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Abstract

A digraph D is connected if the underlying undirected graph of D is connected.
A subgraph H of an acyclic digraph D is convex if there is no directed path between
vertices of H which contains an arc not in H. We find the minimum and maximum
possible number of connected convex subgraphs in a connected acyclic digraph of order
n. Connected convex subgraphs of connected acyclic digraphs are of interest in the
area of modern embedded processors technology.
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1 Introduction

To speed up computations, modern embedded processors often accommodate both a con-
ventional processor core and a large amount of special purpose hardware. The current
trend is to transfer computation from software to special purpose hardware. To do that,
one should analyze the dataflow graph G of the program under consideration and generate
some special subgraphs of G (see, e.g., [1, 3, 4] and a large number of references there).
Notice that a dataflow graph G is always a connected acyclic digraph and the main desired
property of a subgraph H of G of interest is convexity. A subgraph H is convex if there
is no directed path between vertices of H which contains an arc not in H. Clearly, every
convex subgraph is an induced subgraph. Often the connectivity property is also imposed:
a subgraph H is connected if its underlying undirected graph is connected.

As a result, mainly connected convex subgraphs (cc-subgraphs) of G are of interest and
should be generated and analyzed. When one designs algorithms to generate cc-subgraphs
(see, e.g., [3, 4]), one arrives at the following natural question: what are the smallest and
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largest possible numbers of cc-subgraphs in a connected acyclic digraph on n vertices? In
this short paper, we answer this question. In fact, we prove that the minimum possible
number of cc-subgraphs in a connected acyclic digraph of order n is n(n + 1)/2. The
maximum possible number of cc-subgraphs in a connected acyclic digraph of order n is
2n + n + 1− dn, where dn = 2 · 2n/2 for every even n and dn = 3 · 2(n−1)/2 for every odd n.

Notice that a key idea in the proof of Theorem 2.1 is used to design an algorithm for
generating all cc-subgraphs in a connected acyclic digraph D in time O(n · cc(D)) in the
recent paper [3], where n is the order of D and cc(D) is the number of cc-subgraphs of D,
and the claim of Theorem 2.1 is used to show the complexity of the algorithm in [3].

It is easy to evaluate the maximum and minimum possible number of convex (but not
necessarily connected) subgraphs in a connected acyclic digraph of order n. The maximum
number is 2n− 1 due to the digraph obtained from K1,n−1 by orienting all edges from the
partite set of cardinality 1 to the partite set of cardinality n − 1. Let D be a connected
acyclic digraph and let x1, x2, . . . , xn be an acyclic ordering of the vertices in D (i.e., if
xixj is an arc, then i < j) [2]. Observe that all subgraphs induced by the sets of the form
{xi, xi+1, . . . , xj} (i ≤ j) are convex. Thus, the minimum number of convex subgraphs
is at least n(n + 1)/2. Clearly, if x1x2 . . . xn is a Hamilton directed path, then only the
subgraphs described above are convex. Thus, the minimum number of convex subgraphs
is n(n+1)/2. Our result on the minimum number of cc-subgraphs strengthens this simple
result.

For a digraph D and a vertex x, cc(D) (cc(D, x)) denotes the number of cc-subgraphs
(cc-subgraphs containing x). The number of out-neighbors (in-neighbors) of x in D, is
called the out-degree (in-degree) of x and is denoted by d+

D(x) (d−D(x)). For a digraph
D, V (D) and A(D) denote the vertex and arcs sets of D and for X ⊆ V (D), D[X] is
the subgraph of D induced by X. For further basic terminology and notation in digraph
theory, see [2].

2 Lower Bound

Let Dn be a connected acyclic digraph and let Dn have a Hamilton directed path x1x2 . . . xn.
Observe that all cc-subgraphs of Dn are of the form Dn[{xi, xi+1, . . . , xj}], where i ≤ j.
Thus, cc(Dn) = n(n + 1)/2. In the following theorem, we show that no connected acyclic
digraph of order n has less cc-subgraphs than Dn.

Theorem 2.1 Let H be a connected acyclic digraph of order n and let z be a vertex of
H. Then cc(H, z) ≥ n and cc(H) ≥ n(n + 1)/2.

Proof: We will show the theorem by induction on n. It clearly holds for n = 1 so let n > 1.
Let x be any vertex in H with d+

H(x) = 0 and let H ′ = H − x. Let R1, R2, . . . , Rk be the

2



connected components of H ′, where k ≥ 1. Let ni = |V (Ri)| and let Hi = H[V (Ri)∪{x}].
First assume that k ≥ 2. Let Si be any cc-subgraph in Hi which contains x. By the

induction hypothesis, there are at least ni+1 such cc-subgraphs. Note that S1∪S2∪. . .∪Sk

is a cc-subgraph containing x. Since (n1+1)(n2+1) · · · (nk +1) ≥ n1+n2+ . . .+nk +1 = n
we have shown that there are at least n cc-subgraphs in H containing x.

Let w ∈ V (H) \ {x} be arbitrary. Without loss of generality we may assume that
w ∈ V (R1). By the induction hypothesis, there are at least n1 cc-subgraphs containing
w which do not contain x (all are in R1). Note that H1 ∪ S2 ∪ . . . ∪ Sk is a cc-subgraph
containing w and x. Since (n2 + 1) · · · (nk + 1) ≥ n2 + . . . + nk + 1 = n − n1, we have
shown that there are at least n cc-subgraphs in H containing w.

We will now show that cc(H) ≥ n(n + 1)/2. By the induction hypothesis, there are at
least ni(ni + 1)/2 cc-subgraphs in Ri. Furthermore, we saw above that we have at least
(n1 + 1)(n2 + 1) · · · (nk + 1) cc-subgraphs in H containing x. Thus, we get the following:

cc(H) ≥
k∑

i=1

ni(ni + 1)
2

+
k∏

i=1

(ni + 1)

≥
k∑

i=1

(n2
i + ni)/2 +

∑

1≤i<j≤k

ninj +
k∑

i=1

ni + 1

=
1
2




(
k∑

i=1

ni

)2

+ 3

(
k∑

i=1

ni

)
+ 2




= [(n− 1)2 + 3(n− 1) + 2]/2 = n(n + 1)/2.

So now consider the case when k = 1.

Let w ∈ V (H ′) be arbitrary. By the induction hypothesis, there are at least n − 1
cc-subgraphs containing w in H ′. Since H is also a cc-subgraph we have at least n
cc-subgraphs containing w. Let H∗ be the converse of H (H∗ is obtained from H by
reversing all arcs of H). Let y ∈ V (H∗) be arbitrary with d+

H∗(y) = 0 (i.e., d−H(y) = 0).
By considering H∗−y instead of H ′ we observe that there are also at least n cc-subgraphs
in H containing x (it does not matter whether H∗ − y is connected or not since we have
already looked at the non-connected case).

Now we are able to show that cc(H) ≥ n(n + 1)/2. By the induction hypothesis,
there are at least (n − 1)n/2 cc-subgraphs in H ′ and they are all cc-subgraphs in H as
d+

H(x) = 0. Since there are also at least n cc-subgraphs containing x, we conclude that
cc(H) ≥ (n− 1)n/2 + n = n(n + 1)/2. ¦
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3 Upper Bound

Consider a complete bipartite graph Ka,b with partite sets A,B (|A| = a, |B| = b) and
orient all its edges from A to B. We have obtained the bipartite tournament ~Ka,b.

Lemma 3.1 Let n = a + b. We have cc( ~Ka,b) = 2a+b − 2a − 2b + a + b + 1 and

max{cc( ~Ka,b) : a + b = n} = 2n + n + 1− dn,

where dn = 2 · 2n/2 for every even n and dn = 3 · 2(n−1)/2 for every odd n.

Proof: Let g(a, b) = 2a+b−2a−2b +a+ b+1. Since all non-empty sets of vertices of ~Ka,b,
excluding those that are subsets of A or B of cardinality at least 2, induce cc-subgraphs,
we have cc( ~Ka,b) = g(a, b). It remains to observe that max{g(a, b) : a+b = n} is obtained
when a and b differ by at most 1. ¦

In the following theorem, we will show that the bipartite tournaments ~Ka,n−a with
|n− 2a| ≤ 1 have the maximum possible number of cc-subgraphs.

Theorem 3.2 Let H be a connected acyclic digraph of order n and let f(n) = 2n + n +
1 − dn, where dn = 2 · 2n/2 for every even n and dn = 3 · 2(n−1)/2 for every odd n. Then
cc(H) ≤ f(n).

Proof: Clearly, we may assume that n ≥ 3. Suppose that H has a directed path of length
2. We will prove that cc(H) ≤ f(n). If xyz is a directed path of length 2 in H, then we
have the following:

(C1) There are at most 2n−2 cc-subgraphs containing x but not z.

(C2) There are at most 2n−2 cc-subgraphs containing z but not x.

(C3) There are at most 2n−2 − 1 cc-subgraphs containing neither x nor z.

(C4) There are at most 2n−3 cc-subgraphs containing x and z.

(C4) is true as if x and z belong to a cc-subgraph, then y has to belong to it as well.
Therefore there are at most 7 · 2n−3− 1 cc-subgraphs. Observe that 7 · 2n−3− 1 ≤ f(n) for
every n ≥ 3 apart from n = 5. Indeed, it is not difficult to prove that f(n)−7 ·2n−3 +1 >

2
n
2
+1(2

n
2
−4−1) for every even n and that f(n)−7 ·2n−3+1 > 2

n−1
2 (2

n−5
2 −3) for every odd

n. These two inequalities imply 7 · 2n−3− 1 ≤ f(n) for each n ≥ 8. The cases n = 3, 4, 6, 7
can be easily checked separately. Thus, it remains to consider the case n = 5.
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Suppose that H has a directed path P with n− 1 vertices and let u be the vertex not
on P . Then by the discussion before Theorem 2.1, cc(H − u) = n(n − 1)/2. There are
at most 2n−1 induced subgraphs of H containing u. Thus, cc(H) ≤ 2n−1 + n(n − 1)/2.
Observe that 2n−1 + n(n − 1)/2 ≤ f(n) for every n ≥ 5. Thus, we may assume that if
n ≥ 5, then H has no directed path with n− 1 vertices.

Let n = 5 and let u ∈ V (H) \ {x, y, z}. By (C4), 2n−3 subgraphs containing x and
z are not cc-subgraphs. Observe that (2n − 1 − 2n−3) − f(n) = 1 for n = 5. Thus, to
show that cc(H) ≤ f(5), it suffices to find a non-cc-subgraph of H that does not contain
at least one of the vertices x and z. Since H has no directed path of length 3, u is not
adjacent with at least one of the vertices x, y, z. The subgraph induced by any such pair
of non-adjacent vertices is not a cc-subgraph.

So we may now assume that there is no directed path of length 2. This means that
the vertices can be partitioned into sets A and B such that A contains all vertices with in-
degree zero and B contains all the vertices with out-degree zero. Observe that now every
connected induced subgraph of H is a cc-subgraph. This implies that cc(H) is maximum
when there is an arc from a to b for each a ∈ A, b ∈ B. Now our result follows from
Lemma 3.1. ¦
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