such that xy and yz are arcs of D, there is at least one arc between x and z.
Quasi-transitive digraphs were introduced by A. Ghouilá-Houri [29] who proved that
the underlying graphs of quasi-transitive digraphs are precisely comparability graphs.

Let D be a digraph on p vertices v1, ..., vp and let L1, ..., Lp be a disjoint collection
of digraphs. Then D[L1, ..., Lp] is the new digraph obtained from D by replacing each
vertex vi of D by Li and adding an arc from every vertex of Li to every vertex of Lj if
and only if (vi, vj) is an arc of D (1 ≤ i 6= j ≤ p). Let Φ be a set of digraphs, containing
the digraph on one vertex and no arcs. A Φ−graph is a member D ∈ Φ. A digraph
D is an extended Φ−graph if either it has only one vertex, or there is a decomposition
D = R[H1, ..., Hr] such that R ∈ Φ, each of the digraphs Hi, i = 1, ..., r has no arcs,
and r ≥ 2. A set Φ is closed with respect to extension if each extended Φ-graph is in
Φ. In particular, SMD’s form such a closed set. The set of semicomplete digraphs is

3



not closed in this sense. Extended digraphs appear in the solutions of some problems,
especially, in the study of different sets of totally Φ-decomposable digraphs (see [36]
and Section 6). We describe several results on extended semicomplete digraphs in
Section 5.

4 Tournaments

The problems HP,HC, HPx, HP[x,y] , and HPxy are equivalent for general di-
graphs, from a complexity point of view, and, moreover, they are NP-complete [39].
We now restrict ourselves to tournaments, and as we shall see (from sequential point
of view), the first three problems are easy, the fourth is not too complicated either,
but the last problem, even though it is polynomial time solvable, is quite complicated.
Moreover, a generalization of the HPxy problem isNP-complete even for tournaments
as we shall see below [22].

It is well known that every tournament contains a hamiltonian path (Redei’s theo-
rem) and every strong tournament has a hamiltonian cycle (Camion’s theorem). More-
over, a tournament T has a hamiltonian path starting from x if and only if every vertex
of T can be reached from x [48] (see also Proposition 5.2). The inductive classical proof
of Redei’s theorem gives at once a simple O(n2) algorithm for the first problem. Since
sorting by comparisons corresponds to finding a hamiltonian path in a transitive (i.e.
acyclic) tournament, we have an O(n log n)-time algorithm in this case. P. Hell and
M. Rosenfeld [38] obtained an algorithm with the same complexity solving the HP
problem for all tournaments (see, also, [17, 47]). The proof of Moon’s theorem (every
strongly connected tournament is vertex pancyclic [43]) provides an O(n3)-time algo-
rithm for the HC problem. Y. Manoussakis [41] constructed an O(n2)-time algorithm
for the HC problem. This algorithm is optimal since, as it has been proved in [47],
there is no sequential algorithm solving the hamiltonian cycle problem in tournaments
in time less than cn2, where c is a constant.

D. Soroker [48] studied the parallel complexity of the above mentioned problems.
He proved the following:

Theorem 4.1 There are NC-algorithms for the HP, HPx and HC problems for tour-
naments.

Another NC -algorithm for the HP problem in tournaments has been obtained by
J. Naor [45]. The most effective parallel algorithm for the HP problem for tournaments
is due to A. Bar-Noy and J. Naor [23]. They constructed an algorithm which finds a
hamiltonian path in time O(log n) on an O(n) processor CRCW PRAM. Therefore, the
last algorithm has an optimal speed-up with respect to the sequential complexity of the
problem. The algorithm by A. Bar-Noy and J. Naor can be implemented by generic
techniques in the EREW model in parallel time O(log2 n) using O(n) processors. Their
algorithm uses R. Cole’s optimal NC algorithm for merge sort [26].

The fastest parallel algorithm for the HC problem for tournaments is due to E.
Bampis, M. El Haddad, Y. Manoussakis and M. Santha [3]. They found a fast parallel
procedure which transforms the HC problem for tournaments to the HP problem for
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tournaments in the following sense: Given a hamiltonian path in a tournament as in-
put, the procedure constructs a hamiltonian cycle in each non-trivial strongly connected
component. The parallel running time of the procedure is O(log n) using O(n2/ log n)
processors in the CRCW model and O(log n log log n) using O(n2/ log n log log n) pro-
cessors in the EREW model. Combining the procedure with the algorithm by A. Bar-
Noy and J. Naor, the authors of [3] obtained an algorithm with running time O(log n)
using O(n2/ log n) processors in the CRCW model. Note that this algorithm achieves
an optimal speed-up with respect to the sequential complexity of the problem. In
the EREW model the algorithm runs in time O(log2 n) and uses O(n2/ log n log log n)
processors.

For tournaments the HP[x,y] problem was solved by C. Thomassen [49] who ob-
tained a theoretical characterization. It follows from this characterization that the ex-
istence of a hamiltonian path between x and y can be checked in time O(n2). Moreover,
the proof of the characterization in [49] provides an O(n2)-algorithm for constructing
a hamiltonian path between x and y (if one exists).

J. Bang-Jensen, Y. Manoussakis and C. Thomassen [21] considered the much more
difficult HPxy problem for semicomplete digraphs. The authors of [21] found a polyno-
mial algorithm for solving the HPxy problem based on a number of structural results.
The question of the existence of such an algorithm for tournaments was raised by
Soroker [48].

Theorem 4.2 [21] There exists an O(n5) algorithm to check whether a given semi-
complete digraph of order n with specified vertices x, y has a hamiltonian (x, y)-path.
Moreover, there is an O(n7) algorithm for constructing a hamiltonian (x, y)-path (if
one exists) in a semicomplete digraph of order n with two distinguished vertices x and
y.

The structure of this algorithm is not complicated – it is based on the classical
divide and conquer approach – but the proof of its correctness is highly non-trivial.

Note that if we ask for a longest path between x and y in a tournament, then this
problem can also be solved in time O(n2). This follows from Thomassen’s character-
ization in [49]. However, if we insist that the path should go from x to y, then no
polynomial algorithm is known. In particular the algorithm in [21] cannot be easily
modified to solve this problem, nor does there seem to be an easy reduction of the
longest (x, y)-path problem to the HPxy problem.

Conjecture 4.3 There exists a polynomial algorithm which given a semicomplete di-
graph T and two distinct vertices x, y of T finds a longest (x, y)-path in T .

Now consider the following generalization of the HPxy problem : Given a digraph
D and k arcs e1, . . . , ek ∈ A(D), decide if D has a hamiltonian cycle containing the
arcs e1, . . . , ek (the k-HCA problem).

Based on the evidence from Theorem 4.2 the authors of [21] raised the following
conjecture, the truth of which in the case k = 1 follows from Theorem 4.2 :

Conjecture 4.4 [21] For each fixed k, the k-HCA problem is polynomially solvable
for semicomplete digraphs.
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Note that J. Bang-Jensen and C. Thomassen proved [22] that the k-HCA problem
is NP-complete, even for tournaments, when k is not fixed.

At present no NC algorithms are known for the HP[x,y] or HPxy problem for
tournaments. For a partial result, see Theorem 5.24.

5 Generalizations of tournaments

The first two results described in this section are not very difficult to prove but they are
very useful, and, sometimes, allow to essentially simplify the proofs of more complicated
theorems and obtain simpler and faster algorithms.

It was shown in [5] that path-mergeable digraphs are recognizable in time O(m3).
This result is based on the following characterization of path-mergeable digraphs.

Theorem 5.1 [5] A digraph D is path-mergeable if and only if for every pair of distinct
vertices x, y ∈ V (D) and every pair P = xx1x2...xsy, P ′ = xy1y2...yty, s, t ≥ 1
of internally disjoint (x, y)-paths in D, there exists either an i ∈ {1, ..., s} such that
xi→y1, or a j ∈ {1, ..., t} such that yj→x1. Moreover, if D is path-mergeable then P
and P ′ can be merged into one (x, y)-path P ∗, so that vertices from P (respectively, P ′)
remain in the same order as on that path. Furthermore, the merging can be done in
O(s + t) steps.

Path-mergeable digraphs form an important family of digraphs since every LISD
or LOSD is path-mergeable as shown in [5]. In fact it is easy to show by induction on
the length of the paths that the following stronger statement holds:

Proposition 5.2 If D is a LISD and P, P ′ are (x, z)-, (y, z)-paths in D which only
have z as a common vertex, then D contains a path P ∗ with V (P ∗) = V (P ) ∪ V (P ′)
such that P ends in z and starts in either x or y. Furthermore the relative ordering of
vertices from P and P ′ is preserved on P ∗. ¦

Two vertices x and y in a digraph D are called similar if they are not adjacent and
N−(x) = N−(y), N+(x) = N+(y). For extended LOSD’s we have the following result
with the same proof as its analogoue for extended LSD’s [9]:

Proposition 5.3 Let D be an extended LOSD and let P1 = xx1 . . . xsy and P2 =
xz1 . . . ztz be internally disjoint paths, possibly with y = z.

If no vertex of V (P1) \ V (P2) is similar to a vertex of V (P2) \ V (P1), then the
following holds:

1. D contains a path P starting in x and ending in either y or z such that V (P ) =
V (P1) ∪ V (P2).

2. Furthermore, on P the relative order of vertices from Pi, i = 1, 2 is preserved.

3. P can be found in time O(s + t).
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The following two results were obtained in [17, 18].

Theorem 5.4 A strong locally in-semicomplete digraph has a hamiltonian cycle. There
is an O(m + n log n) algorithm for finding a hamiltonian cycle in a strong locally in-
semicomplete digraph.

Theorem 5.5 A LISD has a hamiltonian path if and only if it contains an in-branching.
Given an in-branching of a LISD D, represented by lists of in-neighbours, one can find
a hamiltonian path of D in time O(n log n).

Let us dwell a little on the last result in order to illustrate how structural prop-
erties related to hamiltonian paths in tournaments extend to LISD’s. In the classical
classroom exercise proof of the fact that every tournament has a hamiltonian path, one
simply observes that if P is a path from u to v in a tournament T and x is a vertex
not on P , then either x→u or v→x or else there are vertices w, z on P such that w
is the predecessor of z on P and w→x→z, i.e. x can be inserted between w and z on
P . It is easy to see that using a binary search approach, we can find the right place to
insert x by asking at most dlog |P |e questions about directions of certain arcs with x
as one of the endpoints. Now let us consider the more general case when T is a LISD
and that x has an arc x→z to P . Using Proposition 5.2, we get that x can be inserted
in P before z. Unfortunately, using that approach we may use O(|P |) questions about
the orientation of edges per insertion. Instead we shall see that we can still use a type
of binary search to find the right place to insert x asking at most dlog |P |e questions
about directions of certain arcs: Let s be the middle vertex of the path P [u, z]. If s→x,
then it follows from the fact that LISD’s are path-mergeable that we can merge the
two paths P [s, z] and s→x→z into one (s, z)-path P ∗ and hence x can be inserted in
the path P [s, z]. If x→s, then it follows from Proposition 5.2 that x can be inserted
in the path P [u, s] and finally if x and s are non-adjacent, then it follows again from
Proposition 5.2 that x can be inserted after s in the path P [s, z]. Hence, in all cases
we have found a path of size half the original one to consider. This the key observation
for the algorithm in [17] (of course we still need datastructures to handle the paths
efficiently, etc)

It is clear that, for LOSD’s, one can get the same result just by replacing ’in’ by
’out’. Note the following more general result (every LISD and LOSD is mergeable [5]).

Theorem 5.6 [5] A path-mergeable digraph D is hamiltonian if and only if D is strong
and U [D] is 2-connected. There is an O(nm)-algorithm for finding a hamiltonian cycle
in a hamiltonian path-mergeable digraph D on n vertices and m arcs.

The problem of deciding whether a path-mergeable digraph has a hamiltonian path
seems much harder than that of deciding the existence of a hamiltonian cycle. This is
because the path-merging property does not imply anything for paths with only one
endvertex in common.

Problem 5.7 Determine the complexity of the hamiltonian path problem for path-
mergeable digraphs.
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Clearly, very often strong connectedness is not sufficient to guarantee the existence
of a hamiltonian cycle. One reason for this is that strong connectivity is not enough to
ensure the existence of a cycle factor, an obvious necessary condition for the existence
of a hamiltonian cycle. It is easy to check, in polynomial time, the existence of a such
subgraph in a given (general) digraph and find one, if it exists, (see [32, 34, 35]) using
any polynomial maximum matching algorithm (for bipartite graphs). In particular, we
can do it in time O(n2.5/

√
log n) applying the algorithm from [2]. J. Bang-Jensen and

G. Gutin [9] used this idea showing the following:

Theorem 5.8 An extended LSD has a hamiltonian cycle if and only if it is strong
and has a cycle factor. Given a spanning cycle subgraph of an extended LSD D, a
hamiltonian cycle of D can be found in time O(n2), where n is the number of vertices
in D.

Theorems analogous to Theorem 5.8 have been obtained for semicomplete bipartite
digraphs [31, 37, 42], for extended semicomplete digraphs [35] and for extended LOSD’s
and LISD’s [9].

Below we will illustrate some similarities between the cycle structure in some of
these classes of digraphs and at the same time illustrate a very useful technique for
solving hamiltonian cycle problems in some classes of digraphs (see e.g. [14]).

Let P be a (u, v)-path on one or more vertices (i.e. possibly u = v) in a digraph
D and let C be a cycle disjoint from P in D. A partner of P on C is an arc x→y of
C (i.e. y is the successor of x on C) with the property that x→u and v→y are arcs of
D. Note that if P has a partner x→y on C then D contains the cycle C[y, x]P [u, v]y.
The following more general (and very useful) result is not difficult to prove:

Theorem 5.9 [14] Let D be a digraph and let P = u1u2 . . . ur be a path and C a cycle
in D−V (P ). If there exist indices 1 = j1 < j2 < . . . < js = r +1 such that each of the
subpaths P [uj1 , uj2−1], P [uj2 , uj3−1], . . . P [ujs−1 , ujs−1] has a partner on C, then D has a
cycle C ′ with V (C ′) = V (C)∪ V (P ). Furthermore, given P and C the cycle C ′ can be
found in time O(|V (C ′)| × |V (P )|).

The following lemma is the key tool for proving Theorem 5.8 and the analogous
characterization of hamiltonian semicomplete bipartite digraphs.

Lemma 5.10 Let C and C ′ be disjoint cycles in a digraph D which is either semi-
complete bipartive or extended locally semicomplete. At least one of the following three
posibilities hold:

1. Either C⇒C ′, or C ′⇒C.

2. There exist vertices u ∈ V (C) and v ∈ V (C ′) such that u→v+, v→u+, where u+

(v+, repectively) denotes the successor of u on C (respectively, v on C ′).

3. If D is semicomplete bipartite, then every arc of C has a partner on C ′ and if D
is extended locally semicomplete, then for every arc x→x+ on C, either the arc
x→x+ has a partner on C ′ or each of the vertices x, x+ have partners on C ′.
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Figure 1: The four possible situations (up to switching the role of the two cycles or
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite
digraph. In (A) every vertex on C has arcs to and from C ′. In (B)-(D) a fat arc
indicates that all arcs go in the direction shown from or to the specified vertex (i.e. in
(B) all arcs between x and C ′ leave x).

Note that if C and C ′ contain vertices x, x′ which are similar, then the alternative
2. holds.

Theorem 5.8 does not hold for SMD’s as one can see from the examples in [34, 35].
In fact a SMD can be arbitrarily highly connected and have a cycle factor and still not
be hamiltonian [13].

Note that if C, C ′ are disjoint cycles in a SMD D, then (up to switching the role of
the two cycles) at least one of the following four cases apply (see Figure 1):

(A) Every vertex on C has an arc to and from C ′.

(B) There exist vertices x ∈ V (C), y ∈ V (C ′) such that x⇒V (C ′) and y⇒V (C), or
V (C ′)⇒x and V (C)⇒y.

(C) C contains distinct vertices x, y such that x⇒V (C ′) and V (C ′)⇒y.

(D) C contains a vertex x such that x⇒V (C ′) and C ′ contains a vertex y such that
V (C)⇒y.

The following result was proved in [13]:

Theorem 5.11 If D is a SMD with disjoint cycles C1, C2 for which one of the alter-
natives (A)-(C) above holds, then in time O(|V (C1)|× |V (C2)|) one can find a cycle C
in D with V (C) = V (C1) ∪ V (C2).

In the last case when only alternative (D) holds A. Yeo [50] proved (as part of a
much stronger result on minimal factors in semicomplete multipartite digraphs, see
Theorem 5.12 below) that if there are arcs in both directions between C1 and C2 then
one can still merge the cycles into a cycle C as above in the same time, unless the
following holds for i = 1 or i = 2: there exists a colour class Vχ of D (that is a maximal
independent set of vertices in D) such that all arcs x→y from C3−i to Ci satisfy that
x+, y− ∈ Vχ.

The following is a simplified statement of the main result in [50]:
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Theorem 5.12 Let D be a strongly connected SMD on n vertices with colour classes
V1, V2, . . . , Vc and let F ′ = C ′

1 ∪ . . . ∪C ′
r be a cycle factor in D. In time O(n3) one can

find either a hamiltonian cycle of D or a new cycle factor F = C1∪ . . . ∪Cs, 2 ≤ s ≤ r
with the following properties:

1. For all 1 ≤ i < j ≤ s none of the alternatives (A)-(C) hold (i.e. (D) holds).

2. For every cycle Ci, i ≤ s−1, there is a colour χR(Ci) ∈ {1, 2, ..., c} and for every
cycle Cj, 2 ≤ j ≤ s there is a colour χL(Cj) ∈ {1, 2, ..., c} such that for every arc
x→y with x ∈ V (Cj), j > i and y ∈ V (Ci), we have y− ∈ VχR(Ci), x+ ∈ VχL(Cj)

and χR(Ci) = χL(Cj).

The following results are corollaries of Theorem 5.12.

Theorem 5.13 [50] If D is a k-strongly-connected SMD with the property that k is at
least the size of the largest independent set (colour class) in D, then D has a hamil-
tonian cycle and such a cycle can be found in time O(n3) where n is the number of
vertices in D.

This was conjectured by Y. Guo and L. Volkmann (private communication).

Theorem 5.14 [50] If D is a regular SMD on n vertices, then D is hamiltonian and
a hamiltonian cycle in D can be found in time O(n3).

The last result was conjectured by C. Q. Zhang in the case of tournaments [51].
Building upon the most general version of Theorem 5.12 in [50] and a number of

new technical results, the authors of this paper and A. Yeo managed to prove the
following result.

Theorem 5.15 [16] The HC problem is in P for semicomplete multipartite digraphs.

The complexity of the algorithm is O(n7) but no attempt was made to optimize
the complexity, since already proving the existence of a polynomial algorithm for the
problem was a very complicated task [16].

Somewhat surprisingly, the HP problem is much easier than the HC problem for
semicomplete multipartite digraphs. G. Gutin [33] (see also [32, 34]) found simple
necessary and sufficient conditions for a SMD to have a hamiltonian path and showed
that these conditions implied a polynomial algorithm to solve the HP problem for
SMD’s. The analogous result holds for extended LSD’s [9]. We formulate this result
for the last family of digraphs.

Theorem 5.16 A connected extended LSD D has a hamiltonian path if and only if it
contains a 1-path-cycle factor. Given a 1-path-cycle factor of D, one can construct a
hamiltonian path of D in time O(n2).
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Note that, by Theorem 5.16, a hamiltonian path in an extended LSD D (if one
exists) can be constructed in time O(n2.5/

√
log n). Indeed, it is easy to see that a

digraph H has a 1-path-cycle factor F if and only if the digraph H ′, obtained from H
by adding a new vertex x together with all possible arcs in both directions between x
and V (H), has a cycle factor. Hence, the problem for finding a 1-path-cycle factor is
easily transformed to that for finding a cycle factor. The last problem was considered
above.

It also follows from the main result of [28] that the hamiltonian path problem for
SMDs without 2-cycles and at most two vertices in each colour class is polynomial time
solvable. Namely J. F Fink and L. Lesniak-Forster [28] showed the following: Let
H be any graph obtained from a complete graph by removing the edges a collection
of vertex disjoint paths each of length at most two. Let H ′ be any orientation of H.
Then H ′ has a hamiltonian cycle if and only if H ′ is unilaterally connected, i.e. for
any choice of x, y ∈ V (H ′), H ′ contains a directed path from x to y or oppositely.

Unlike Theorem 5.8, Theorem 5.16 cannot be generalized to extended LISD’s as
one can see from an example given in [9].

Conjecture 5.17 The HP problem is in P for extended LISD’s.

The HP[x,y] problem for semicomplete bipartite and extended semicomplete di-
graphs was investigated in [20] and [15], respectively. The authors of both papers
generalized the characterization by C. Thomassen for tournaments and proved that
the problems can be solved in time O(n2.5/ log n).

J. Bang-Jensen, Y. Guo and L. Volkmann [8] solved the HP[x,y] problem for lo-
cally semicomplete digraphs by giving a complete mathematical characterization and
as a consequence of their characterization it follows that the HP[x,y] problem is poly-
nomially solvable for locally semicomplete digraphs.

Conjecture 5.18 The HPxy problem is in P for locally semicomplete digraphs.

Some support for this conjecture is given in [30] where Y. Guo proved that every
4-strongly-connected locally semicomplete digraph D has an (x, y)-hamiltonian path
for any choice of distinct vertices x, y ∈ V (D). The analogoue of this result for semi-
complete digraphs was proved by C. Thomassen [49] and this result was used in the
proof of Theorem 4.2.

Now let us consider parallel algorithms for the HP and HC problems in semi-
complete bipartite digraphs. The first problem one faces when trying to develop such
algorithms is checking the existence of a 1-path-cycle factor or a cycle factor. In the
sequential case, the existence of these can be checked by reducing the problem to a
bipartite matching problem. So far no NC algorithm is known for bipartite matching,
but the problem is in RNC [44]. There seems to be no way to avoid the matching
algorithm when checking for a 1-path-cycle factor or a cycle factor in a SBD. In fact,
it is shown in [7] that the HC problem for SBD’s is in NC if and only if the bipartite
matching problem is in NC:
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Theorem 5.19 If A is an O(r(n))-time p(n)-processor algorithm for the HC problem
for semicomplete bipartite digraphs on n vertices, then the existence of a perfect match-
ing in a bipartite digraph on n vertices can be decided by an O(r(n) + n2/p(n))-time
p(n)-processor algorithm.

The following result is obtained in [7].

Theorem 5.20 There exists an O(log n4)-time O(n2) processor CRCW PRAM algo-
rithm to find a hamiltonian cycle in a strongly connected semicomplete bipartite digraph
B, provided that a cycle factor is computed in a preprocessing step. Similarly, given a
1-path-cycle factor, computed in a preprocessing step, a hamiltonian path can be found
with the same complexity and processor requirements.

This algorithm uses the optimal parallel algorithm for the HP problem in tourna-
ments as well as a number of fundamental algorithms in parallel computing, such as
maximal matching, tree contraction, etc.

In [6] it was pointed out that the algorithms of Theorem 5.20 actually applies to a
much more general class of digraphs than just semicomplete bipartite digraphs:

Theorem 5.21 [6] The algorithms of Theorem 5.20 can be used to solve the hamilto-
nian path and cycle problems respectively within the same time and processor bounds
for any class of digraphs D with the following properties:

1. For every D ∈ D and every cycle factor C of D, the digraph DC obtained from D
by contracting each cycle of C into one vertex is semicomplete.

2. For every D ∈ D and disjoint cycles C,C ′ in D such that there are arcs in
both directions between C and C ′, one can find a cycle C ′′ such that V (C ′′) =
V (C) ∪ V (C ′) in time O(log n) using O(n2) processors.

3. If D ∈ D and C∗ = c1c2 . . . crc1 is a cycle in DC such that no two consecutive
arcs on C∗ both are contained in a 2-cycle in DC, then one can find a cycle C in
B with V (C) = V (C1) ∪ . . . ∪ V (Cr) in O(1) time using O(n) processors.

The following results are a consequence of Theorem 5.21.

Theorem 5.22 [6] A hamiltonian cycle in an extended semicomplete digraph D can
be found:

• in O(log4 n) time with O(n5.5) CRCW processors by a randomized algorithm, and

• in O(log4 n) time with O(n2) processors by a deterministic algorithm if a factor
C of D is already found in a preprocessing step.

Theorem 5.23 [6] The existence of a hamiltonian path in an extended semicomplete
digraph can be decided and a hamiltonian path found, if one exists, within the same
complexity and processor bounds as in Theorem 5.22.
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In [6] it was also shown that the HP[x,y] problem is solvable efficiently in parallel
for SBDs and extended semicomplete digraphs (a path with a cofactor in a digraph D
is a path P such that D − P has a cycle factor):

Theorem 5.24 Given a digraph D which is either an extended tournamnent or semi-
complete bipartite and given distinct vertices xand y of D, the existence of a hamil-
tonian path with endvertices in the set {x, y} can be decided and a path found, if one
exists:

• in O(log4 n) time with O(n5.5) CRCW processors by a randomized algorithm, and

• in O(log4 n) time with O(n2) processors by a deterministic algorithm if, in a pre-
processing step, we have decided the existence of an (x, y)-path P with a cofactor
C and a (y, x)-path P ′ with a cofactor C ′ and have found the above paths P and
P ′ and cofactors C and C ′ if such exist.

6 Totally Φ-decomposable digraphs

Let Φ be a set of digraphs containing the digraph with one vertex. A digraph D is
called Φ-decomposable if either D has only one vertex or there is a decomposition D =
H[S1, ..., Sh], h ≥ 2 such that H ∈ Φ (we call this decomposition a Φ-decomposition).
Note that every Φ-graph is Φ-decomposable: just take each Si as the graph with one
vertex.

A digraph D is called totally Φ-decomposable if either D ∈ Φ or there is a Φ-
decomposition D = H[S1, ..., Sh] such that h ≥ 2, and each Si is Φ-decomposable. In
this case, a Φ-decomposition of D, Φ-decompositions Si = Hi[Si1, ..., Sihi

] of all Si which
have more than one vertex, Φ-decompositions of those of Sij who has more than one
vertex, and so on, form a set of digraphs which will be called a total Φ-decomposition
of D.

Φ0 denotes the union of all semicomplete multipartite, extended locally semicom-
plete and acyclic digraphs, Φ1 is the union of all semicomplete bipartite, extended
locally semicomplete and acyclic digraphs. Let Ψ be the union of semicomplete di-
graphs and acyclic digraphs.

The following result was proved in [9], (see also [27] for more general decomposition
results).

Theorem 6.1 Given a digraph D, one can check if D is totally Φi-decomposable (i =
0, 1) and, if it is so, find a total Φi-decomposition of D in time O(nm + n2).

J. Bang-Jensen and J. Huang [19] showed that quasi-transitive digraphs are to-
tally Ψ-decomposable. Using this result they characterized quasi-transitive digraphs
containing hamiltonian cycles and hamiltonian paths. The proofs of these characteriza-
tions corresponding problems use the analogues of Theorems 5.8 and 5.16 for extended
semicomplete digraphs. J. Bang-Jensen and J. Huang [19] noted that their characteri-
zations do not seem to imply polynomial algorithms for the HP and HC problems for
quasi-transitive digraph and conjectured that there exist such algorithms. In [36], G.
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Gutin described O(n4/ log n) algorithms for finding a hamiltonian cycle (path, respec-
tively) in a quasi-transitive digraph D (if D has one). The algorithms are based on an
approach which will be applied bellow to get new results for the much more general
totally Φi-decomposable digraphs (i = 0, 1).

We need a simple but important fact on flows in networks. The terminology of
flows in networks is rather standard, the undefined terms can be found in [1, 24, 46].
A circulation is a flow with value 0. A circulation is a cycle flow if the digraph induced
by arcs with non-zero flow is just a directed cycle. We shall consider only integer
valued flows, i.e. flows f such that f(a) is an non-negative integer for every arc a of
the network. The following claim can be proved analogously to Theorem 7.2 in [24]
using Euler’s theorem. We provide a short sketch of the proof. Let N = (V,A, s, t) be
a network with an integer (s, t)-flow f of value k. Let M be the directed multigraph
obtained from N by replacing each arc a ∈ A by f(a) copies of it. Let M ′ be M with
a new vertex v and k arcs from v to s as well as k arcs from t to v. Observe that M ′

is eulerian. We can find an euler tour T in M ′ in O(m′), where m′ is the number of
arcs in M ′. To extract the desired paths and cycles it suffices to traverse T and then
delete the new vertex v from all cycles containing it.

Proposition 6.2 Let N be a network with source s and sink t. Every (s, t)-flow f of
value k ≥ 0 can be decomposed into k flows of value 1 along (s,t)-paths and a number
of cycle flows. Such a decomposition of f can be found in time O(

∑
a∈A(N) f(a)), where

f(a) is the number of units of f along an arc a.

We shall consider some generalizations of the HP and HPx problems. First we
give a few extra definitions. A k-path-cycle factor F starts at a vertex x if one of
the paths of F starts at x. The path-covering number of a digraph D (pc(D)) is the
minimum integer k such that D has k-path factor. Similarly pcx(D) is the minimum
number of paths in a path factor that starts in x.

The two new problems are:

• Given a digraph D, find a pc(D)-path factor of D (the PF problem);

• Given a digraph D and a vertex x ∈ V (D), find a pcx(D)-path factor of D
starting at x (the PFx problem).

Note that given a pc(D)-path factor F of D we can easily construct k-path factors
of D for each k = pc(D) + 1, . . . , n by deleting some arcs from F .

To prove Theorems 6.3 and 6.5, we use a modification of a method suggested in [36].
It was first proved in [9] that the HP problem for totally Φ0-decomposable digraphs
and the HC problem for totally the Φ1-decomposable digraphs are polynomial time
solvable. In [9], the complexity obtained for both problems was O(n5). Here we show
that it can be decreased to O(n4).

Theorem 6.3 If D is totally Φ0-decomposable, then the PF problem for D can be
solved in time O(n4).
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Proof: Let D = R[H1, ..., Hr], where R ∈ Φ0, and H1, ..., Hr are totally Φ0-
decomposable, be a part of a total Φ0-decomposition of D. Suppose we have obtained
solutions to the PF problems for H1, . . . , Hr.

Consider the following set of digraphs

S = {R[En1 , ..., Enr ] : pc(Hi) ≤ ni ≤ |V (Hi)|, i = 1, ..., r},
where Ep is a digraph of order p having no arcs, and the network NR containing the
digraph R and two additional vertices (source and sink): s and t such that s and t
are adjacent to every vertex of V (R) and the arcs between s (t, resp.) and R are
oriented from s to R (from R to t, resp.). Associate with a vertex i of R the lower
and upper bounds pc(Hi) and |V (Hi)|. Suppose that NR admits a flow of value k.
Then, by Proposition 6.2, there is a collection Mk of k paths and a number of cycles
covering V (R). Since a vertex i of R lies on ti of these paths and cycles, for some
ti such that pc(Hi) ≤ ti ≤ |V (Hi)|, we can transform Mk into a k-path-cycle factor
F (Mk) of a digraph Q = R[Et1 , . . . , Etr ] such that Q ∈ S by replacing the vertex i
by ti independent new vertices such that each new vertex corresponds to one of the
occurrences of i in Mk. Since Q is a Φ0-graph, one can transform, in time O(n2),
F (Mk) into a k-path factor F ′(Mk) of Q. Indeed, if Q is acyclic this is trivial. If Q
is semicomplete multipartite or extended locally semicomplete, then this follows from
Theorem 5.16 and its analogue for semicomplete multipartite digraphs. Finally change
F ′(Mk) to a k-path factor F ′′(Mk) of D, by replacing the vertices of each Eti by ti
paths that form a ti-path factor of Hi.

Conversely, suppose Lk is a k-path factor of D. For each Hi, A(Hi)∩A(Lk) induce
a collection of αi vertex disjoint paths in Hi. Clearly pc(Hi) ≤ αi ≤ |V (Hi)|. Let
Q = R[Eα1 , . . . , Eαr ] ∈ S. Then Q(Lk) has a k-path factor which can be obtained
from Lk by contracting, for all i, each of the αi subpaths in Hi to a vertex. It is easy
to check that if a digraph from S has k-path factor, then NR admits a flow of value
k. Hence, the value of a minimum flow in NR is the path-covering number of D, and,
given pc(Hi), |V (Hi)|, i = 1, ..., r one can find a pc(D)-path factor of D in time O(n3)
(i.e. the time it takes to compute a minimum flow in NR). This fact leads to an O(n4)
recursive algorithm for finding a pc(D)-path factor F of D. ¦
Lemma 6.4 Let D be either a SBD or an extended LOSD and x ∈ V (D). Then D
has a hamiltonian path starting at x if and only if D contains a 1-path-cycle factor F
of D such that the path of F starts at x, and, for every vertex y of V (D)−{x}, there is
an (x, y)-path in D. Moreover, if D has a hamiltonian path starting at x, then, given a
1-path-cycle factor F of D such that the path of F starts at x, the desired hamiltonian
path can be found in time O(n2).

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose that
F = P ∪ C1 ∪ ... ∪ Ct is a 1-path-cycle factor of D that consists of a path P starting
at x and cycles Ci, i = 1, ..., t. Suppose also that every vertex of D is reachable
from x. Then, w.l.o.g., there is a vertex of P that dominates a vertex of C1. Let
P = (x = x1, x2, ..., xp), C1 = (y1, y2, ..., yq, y1) and xk→ys. We shall show how to find
a new path starting in x which contains all the vertices of V (P ) ∪ V (C1). Repeating
this process yields the desired path.
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Assume that D is an extended LOSD. If P has a vertex xi similar (see the definition
of similar vertices before Proposition 5.3) to a vertex yj in C1, then xi→yj+1, yj→xi+1

and P [x1, xi]C[yj+1, yj]P [xi+1, xp] is a path starting from x and containing all the ver-
tices of P ∪C1. If P has no vertex that is similar to a vertex in C1, then we can apply
Proposition 5.3 to P [xk, xp] and xkC1[ys, ys−1] and merge these two paths into a path
R starting from xk and containing all the vertices of P [xk, xp]∪C1. Now, P [x1, xk−1]R
is a path starting at x and containing all the vertices of P ∪ C1.

Suppose now that D is semicomplete bipartite. Then we have either ys−1→xk+1,
implying that P [x1, xk]C1[ys, ys−1]P [xk+1, xp] is a path starting at x and covering all
the vertices of P ∪ C1, or xk+1→ys−1. In the last case, we consider the arc between
xk+2 and ys−2. If ys−2→xk+2 we can construct the desired path, otherwise we continue
to consider arcs between xk+3 and ys−3 and so on. If we do not construct the desired
path in this way, then we obtain that the last vertex of P dominates a vertex in C1,
say xp→y1. Hence PC1[y1, yq] is the desired path.

Using the process above and breath-first search, one can construct an O(n2)-
algorithm for finding the desired hamiltonian path starting at x. ¦

Theorem 6.5 Let D be a totally Φ1-decomposable digraph. Then the HC and PFx
problems for D can be solved in time O(n4).

Proof: Let D = R[H1, ..., Hr], where R ∈ Φ1 and H1, ..., Hr are totally Φ1-
decomposable be part of a total Φ1-decomposition of D. Consider the set S of digraphs
and the network NR, both introduced in the proof of Theorem 6.3. Suppose that D is
strong and that NR admits a circulation. Then, analogously to the proof of Theorem
6.3, there is a digraph Q ∈ S that is strong and has a cycle factor. Hence, by the ana-
logues of Theorem 5.8 for LOSD’s and SBD’s, Q has a hamiltonian cycle which can be
constructed in time O(n2) given the cycle factor. This cycle can easily be transformed
into a hamiltonian cycle of D using the same arguments as we used in the proof of
Theorem 6.3.

Similarly, we can transform a hamiltonian cycle of D into a hamiltonian cycle of
some Q ∈ S in the same way as we transformed a k-path factor of D into a k-path factor
of some Q ∈ S in the proof of Theorem 6.3. Clearly the existence of a hamiltonian
digraph Q ∈ S implies that NR admits a circulation.

This gives the following algorithm for the HC problem: Apply the algorithm men-
tioned in Theorem 6.3 and find solutions of the PF for H1, ..., Hr. Then check if D
is strong and NR admits a circulation. If both of these things hold then construct a
hamiltonian cycle of D using a cycle factor of a S-graph. It is easy to verify that the
complexity of this algorithm is O(n4).

Now consider the PFx problem and enumerate H1, ..., Hr such that x ∈ H1. Slightly
modify NR by associating unit lower and upper bounds with the arc from s to the
vertex y of R corresponding to H1. Also modify S by replacing pc(H1) by pcx(H1) in
the definition of S.

Let k ≥ 2. It easily follows from the proof of Theorem 6.3 that D has a k-path
factor starting at x if and only if (the modified) NR admits a flow of value k (when
going from a flow of value k to a k-path factor, we just merge cycles with a path that
does not contain x).
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Now consider the case when k = 1, i.e. we are checking for a hamiltonian path
starting at x in D. We show that D has a hamiltonian path starting at x iff NR admits
a flow of value 1 and every vertex of D can be reached from x. Necessity is clear, so
we prove sufficiency. Suppose that NR admits a flow of value 1 and every vertex of D
can be reached from x. Suppose also that D has an arc a from H2 ∪ ... ∪ Hr to H1.
Then, there is a digraph Q from the modified S such that Q = R[En1 , . . . , Enr ] has
a 1-path-cycle factor F starting at a vertex z of En1 . By the assumption that x can
reach all vertices in D, it follows that z can reach all vertices of Q−En1 . Furthermore,
the existence of the arc a implies that z can also reach all vertices of En1 . Thus we
have shown that all vertices of Q can be reached from z. Hence, by Lemma 6.4, F can
be transformed into a hamiltonian path of Q starting at z. The last one can easily be
transformed into a hamiltonian path of D starting at x. This step is similar to one in
the proof of Theorem 6.3. The only difference is that now we have some n1-path factor
starting at x in H1. Instead of substituting just any path for the vertex z, we use the
path starting in x to replace the vertex z.

Suppose now that D has no arcs from H2∪ ...∪Hr to H1. Then pcx(H1) = 1 by the
definition of (the modified) NR (note that no flow in NR can send more than one unit
of flow through the vertex y that corresponds to H1 in NR). Since NR admits a flow of
value 1, some Q = R[En1 , . . . , Enr ] ∈ S has a 1-path-cycle factor starting at x. Since
every vertex of H1 dominates every vertex of H2 ∪ ...∪Hr, the subgraph of Q induced
by En2 ∪ ...∪Enr contains a 1-path-cycle factor. Hence, the subgraph of D induced by
H2 ∪ ... ∪Hr has a hamiltonian path. This hamiltonian path and a hamiltonian path
of H1 starting at x form a hamiltonian path of D starting at x.

The observations above lead to the following algorithm. Solve the PF problem
for H2, ..., Hr and the PFx problem for H1. Construct the modified NR and find a
minimum flow f in it. If the value k of f is more than 1, then use a simple modification
of the algorithm from Theorem 6.3 to construct a k-path factor of D starting at x. If
k = 1, then check whether every vertex of D can be reached from x. If x cannot
reach all vertices, then construct a 2-path factor of D starting at x, by considering a
hamiltonian path of D (obtained via the flow in NR) and cutting that path just before
the vertex x. Otherwise, construct a hamiltonian path of D starting at x as indicated
in the proof above.

It is easy to verify that our algorithm has complexity O(n4). ¦
As the HC problem for semicomplete multipartite digraphs is polynomial time

solvable (Theorem 5.15), we suspect that this is also the case for the HC problem for
totally Φ0-decomposable digraphs. However, to establish this result (if it is correct) a
new approach seems to be needed.

Conjecture 6.6 The HC problem for totally Φ0-decomposable digraphs is polynomial
time solvable.
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