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Talk Overview

• ATSP

• Multidimensional Assignment Problem

• General results and results for other prob-

lems
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12 10

8
5

3a

d

6

3

b

c

4
9

5

7
7

• A Hamilton cycle is a tour; (n− 1)! tours

• Many heuristics (how to compare them?)

• Computational experiments

• Approximation and domination analyzes
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Domination Number

• Introduced in 1997 by Glover and Punnen

• First results obtained by Rublineckii in 1973

[in Russian]

• For an ATSP heuristic H and ATSP in-

stance I, domn(H, I) is the number of tours

in I of weight at least the weight of the

tour obtained by H for I

• domn(H, n) = min{domn(H, I) : |I| = n}
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Use of Domination Number

• domn is invariant under linear transforma-

tions of arc weights

• Worst case comparison:

domn(H, n) > domn(H ′, n) for n large enough

Ben-Arieh, Gutin, Penn, Yeo and Zverovitch

(2003) for Generalized ATSP

• Neighborhoods for local search: why some

exponential-size neighborhoods perform bad

while small-size ones perform well (Orlin et

al.)?
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Low Dom Number Heuristics

• Greedy and NN are of dom number 1 (may

produce the unique worst possible tour),

Gutin, Yeo and Zverovitch (2002)

• Any greedy-type heuristic is of dom num-

ber 1 (greedy-type introduced by Gutin,

Vainshtein and Yeo, 2002, proved by Ben-

dall and Margot, to appear)

• Max-Regret is of dom number 1 (Proc.

WAOA’06)
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Large Dom Number Heuristics

Any heuristic that always produces a tour of
weight not worse that the average weight is

of dom number at least (n − 2)!, n 6= 6 (n
odd: Sarvanov, 1976, n even: Gutin and Yeo,
2002). Such heuristics are:

(a) Greedy-expectation algorithm (Gutin and

Yeo, 2002)

(b) Vertex insertion algorithms (Lifshitz, 1973,
Punnen and Kabadi, 2002)

(c) 3-Opt, Lin-Kernighan in polynomial time
(Punnen, Margot and Kabadi, 2003)

In computational experiments low dom number

algorithms often perform worse than large dom
number algorithms
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ATSP-Max-Regret

ATSP-Max-Regret-FC: Set W = T = ∅. While

V 6= W do the following: For each i ∈ V \W ,

compute two lightest arcs (i, j) and (i, k) that

are feasible additions to T , and compute the

difference ∆i = |wij − wik|. For i ∈ V \ W

with maximum ∆i choose the lightest arc (i, j),

which is a feasible addition to T and add (i, j)

to M and i to W.

ATSP-Max-Regret: The same with not only

outgoing, but also incoming arcs considered.

Question (Ghosh et al., 2007): What is the

dom number of ATSP-Max-Regret? (ATSP-

Max-Regret often outperforms Greedy)
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Dom Number of ATSP-Max-Regret

Theorem Both ATSP-Max-Regret-FC and ATSP-

Max-Regret are of dom number 1.

Proof: Consider an instance of ATSP with

vertex set {1,2, . . . , n}, n ≥ 2. The weights:

wik = min{i − k,0} for each 1 ≤ i 6= k ≤ n,

i 6= n, and wnk = −k for each 1 ≤ k ≤ n− 1.

Modify the weights: w′ij = wij unless j = i + 1

modulo n. Set w′i,i+1 = −1− 1
n+1 for 1 ≤ i ≤ n.

ATSP-Max-Regret-FC will use w′.
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Proof cont’d (a)

ATSP-Max-Regret-FC constructs the tour

TMR = (1,2, . . . , n,1)

by choosing the arc (n−1, n), the arc (n−2, n−
1), etc. The last two arcs are (1,2) and (n,1)

(they must be included in the tour).

Indeed, initially ∆n−1 = n+2
n+1 > ∆i = 1 for each

i 6= n − 1. Once (n − 1, n) is added to TMR,

∆n−2 = n+2
n+1 becomes maximal, etc.

Let T ′, T ′′ be tours. Since
∑

(i,j)∈K∗
n
|wij−w′ij| <

1, w(T ′) < w(T ′′) implies w′(T ′) < w′(T ′′). Thus,

in the rest of the proof we may use w rather

than w′.
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Proof cont’d (b)

Observe w(TMR) = −n.

Let T = (i1, i2, . . . , in, i1) be an arbitrary tour,

where i1 = 1. Let is = n, P = (i1, i2, . . . , is).

w(P ) =
∑s−1

k=1 min{0, ik − ik+1} ≤
∑s−1

k=1(ik − ik+1) = i1 − is.

Thus, w(P ) ≤ 1 − n and w(P ) = 1 − n iff i1 <

i2 < · · · < is.

Since is = n, the weight of the arc (is, is+1)

equals −is+1. Thus, w(T ) ≤ 1 − n − is+1 and

w(T ) ≥ w(TMR) iff is+1 = 1 and i1 < i2 <

· · · < is. We conclude that w(T ) ≥ w(TMR) iff

T = TMR.
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Multidimensional Assignment Problem

(s-AP)

Let X = {1,2, . . . , n}s. Each vector e ∈ X is

assigned a real weight w(e).

For a vector e, ej denotes its jth coordinate.

Vectors e, f are independent if ej 6= fj for each

j = 1,2, . . . , s.

An assignment is a set of n independent vec-

tors. The weight of an assignment {e1, . . . , en}
is

∑n
i=1 w(ei).

The aim: to find an assignment of minimum

weight.

Applications: In tracking objects, e.g., 5-AP

to track elementary particles at CERN

12



Max-Regret by Balas and Saltzman

(1991)

We have a partial assignment A.

Choose j ∈ {1, . . . , s} and m ∈ {1, . . . , n}.

Choose two lightest vectors e, f with ej = fj =

m and independent from vectors in A. Find

the regret ∆j,m = |w(e)− w(f)|.

Choose j, m with maximum ∆j,m and the light-

est e with ej = m. Add e to A.
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Low Dom Number Heuristics

In comput. experiments Balas and Saltzman

(1991) show Max-Regret outperforms Greedy.

In comput. experiments Robertson (2001) shows

the heuristics are of similar performance.

Theorem For s-AP, s ≥ 3, both Greedy and

Max-Regret are of dom number 1.

Theorem For 2-AP, Greedy is of dom number

1.

Theorem For 2-AP, Max-Regret is of dom num-

ber at most 2n−1.
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Large Dom Number Heuristics

Theorem For s-AP, if a heuristic H always pro-

duces an assignment of weight at most the av-

erage weight w̄ of an assignment, then we have

domn(H, n) ≥ ((n− 1)!)s−1.

Proof: Consider an instance I of s-AP. C de-

notes the set of all vectors of I with the first

coordinate equal 1; P = {Af : f1 ∈ C}, where

Af = {f1, f2, . . . , fn} is an assignment with

f i
j = f1

j + i− 1 (modulo n), j = 1,2, . . . , s.

Each vector is in exactly one Af and, thus,

P is a partition of X = X1 × X2 × · · · × Xs,

Xi = {1,2, . . . , n}, into assignments.

Since
∑

f∈C w(Af) = w(X), |C| = ns−1 and

w̄ = w(X)/ns−1, the heaviest assignment Ah

in P is of weight at least w̄.
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Proof cont’d

Let S(Xi) be the set of all permutations on Xi

(2 ≤ i ≤ s) and let π2 ∈ S(X2), . . . , πs ∈ S(Xs).

To obtain P(π2, . . . , πs) from P, replace f i
j with

πj(f
i
j) for each j ≥ 2 and i = 1,2, . . . , n. Thus,

we obtain a family

F = {P(π2, . . . , πs) : π2 ∈ S(X2), . . . , πs ∈ S(Xs)}
of partitions of X into assignments. The family

consists of (n!)s−1 partitions. We may choose

the heaviest assignment in each partition and,

thus, obtain a family A of assignments of weight

at least w̄.

It’s possible to prove that no assignment in A
can be repeated more than ns−1 times. Since

A has (n!)s−1 assignments with repetitions, we

can find (in A) ((n − 1)!)s−1 distinct assign-

ments of weight at least w̄.
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ROM Heuristic

Recursive Opt Matching (ROM):

Theorem For 3-AP, 3-Opt (by Balas and Saltz-
man) is of dom number at least ((n− 1)!)2.

Compute a new weight w̄(i, j) = w(Xij)/ns−2,
where Xij is the set of all vectors with last two
coordinates equal i and j, respectively. Solving
the 2-AP with the new weights, find an optimal
assignment M = {(i, πs(i)) : i = 1,2, . . . , n},
where πs is a permutation.

Continue for coordinates s − 2 and s − 1 with
M ’fixing’ coordinates s − 1 and s, etc. Use
X ′ = {1,2, . . . , n}s−1 instead of X.

Theorem

domn(ROM, n) ≥ ((n− 1)!)s−1.
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Proof

It suffices to show that the assignment ob-

tained by ROM is of weight at most w̄ =

w(X)/ns−1, the average weight of an assign-

ment. By induction on s ≥ 2. Clearly the as-

sertion holds for s = 2 and consider s ≥ 3.

Observe that

w̄ =
1

n

n∑

i=1

n∑

j=1

w̄(i, j) ≥
n∑

i=1

w̄(i, πs(i)) =
w′(X ′)
ns−2

.

Let A = {(g1, πs(1)), . . . , (gn, πs(n))} be an as-

signment obtained by ROM, where gi ∈ X ′
such that gi

s−1 = i for every i = 1, . . . , n. Let

A′ = {g1, . . . , gn}. Then by induction hypothe-

sis, w̄′ = w′(X ′)/ns−2 ≥ w′(A′) = w(A) and we

are done.
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Preliminary Computational Experiments

(by Gerold Jäger)

100 random examples with n=8, s=6, entries

in [0,1000] (sum of all solutions):

1. Greedy: 58310

2. Recursive Opt Matching: 53820

3. Balas-Saltzman: 54637

4. Shifted Recursive Opt Matching: 36878
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Results for Other Problems

1. Independence Systems (IS). Sufficient con-

ditions for Greedy to be of domination number

1, Gutin and Yeo, 2002

2. IS. Weights form a finite set. Necessary

and sufficient conditions for Greedy to be of

domination number 1, Bang-Jensen, Gutin and

Yeo, 2004.

3. IS. Sufficient conditions for greedy-type

heuristics to be of domination number 1, Ben-

dall and Margot, to appear

4. Dom analysis of various problems: Alon,

Gutin and Krivelevich (2004), Berend, Skiena

and Twitto (submitted), Gutin, Vainshtein and

Yeo 2003, Gutin, Jensen and Yeo (2006), etc.
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