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Abstract

For graphs G and H, a mapping f : V (G)→V (H) is a homomor-
phism of G to H if uv ∈ E(G) implies f(u)f(v) ∈ E(H). If, moreover,
each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then
the cost of the homomorphism f is

∑
u∈V (G) cf(u)(u). For each fixed

graph H, we have the minimum cost homomorphism problem, writ-
ten as MinHOM(H). The problem is to decide, for an input graph G
with costs ci(u), u ∈ V (G), i ∈ V (H), whether there exists a homo-
morphism of G to H and, if one exists, to find one of minimum cost.
Minimum cost homomorphism problems encompass (or are related to)
many well studied optimization problems. We prove a dichotomy of
the minimum cost homomorphism problems for graphs H, with loops
allowed. When each connected component of H is either a reflex-
ive proper interval graph or an irreflexive proper interval bigraph, the
problem MinHOM(H) is polynomial time solvable. In all other cases
the problem MinHOM(H) is NP-hard. This solves an open problem
from an earlier paper.

1 Motivation and Terminology

We consider finite graphs (and digraphs) without multiple edges, but with
loops allowed. For a graph (or digraph) H, we use V (H) and E(H)) to
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denote the set of vertices and edges of G. A graph (or digraph) without
loops will be called irreflexive; a graph (or digraph) in which every vertex
has a loop will be called reflexive. In this paper our focus will be on graphs,
but we shall make some remarks about digraphs as well.

The intersection graph of a family F = {S1, S2, . . . , Sn} of sets is the
graph G with V (G) = F in which Si and Sj are adjacent just if Si ∩Sj 6= ∅.
Note that by this definition, each intersection graph is reflexive. (This is not
the usual interpretation [10, 29].) A graph isomorphic to the intersection
graph of a family of intervals on the real line is called an interval graph. If
the intervals can be chosen to be inclusion-free, the graph is called a proper
interval graph. Thus both interval graphs and proper interval graphs are
reflexive. The intersection bigraph of two families F1 = {S1, S2, . . . , Sn} and
F2 = {T1, T2, . . . , Tm} of sets is the bipartite graph with V (G) = F1 ∪ F2

in which Si and Tj are adjacent just if Si ∩ Tj 6= ∅. Note that by this
definition an intersection bigraph is irreflexive (as are all bipartite graphs).
A bipartite graph isomorphic to the intersection bigraph of two families of
intervals on the real line is called an interval bigraph. If the intervals in each
family Fi can be chosen to be inclusion-free, the graph is called a proper
interval bigraph. Thus both interval bigraphs and proper interval bigraphs
are irreflexive.

For graphs (or digraphs) G and H, a mapping f : V (G)→V (H) is a
homomorphism of G to H if uv ∈ E(G) implies f(u)f(v) ∈ E(H). Recent
treatment of graph (and digraph) homomorphisms can be found in [19, 21].
Let H be a fixed graph (or digraph). The homomorphism problem for H
asks whether an input graph (or digraph) G admits a homomorphism to
H. The list homomorphism problem for H asks whether an input graph (or
digraph) G with lists (sets) Lu ⊆ V (H), u ∈ V (G) admits a homomorphism
f to H in which all f(u) ∈ Lu, u ∈ V (G).

There have been several studies of homomorphism (and more generally
constraint satisfaction) problems with costs. Most frequently, each edge
ij of the graph H has a cost c(i, j) [1, 2]. (It is then natural to take H
to be a complete (reflexive) graph.) In this context, given an input graph
G, one seeks a homomorphism f of G to H with minimum cost, i.e., a
homomorphism for which the sum, over all uv ∈ E(G), of c(f(u)f(v)) is
minimized. These are typified by problems such as finding a maximum
bipartite subgraph, or, in the context of more general constraints, finding
an assignment satisfying a maximum number of clauses [2]. More generally,
[5] considers instead of costs of edges ij of H, the costs of mapping an edge
uv of G to an edge ij of H. Of course, we typically assume again that H
is a complete graph. In this way, the constraint on the edge uv is ‘soft’ - it
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may map to any pair ij of H, but with cost that depends both on uv and
on ij. Nonbinary constraints are treated the same way in [5]. This general
‘soft’ constraint satisfaction context of [5] allows for vertex weights as well,
since they can be viewed as unary constraints. We describe this model in
greater detail below. Nevertheless, in combinatorial optimization it makes
sense to investigate vertex weights alone, insisting that binary (and higher
order) constraints are hard, or ‘crisp’. This is the path we take, focusing on
problems in which each possible assignment of a value to a variable has an
associated cost.

We now formulate our problem, in the context of graph homomorphims.
(Of course, there is a natural counterpart for constraint satisfaction problems
in general.) Suppose G and H are graphs (or digraphs). As in the above
discussion, we shall reserve the letters u, v, etc., for the vertices of G, and
the letters i, j, etc., for the vertices of H. Let ci(u), u ∈ V (G), i ∈ V (H), be
a nonnegative real number, which we shall think of as the cost of mapping
u to i. The cost of a homomorphism f of G to H is

∑
u∈V (G) cf(u)(u). If

H is fixed, the minimum cost homomorphism problem, MinHOM(H), for H
is the following decision problem. Given an input graph G, together with
costs ci(u), u ∈ V (G), i ∈ V (H), and an integer k, decide if G admits a
homomorphism to H of cost not exceeding k.

We shall also use MinHOM(H) to denote the corresponding optimization
problem, in which we want to minimize the cost of a homomorphism of G
to H, or state that none exists. The minimum cost of a homomorphism of
G to H (if one exists) will be denoted by mch(G,H). For simplicity, we
shall always assume the graph G to be irreflexive. (Note that we can always
solve a problem in which some vertices u of G have loops, by changing the
weights ci(u) to be infinite on all vertices i of H which do not have a loop.)

Returning briefly to the problem of minimum cost soft homomorphism
problem of [5], in the context of graphs, we may reformulate it as follows.
Suppose H is a fixed complete graph. Given an input graph G, together
with nonnegative costs ci(u), u ∈ V (G), i ∈ V (H), and nonnegative costs
cij(uv), uv ∈ E(G), ij ∈ E(H), find a mapping f of V (G) to H which
minimizes the sum

∑
u∈V (G) cf(u)(u) +

∑
uv∈E(G) cf(u)f(v)(uv). This gener-

alizes our problem MinHOM(H) for a graph H, as we can set the (hard)
values cf(u)f(v)(uv) = 0 if f(u)f(v) ∈ E(H) and cf(u)f(v)(uv) = ∞ if
f(u)f(v) 6∈ E(H). As mentioned earlier, we do not study this problem, fo-
cusing instead on the simpler problem MinHOM(H); the interested reader
should consult [5].

The problem MinHOM(H) was introduced in [13], where it was moti-
vated by a real-world problem in defence logistics. We believe it offers a
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practical and natural model for optimization of weighted homomorphisms.
It is easy to see that the homomorphism problem (for H) is a special case
of MinHOM(H), obtained by setting all weights to 0 (and taking k = 0).
Similarly, the list homomorphism problem (for H) is obtained by setting
ci(u) = 0 if i ∈ Lu and ci(u) = 1 otherwise (and taking k = 0). When
H is an irreflexive complete graph, the problem MinHOM(H) becomes the
so-called general optimum cost chromatic partition problem, which has been
intensively studied [16, 22, 23], and has a number of applications, [25, 30].
Two special cases of that problem that have been singled out are the opti-
mum cost chromatic partition problem, obtained when all ci(u), u ∈ V (G),
are the same (the cost only depends on the colour i) [25], and the chromatic
sum problem, obtained when each ci(u) = i (the cost of the colour i is the
value i, i.e., we are trying to minimize the sum of the assigned colours) [23].

Recall that we do admit loops in a graph (or digraph). For the homo-
morphism problem for graphs H, the following dichotomy classification is
known: if H is bipartite or has a loop, the problem is polynomial time solv-
able; otherwise it is NP-complete [20]. For the list homomorphism problem
for graphs H, a similar dichotomy classification is also known [8]. None of
the weighted versions of homomorphism problems cited above has a known
dichotomy classification. This includes the soft constraint satisfaction prob-
lem of [5], although the authors do identify a class of polynomially solvable
constraints that is in a certain sense maximal. We shall provide a dichotomy
classification of the complexity of MinHOM(H) for graphs.

Preliminary results on MinHOM(H) for irreflexive graphs were obtained
by Gutin, Rafiey, Yeo and Tso in [13]: it was shown there that MinHOM(H)
is polynomial time solvable if H is an irreflexive bipartite graph whose com-
plement is an interval graph, and NP-complete when H is either a nonbi-
partite graph or a bipartite graph whose complement is not a circular arc
graph. This left as unclassified a large class of irreflexive graphs, settled in
this paper. In fact, we shall provide a general classification which applies to
graphs with loops allowed.

Theorem 1.1 Let H be a graph (with loops allowed). If each component of
H is a proper interval graph or a proper interval bigraph, then the problem
MinHOM(H) is polynomial time solvable. In all other cases, the problem
MinHOM(H) is NP-complete.

The theorem will be proved in the following two sections. The next
section provides the polynomial time algorithms, and the following section
proves the NP-completeness.
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We note that in the two polynomial cases, each component of the graph
H is either irreflexive or reflexive. Indeed, it is easy to see that if H contains
an edge rs where r has a loop and s doesn’t, then the problem MinHOM(H)
is NP-complete. It suffices to notice that if G has all vertex costs cs(u) =
0, u ∈ V (G), and all other vertex costs ci(u) = 1, u ∈ V (G), i 6= s, then
there exists a homomorphism of cost not exceeding k if and only if G has an
independent set of size |V (G)| − k. Thus it suffices to consider the reflexive
and irreflexive graphs separately, and we shall do so in the remainder of the
paper.

In Section 4, we discuss the situation for digraphs. At this point the
classification is open, although we do mention some partial results.

2 Polynomial Algorithms

We say that a digraph H has the Min-Max property if its vertices can be
ordered w1, w2, . . . , wp so that if i < j, s < r and wiwr, wjws ∈ E(H), then
wiws ∈ E(H) and wjwr ∈ E(H).

This property was first defined in [11], where it was identified as an
important property of digraphs, as far as the problem MinHOM(H) is con-
cerned. (We should point out that the original definition, which is easily seen
equivalent to the one given above, required that if wiwr, wjws ∈ E(H), then
also wxwy ∈ E(H) for x = min(i, j), y = min(r, s) and for x = max(i, j),
y = max(r, s).)

Using an algorithm of [5], the authors of [11] proved the following result.
(The proof in [11] is only stated for irreflexive digraphs, but it is literally
the same for digraphs in general.)

Theorem 2.1 [11] Let H be a digraph. If H satisfies the Min-Max property,
then MinHOM(H) is polynomial time solvable.

The Min-Max property is very closely related to a property of digraphs
that has long been of interest [15]. We say that a digraph G has the X-
underbar property if its vertices can be ordered w1, w2, . . . , wp so that if
i < j, s < r and wiwr, wjws ∈ E(H), then wiws ∈ E(H). (In other
words, wiwr, wjws ∈ E(H) implies that wxwy ∈ E(H) for x = min(i, j), y =
min(r, s)). It is interesting to note that the X-underbar property is sufficient
to ensure that the list homomorphism problem for H has a polynomial
solution [21].

We first apply Theorem 2.1 to reflexive graphs. It is important to keep
in mind that we may view graphs as special digraphs, by replacing each edge
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uv of the graph by the two opposite edges uv, vu of the digraph; this does not
affect which mappings are homomorphisms [21]. Under this interpretation,
we observe the following fact.

Proposition 2.2 A reflexive graph H has the Min-Max property if and only
if its vertices can be ordered w1, w2, . . . , wp so that i < j < k and wiwk ∈
E(H) imply that wiwj ∈ E(H) and wjwk ∈ E(H).

Proof: To see that the condition is necessary, consider the directed edge
wiwk and the loop wjwj and apply the definition in digraphs. To see that
it is sufficient, suppose i < j, s < r and wiwr, wjws ∈ E(H). Observe that,
up to symmetry, there are only two nontrivial cases possible - typified by
s < i < r < j and s < i < j < r. In both cases, the condition in the theorem
and the loops wiwi and wrwr (respectively wjwj) ensure that wiws ∈ E(H)
and wjwr ∈ E(H). ¦

The condition in Proposition 2.2 is known to characterize proper interval
graphs [6, 17].

Corollary 2.3 A reflexive graph H has the Min-Max property if and only
if it is a proper interval graph. ¦

For irreflexive graphs H, we observe that the standard view of H as
a digraph will not work. Indeed, if both uv and vu are directed edges of
the digraph H, then the Min-Max property requires that both uu and vv
be loops of H. Therefore, we shall view a bipartite graph H, with a fixed
bipartition into (say) white and black vertices, as a digraph in which all
edges are directed from white to black vertices. Under this interpretation,
we observe the following fact. (We have simply replaced one ordering of all
vertices with the induced orderings on white and black vertices; note that
given orderings of white and black vertices, any total ordering preserving
the relative orders of white and of black vertices satisfies the condition.)

Proposition 2.4 A bipartite digraph H, with a fixed bipartition into white
and black vertices, and with all edges oriented from white to black vertices,
has the Min-Max property if and only if the white vertices can be ordered as
u1, u2, . . . , up and the black vertices can be ordered as v1, v2, . . . , vq, so that
if i < j, s < r and uivr, ujvs ∈ E(H), then uivs ∈ E(H) and ujvr ∈ E(H).
¦

The condition in Proposition 2.4 is known to characterize proper interval
bigraphs (also known as proper interval bipartite graphs) [28, 29].
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Corollary 2.5 An irreflexive graph H has the Min-Max property if and
only if it is a proper interval bigraph. ¦

It now follows that we can apply Theorem 2.1 to reflexive proper inter-
val graphs and irreflexive bipartite proper interval bigraphs, to deduce the
polynomial algorithms in Theorem 1.1. To begin with, let us formulate the
result for a connected graph H.

Corollary 2.6 If H is a connected graph which is a reflexive proper interval
graph or an irreflexive proper interval bigraph, then the problem MinHOM(H)
is polynomial time solvable.

Proof: For proper interval graphs H this directly follows from Theorem
2.1, and Corollary 2.3. For proper interval bigraphs, we note that we may
assume that the graph G is also bipartite, else no homomorphism to H
exists. We may also assume that G is connected, as otherwise we can solve
the problem for each component separately. Thus we may take G to be given
with white and black vertices (only two such partitions are possible for a
connected graph), and orient all edges from white to black vertices. Now we
can use Theorem 2.1, and Corollary 2.5, to derive a polynomial solution. ¦

Corollary 2.7 Let H be any graph (with loops allowed). If each component
of H is a reflexive proper interval graph or an irreflexive proper interval
bigraph, then the problem MinHOM(H) is polynomial time solvable.

Proof: Let Hi, i = 1, 2, . . . , k, be the components of H. As above, it
suffices to solve the problem for each component of G separately; thus we
assume that G is connected. Now the minimum cost homomorphism of
G to H is the smallest minimum cost homomorphism to any Hi. Thus a
polynomial time algorithm follows from the previous corollary. ¦

The polynomial algorithms for MinHOM(H) follow from [5], via the
translation in [11], which depends on submodularity of the cost functions.
It is often the case that a problem solved using submodularity can be solved
more efficiently by another more direct method [9]. This is indeed the case
here, and we give such a direct algorithm. We show how, in our case, one
can solve the problem directly as a single minimum weighted cut problem.
For simplicity, we shall focus on the reflexive case, although the technique
applies for irreflexive graphs as well. A similar construction is given in [5],
cf. also [24].
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Thus suppose that H is a reflexive proper interval graph, with vertices
ordered w1, w2, . . . , wp, so that i < j < k and wiwk ∈ E(H) imply wiwj ∈
E(H) and wjwk ∈ E(H). For simplicity we shall write i instead of wi. We
denote, for each i, by `(i) the smallest subscript j such that j is adjacent to
i; note that j ≤ i since H is reflexive. Also note for future reference that if
i′ ≤ i, then i′ is adjacent to i if and only if `(i) ≤ i′.

Given a graph G with costs ci(u), u ∈ V (G), i ∈ V (H), we construct an
auxiliary digraph G×H as follows. The vertex set of G×H is V (G)×V (H)
together with two other vertices, denoted by s and t. The directed weighted
edges of G×H are

• an edge from s to (u, 1), of weight ∞, for each u ∈ V (G),

• an edge from (u, i) to (u, i+1), of weight ci(u), for each u ∈ V (G) and
i ∈ V (H),

• an edge from (u, p) to t, of weight cp(u), for each u ∈ V (G), and

• an edge from (u, i) to (v, `(i)), of weight ∞, for every edge uv ∈ E(G)
and each i ∈ V (H).

(Note that each undirected edge uv of G gives rise to two directed edges
(u, i)(v, `(i)) and (v, i)(u, `(i)), both of infinite weight, in the last statement.)

A cut in G × H is a partition of the vertices into two sets S and T
such that s ∈ S and t ∈ T ; the weight of a cut is the sum of weights of
all edges going from a vertex of S to a vertex of T . Let S be a cut of
minimum (finite) weight, and define ju to be the maximum value such that
(u, ju) ∈ S. Let S′ be the cut containing s and all (u, 1), (u, 2), . . . , (u, ju),
for all u ∈ V (G). If S′ 6= S, then either the weight of S′ is infinite, or at
most that of S, as the only edges we might add to the cut are of the form
(u, i)(v, l(i)). If the weight of S′ is infinite, then there must be an edge of the
form (u, i)(v, `(i)) in the cut S′, where neither (u, i) nor (v, `(i)) belong to
S. Note that `(i) > jv as (v, `(i)) 6∈ S′. Furthermore `(ju) ≥ `(i), as ju > i,
which implies that `(ju) > jv. Therefore the edge (u, ju)(v, `(ju)) belonged
to the cut S, which thus had infinite weight, a contradiction. Therefore
S′ = S. Now define a mapping f from V (G) to V (H) by setting f(u) = ju.
This must be a homomorphism of G to H; indeed, suppose that uv ∈ E(G),
but jujv 6∈ E(H). Without loss of generality assume that jv ≤ ju, which
implies that jv < `(ju). This implies that the edge (u, ju)(v, `(ju)) belongs
to the cut S, a contradiction. Conversely, any minimum cost homomorphism
f of G to H corresponds, in this way, to a minimum weight cut of G×H.
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Figure 1: A bipartite claw (a), a bipartite net (b) and a bipartite tent (c).

We conclude that the minimum weight of cut in G×H is exactly equal to
the minimum cost of a homomorphism of G to H. Since minimum weighted
cuts can be found by standard flow techniques, we obtain a polynomial time
algorithm. Specifically, we note that the graph G×H has O(|V (G)||V (H)|)
vertices. Using the best minimum cut (maximum flow) algorithms, we obtain
minimum cost homomorphisms in time O(|V (G)|3|V (H)|3) [27]; if H is fixed,
and G has n vertices, this is O(n3).

We observe that this sort of product construction is also similar to the
algorithm in [11], which transforms the minimum cost homomorphism prob-
lem into a maximum independent set problem in another kind of product
G⊗H. (See also Exercise 7 in Chapter 2 of [21].) Note that these kinds of
algorithms, which solve the problem via a product construction involving G
and H, are polynomial even if H is part of the input.

3 NP-completeness

In this section it will be more convenient to begin with the irreflexive case.
Hence all graphs are irreflexive unless stated otherwise (at the end of the
section).

A bipartite graph H with vertices x1, x2, x3, x4, y1, y2, y3 is called

a bipartite claw if E(H) = {x4y1, y1x1, x4y2, y2x2, x4y3, y3x3};
a bipartite net if E(H) = {x1y1, y1x3, y1x4, x3y2, x4y2, y2x2, y3x4};
a bipartite tent if E(H) = {x1y1, y1x3, y1x4, x3y2, x4y2, y2x2, y3x4}.

See Figure 3.
These graphs play an important role for proper interval bigraphs. One

of the equivalent characterizations is the following result [18].
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Theorem 3.1 [18] A bipartite graph H is a proper interval bigraph if and
only if it does not contain an induced cycle of length at least six, or a bipartite
claw, or a bipartite net, or a bipartite tent.

It follows that to show that MinHOM(H) is NP-complete when H is
not a proper interval bigraph, it suffices to prove that MinHOM(H) is NP-
complete when H is either a cycle of length at least six, or a bipartite
claw, or a bipartite net, or a bipartite tent. Indeed, if MinHOM(H) is NP-
complete and H is an induced subgraph of H ′, then MinHOM(H ′) is also
NP-complete, as we may set the costs ci(u) = ∞ for all vertices u of G
and all i which are vertices of H ′ but not of H. The NP-completeness of
MinHOM(H) for bipartite cycles of length at least six follows from [7]. In
the remainder of this section, we prove that MinHOM(H) is NP-complete
for the bipartite claw, net, and tent.

We shall use the following tool.

Theorem 3.2 The problem of finding a maximum independent set in a 3-
partite graph G (even given the three partite sets) is NP-complete.

Proof: Let G3 be the set of all graphs of degree at most 3 with at least
three vertices excluding K4. By the well-known theorem of Brooks (see,
e.g., [32]), every graph in G3 is 3-partite. Using Lovasz’ constructive proof
of Brooks’ theorem in [26], one can find three partite sets of a graph G ∈ G3

in polynomial time.
Nevertheless, Alekseev and Lozin showed recently in [3] that the problem

of finding a maximum independent set in a graph G of G3 is NP-complete,
which completes the proof. ¦

In the rest of this section we will use the notation of Figure 3 for the
target graph H. We denote by α(G) the maximal number of vertices in an
independent vertex set of a graph G. We will prove the following lemma
using a reduction from the problem of finding a maximum independent set
in a 3-partite graph.

Lemma 3.3 If H is a bipartite claw, then MinHOM(H) is NP-complete.

Proof: Let H be a bipartite claw, with V (H) = {x1, x2, x3, x4, y1, y2, y3}
and E(H) = {x4y1, y1x1, x4y2, y2x2, x4y3, y3x3} (see Figure 3 (a)). Let G
be a 3-partite graph, with partite sets V1, V2, V3. We will now build a graph
G∗ for which mch(G∗,H) = |V (G)| − α(G). This will prove the lemma, by
Theorem 3.2.
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Let G∗ be obtained from G by inserting a new vertex me into every
edge e ∈ E(G). Note that V (G∗) = V (G) ∪ {me | e ∈ E(G)} and E(G∗) =
{umuv,muvv | uv ∈ E(G)}. Define costs as follows, where i ∈ {1, 2, 3} and
j ∈ {1, 2, 3, 4}.

cxi(u) = 0 if u ∈ Vi cx4(u) = 1 if u ∈ V (G)
cxi(u) = |V (G)| if u 6∈ Vi cyi(u) = |V (G)| if u ∈ V (G)
cyi(me) = 0 if e ∈ E(G) cxj (me) = |V (G)| if e ∈ E(G)

Let I be an independent set in G, and define a mapping f from V (G∗) to
V (H) as follows. For all u ∈ Vi let f(u) = xi if u ∈ I and f(u) = x4 if u 6∈ I.
Let uv ∈ E(G) be arbitrary, and let f(muv) = yi if {u, v} ∩ (I ∩ Vi) 6= ∅,
and let f(muv) = y1 if x, y 6∈ I. Note that f is a homomorphism of G∗ to
H with cost |V (G)| − |I|.

Let f be a homomorphism of G∗ to H of cost |V (G)| − k. We will
now show that there exists an independent set, I in G of order at least k.
If k ≤ 0 then we are trivially done so assume that k > 0, which implies
that all individual costs in c(f) are either zero or one. Let I = {u ∈
V (G) | cf(u)(u) = 0} and note that |I| ≥ k. Note that I is an independent
set in G, as if uv ∈ E(G), where u ∈ I ∩ Vi and v ∈ I ∩ Vj (i 6= j), then
f(u) = xi and f(v) = xj which implies that f is not a homomorphism, a
contradiction. Therefore I is independent in G.

Observe that we have proved that mch(G∗,H) = |V (G)| − α(G). Thus,
we have now reduced the problem in Theorem 3.2 to MinHOM(H), which
completes the proof. ¦

In the proofs of the next two lemmas, we will again use reductions from
the problem of finding a maximum independent set in a 3-partite graph.

Lemma 3.4 If H is a bipartite net, then MinHOM(H) is NP-complete.

Proof: Let H be a bipartite net, with V (H) = {x1, x2, x3, x4, y1, y2, y3}
and E(H) = {x1y1, y1x3, y1x4, x3y2, x4y2, y2x2, y3x4} (see Figure 3 (b)). Let
G be a 3-partite graph, with partite sets V1, V2, V3. We will now build a
graph G∗ such that mch(G∗,H) = 2|V3| + |V (G)| − α(G). This will prove
the lemma, by Theorem 3.2.

Let G∗ be obtained from G in the following way. For every vertex v ∈ V3

let Pv = sv
1t

v
1s

v
2t

v
2s

v
3 be a path of length 4. For every u ∈ V1 and v ∈ V2 with

uv ∈ E(G) we introduce a new vertex muv. We set

V (G∗) = V1 ∪ V2 ∪ {me | e ∈ E(G)} ∪ {V (Pv) | v ∈ V3}.
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The edge set of G∗ consists of the following edges. For every edge uv between
V1 and V2 in G both umuv and vmuv belong to G∗. All edges in V (Pv), where
v ∈ V3, belong to G∗. For all u ∈ V1 and v ∈ V3, where uv ∈ E(G), the edge
usv

1 belongs to G∗. For all u ∈ V2 and v ∈ V3, where uv ∈ E(G), the edge
usv

3 belongs to G∗.

We now define the costs of mapping vertices from V1 ∪ V2 as follows,
where all costs not shown are given the value 2|V3| + |V (G)|. For each
u ∈ Vi, i = 1, 2, we set cxi(u) = 0 and cx4(u) = 1. We define the costs of
mapping vertices from V (G∗) − V1 − V2 as follows, where i ∈ {1, 2, 3} and
j ∈ {1, 2}. For each e ∈ E(G) and z ∈ V (H), we set cz(me) = 0. Finally,
for each v ∈ V3, we set

cy3(s
v
i ) = 0 and cq(sv

i ) = 1 for all q ∈ V (H)− y3;
cx4(t

v
j ) = 1 and cq(tvj ) = 0 for all q ∈ V (H)− x4.

Let I be an independent set in G, and define a mapping f from V (G∗)
to V (H) as follows. For each i = 1, 2 and u ∈ Vi, let f(u) = xi if u ∈ I
and f(u) = x4 if u 6∈ I. For every edge uv of G with u ∈ V1 and v ∈ V2,
let f(muv) = y2 if v ∈ I and f(muv) = y1, otherwise. For all v ∈ V3 ∩ I let
f(sv

1) = f(sv
2) = f(sv

3) = y3 and f(tv1) = f(tv2) = x4. For all v ∈ V3 − I let
f(sv

1) = f(sv
2) = y1, f(sv

3) = y2 and f(tv1) = f(tv2) = x3. Note that f is a
homomorphism of G∗ to H with cost 2|V3|+ |V (G)| − |I|.

Let f be a homomorphism from G∗ to H of cost 2|V3|+ |V (G)| − k. We
will now show that there exists an independent set I in G of order at least
k. If k ≤ 0 then we are trivially done so assume that k > 0, which implies
that all individual costs in c(f) are either zero or one. Define I as follows.

I = {u ∈ V1 ∪ V2 | cf(u)(u) = 0} ∪ {v ∈ V3 | f(sv
1) = f(sv

3) = y3}

We will now show that I is independent in G and that |I| ≥ k. First
suppose that uv ∈ E(G), where u ∈ I ∩ Vi and v ∈ I ∩ Vj (i 6= j). Observe
that this is not possible if {i, j} = {1, 2}, so without loss of generality assume
that i < j = 3. However if i = 1 then we cannot have both f(u) = x1 and
f(sy

1) = y3 and if i = 2 then we cannot have both f(u) = x2 and f(sy
3) = y3.

Therefore I is independent.
If we could show that the cost of mapping Pv to H (denoted by c(Pv))

fulfills (a) and (b) below, then we would be done, as this would imply that
|I| ≥ k.

(a) c(Pv) ≥ 2 if v ∈ I ∩ V3

(b) c(Pv) ≥ 3 if v ∈ V3 − I

12



Indeed,

c(f) =
∑

u∈V1∪V2

cf(u)(u) +
∑

v∈V3

c(Pv)

≥ (|V1 ∪ V2| − |(V1 ∪ V2) ∩ I|) + 2|V3 ∩ I|+ 3(|V3| − |V3 ∩ I|)
= 2|V3|+ |V (G)| − |I|

and, thus, |I| ≥ k.

To prove (a) and (b) assume that v ∈ V3 is arbitrary. Note that
cf(sv

1)(sv
1) > 0 or cf(tv1)(tv1) > 0 (or both), as if f(sv

1) = y3 then we must have
f(tv1) = x4. Analogously cf(sv

3)(sv
3) > 0 or cf(tv2)(tv2) > 0 (or both). This

proves (a). If cf(sv
2)(sv

2) > 0, then c(Pv) ≥ 3, so assume that cf(sv
2)(sv

2) = 0,
which implies that f(sv

2) = y3. Thus, f(tv1) = f(tv2) = x4. If v 6∈ I then
we have cf(sv

1)(sv
1) > 0 or cf(sv

3)(sv
3) > 0, which together with cf(tv1)(tv1) =

cf(tv2)(tv2) = 1, implies (b). ¦

Lemma 3.5 If H is a bipartite tent, then MinHOM(H) is NP-complete.

Proof: Let H be a bipartite tent with V (H) = {x1, x2, x3, x4, y1, y2, y3} and
E(H) = {x4y1, y1x1, x1y2, y2x4, x1y3, y3x2, x2y1, y1x3} (see Figure 3 (c)).
Let G be a 3-partite graph, with partite sets V1, V2, V3. We will now build
a graph G∗ such that mch(G∗, H) = |V (G)| − α(G). This will prove the
lemma, by Theorem 3.2.

Let E1,2 denote all edges between V1 and V2 in G. A graph G∗ is obtained
from G, by inserting a new vertex me into every edge e ∈ E1,2. Note that
V (G∗) = V (G)∪{me | e ∈ E1,2}. The edge set of G∗ consists of all edges in G
incident with a vertex in V3 as well as of the edges {u1vu1u2 , vu1u2u2 | u1u2 ∈
E1,2}. We now define the costs of ui ∈ Vi as follows, where all costs not
shown are given the value |V (G)|.

For i = 1: cy2(u1) = 0 cy1(u1) = 1
For i = 2: cy3(u2) = 0 cy1(u2) = 1
For i = 3: cx3(u3) = 0 cx1(u3) = 1

For all edges e ∈ E1,2 let cx1(me) = |V (G)| and let cq(me) = 0 for all
q ∈ V (H)− {x1}.

Let I be an independent set in G, and define a mapping f from V (G∗)
to V (H) as follows.

For u ∈ V1 ∩ I: f(u) = y2 For u ∈ V1 − I: f(u) = y1

For u ∈ V2 ∩ I: f(u) = y3 For u ∈ V2 − I: f(u) = y1

For u ∈ V3 ∩ I: f(u) = x3 For u ∈ V3 − I: f(u) = x1

13



If u1u2 ∈ E1,2 and u1 ∈ V1 ∩ I, then let f(mu1u2) = x4. If u2 ∈ V2 ∩ I,
then let f(mu1u2) = x2. If u1, u2 6∈ I then let f(mu1u2) = x4. Note that f
is a homomorphism from G∗ to H with cost |V (G)| − |I|.

Let f be a homomorphism from G∗ to H of cost |V (G)| − k. We will
now show that there exists an independent set, I in G of order at least k. If
k ≤ 0 then we are trivially done so assume that k > 0, which implies that all
individual costs in f are either zero or one. Let I = {u ∈ V (G) | cf(u)(u) =
0} and note that |I| ≥ k. Furthermore, observe that I is an independent set
in G (as f(ve) 6= x1 for every e ∈ E1,2). We have reduced the problem in
Theorem 3.2 to MinHOM(H), which completes the proof. ¦

Corollary 3.6 If H is an irreflexive graph which is not a proper interval
bigraph, then MinHOM(H) is NP-complete.

Proof: If H is not bipartite, this follows from the fact that the homo-
morphism problem for H is NP-complete [20]. Otherwise, the conclusion
follows from Theorem 3.1, the remarks following it, and the above three
lemmas. ¦

We now return to considering graphs with loops allowed. Since we have
observed that a graph H with an adjacent loop and nonloop gives rise to
an NP-complete problem MinHOM(H), it only remains to prove the NP-
completeness of MinHOM(H) when H is a reflexive graph which is not a
proper interval graph. We could proceed as before, as there is an analogous
result characterizing proper interval graphs by the absence of induced cycles
of length at least four, or a claw, net, or tent [31, 10, 29]. However, we
instead reduce the problem to the irreflexive case, as follows.

Given a reflexive graph H, we define the bipartite graph H∗ with the
vertex set {v′, v′′ : v ∈ V (H)} and edge set {u′v′′ : uv ∈ E(H)}. (Note
that each v′v′′ is an edge of H since the graph H is reflexive.) It is proved
in [18] that H is a proper interval graph if and only if H∗ is a proper
interval bigraph. Thus suppose a reflexive graph H is not a proper interval
graph, and consider the bipartite (irreflexive) graph H∗ which is then not
a proper interval bigraph. We will now reduce the NP-complete problem
MinHOM(H∗) to the problem MinHOM(H) as follows. Each instance of
MinHOM(H∗) can also be viewed as an instance of MinHOM(H). Indeed,
such an instance consists of a bipartite graph G with costs ci′(u) for each
white vertex u of G and white vertex i′ of H∗, and costs ci′′(v) for each
black vertex v of G and black vertex i′′ of H∗; to see this as an instance
of MinHOM(H), we only need to set ci(u) equal to ci′(u) if u is white and
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ci′′(u) if u is black. Now colour-preserving homomorphisms of G to H∗ and
to H are in a one-to-one correspondence, with the same costs, i.e., there is
a homomorphism of G to H∗ of cost not exceeding k if and only if there is
a homomorphism of G to H of cost not exceeding k. We have proved the
following fact.

Corollary 3.7 If H is a reflexive graph which is not a proper interval graph,
then MinHOM(H) is NP-complete.

Thus, for a connected graph H (with loops allowed), we have the follow-
ing situation. If H has both loops and nonloops, the problem MinHOM(H)
is NP-complete by the remarks after Theorem 1.1; if H is reflexive and not a
proper interval graph, then MinHOM(H) is NP-complete by Corollary 3.6;
and if H is irreflexive and not a proper interval bigraph, then MinHOM(H)
is NP-complete by Corollary 3.7. Of course, as observed earlier, it is enough
if this happens for one component of H. Thus we conclude as follows.

Corollary 3.8 If a graph H (with loops allowed) has a component which
is neither a reflexive proper interval graph nor an irreflexive proper interval
bigraph, then the problem MinHOM(H) is NP-complete. ¦

This completes the proof of Theorem 1.1.

4 Digraphs

A digraph H (with loops allowed) satisfying the Min-Max property yields
a polynomial time solvable problem MinHOM(H) (Theorem 2.1). However,
there are other digraphs H for which the problem MinHOM(H) admits a
polynomial solution. For instance, it is easy to see that when H is a directed
cycle, we can solve MinHOM(H) in polynomial time, cf. [11]. On the other
hand, a directed cycle clearly does not have the Min-Max property, as can
be seen by considering the last vertex (in the Min-Max ordering) and its two
incident edges. (A similar property more appropriate for cycle-like digraphs
is introduced in [14].)

The classification problem for the complexity of minimum cost digraph
homomorphism problems remains open. However, in [12], a partial classi-
fication has been obtained for the class of semicomplete k-partite digraphs.
These are digraphs that can be obtained from undirected complete k-partite
graphs by orienting each undirected edge in one direction or in both direc-
tions. When k ≥ 3, the classification is given in [12]. When k = 2, the
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situation is more complex, and the classification has only recently been
completed [14]. The full classification of all minimum cost digraph homo-
morphism problems remains open. On the other hand, the dichotomy of list
homomorphism problems for digraphs follows from a result of Bulatov [4].
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