
Batched Bin Packing

Gregory Gutin, Tommy Jensen and Anders Yeo∗

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
gutin(tommy,anders)@cs.rhul.ac.uk

Abstract

We introduce and study the batched bin packing problem (BBPP), a bin packing
problem in which items become available for packing incrementally, one batch at a time.
A batched algorithm must pack a batch before the next batch becomes known. A batch
may contain several items; the special case when each batch consists of merely one item is
the well-studied on-line bin packing problem. We obtain lower bounds for the asymptotic
competitive ratio of any algorithm for the BBPP with two batches. We believe that our
main lower bound is optimal and provide some support to this conjecture. We suggest
studying BBPP and other batched problems.

Keywords: On-line algorithm, lower bounds, bin packing, competitive ratio.

1 Introduction, Terminology and Notation

In this paper, we study a variation of the classical bin packing problem (BPP). In BPP, we
are given a set B of items a1, a2, . . . , an and a sequence of their sizes (s1, s2, . . . , sn) (each size
si ∈ (0, 1]) and are required to pack the items into a minimum number of unit-capacity bins.
In other words, we need to partition B into a minimum number m of subsets B1, B2, . . . , Bm

such that
∑

ai∈Bj
si ≤ 1 for each j = 1, 2, . . . , m. For recent surveys of BPP, see [3, 4, 5].

We introduce the batched bin packing problem (BBPP), a bin packing problem in which
items become available for packing incrementally, one batch at a time. A batched algorithm
must pack a batch before the next batch becomes known. A batch may contain several items;
the special case when each batch consists of merely one item is the well-studied on-line bin
packing problem. In the case of just one batch, we have the classical off-line BPP. In BBPP,
an input sequence L is a batched sequence, namely, L = (B1, B2, . . . , Bk), where every Bj is
a set of items and Bi ∩Bj = ∅ whenever 1 ≤ i < j ≤ k.

BBPP may be of interest when, for example, items are delivered to a packing site by
trucks, each truck containing several items. To the best of our knowledge, despite being a
very natural generalization of BPP, BBPP has not been studied before. Somewhat similar
yet different problems were studied under the collective name of semi-on-line problems (see,
e.g., [3, 4]).

In particular, Galambos and Woeginger [8] considered a version of the on-line bounded-
space BPP where repacking of items within some active bins is allowed. For this problem,

∗Research of all authors was supported in part by the Leverhulme Trust. Research of Gutin was supported
in part by the IST Programme of the European Community, under the PASCAL Network of Excellence,
IST-2002-506778. Correspondence to: Gutin.

1



the lower bound `LL of Lee and Lee [13] (`LL ≈ 1.69103) for the competitive ratios of
bounded-space approximation algorithms still applies. Galambos and Woeginger presented
an algorithm that reaches the best possible competitive ratio matching `LL while using only
three active bins. Algorithms with much more freedom to rearrange items were developed
by Ivković and Lloyd [11, 12]. Grove [9] considered a k-bounded lookahead algorithm, which
delays packing an item till k − 1 next items has arrived, or the restricted capacity (of a
warehouse) has been exceeded. Grove’s algorithms achieves the optimal competitive ratio of
`LL when the warehouse capacity is sufficiently large.

The on-line bin batching problem considered in a short note [17] is different from BBPP
as it is an extension of the bin covering problem.

All batched sequences with exactly k batches (some of which may be empty) comprise
a set, which we denote by B(k). For a given batched sequence L and batched algorithm A,
let A(L) be the number of bins required for L by algorithm A; let OPT(L) be the minimum
number of bins needed to pack the items of L when they are all available at once (as in BBP).
The asymptotic competitive ratio R∞

A,k of A on B(k) is

limsupN→∞max{ A(L)
OPT(L)

: L ∈ B(k), OPT(L) = N}.

The asymptotic competitive ratio of a batched algorithm is defined similarly to the asymp-
totic competitive ratio of an on-line algorithm.

In this paper, we study lower bounds of R∞
A,2 for any batched algorithm A with inputs

from B(2). We note that any additional assumptions, such as polynomiality, are not made
about the algorithms that we study. In Section 2, we prove such a bound r in Theorem 1.
We conjecture that the bound r is optimal. To formally support this conjecture we prove in
Section 4 that the bound r is optimal for a wide family of batched sequences. In Section 3
we obtain lower bounds of R∞

A,2 for the restriction of B(2) to instances in which the number
of item sizes is bounded (a natural constraint). Section 5 is devoted to open problems and
suggestions for further research.

Yao [16] was the first to study lower bounds for the asymptotic competitive ratio of an
on-line algorithm for BBP. He showed that such a bound is not smaller than 1.5. Brown [1]
and Liang [14] independently improved Yao’s result to 1.53635. This was further improved
by van Vliet [15] to 1.54014. Chandra [2] showed that the preceding lower bounds also apply
to randomized algorithms.

Zhang, Cai and Wong [18] observed that, in many real world situations, most scheduling
problems occur neither as complete off-line nor as complete on-line models. They investigated
the makespan m identical parallel machine problem when the jobs arrive in two batches (2-
BPMP). They proved that 1.5 is a lower bound for the competitive ratio of a 2-BPMP batched
algorithm, showed that 1.5 is sharp in two special cases, and conjectured that 1.5 is sharp in
the general case.

We believe that batched generalizations of various on-line problems are of definite interest.
Being extensions of the corresponding on-line problems, batched problems may prove to be
very difficult to investigate in their general setting. One way around this is to fix the number
of batches in possible inputs; an assumption that may be not too restrictive for some batched
problems.

2



2 Lower Bounds

Let 2-BBPP denote the restriction of BBPP to inputs with two batches, i.e., sequences from
B(2).

Define σ as the solution in the interval (3/2, 2) to 2σ − 3 = lnσ, with σ = 1.7915 . . ., and
let r = 2σ/(2σ − 1) = 1.3871 . . .. In other words r is a solution to r

r−1 − 3 = ln r
2r−2 .

Theorem 1 If A is a batched algorithm for 2-BBPP, then R∞
A,2 ≥ r.

Proof: Consider instances L = (B1, B2) of 2-BBPP, the first batch B1 consisting of n items
all of size equal to s, where 0 < s < 1. Let t = b1

sc; then t is the maximal number of items
from B1 which can be packed into one bin.

The second batch B2 will be either equal to the empty batch B0, or to Bj consisting
of n/j items each of size 1 − js, with j = 1, 2, . . . ,m := d 1

2se − 1. (We assume throughout,
without loss of generality, that n is divisible by every integer 1, 2, . . . , m and also by t.) Hence
no two items from Bj fit into one bin together, and an item from Bj leaves room for j items
from B1, and no more (1 ≤ j ≤ m). Since this bin packing problem is easy to analyze for the
range s ≥ 1/2, we further assume s < 1/2, and hence m ≥ 1.

Assume that an algorithm A for 2-BBPP packs the items of B1 so that the number of bins
containing exactly i items is yi = nxi, for each i = 1, 2, . . . , t. Hence y1 + 2y2 + · · ·+ tyt = n
and

t∑

i=1

ixi = 1 (1)

Assume that the number of bins used by A when packing any two consecutive batches
never exceeds a factor of z times the optimum number of bins that may be used in packing
(off-line) the items contained in the union of the same two batches. Applying this assumption
to B2 = B0, it follows that

t∑

i=1

xi ≤ 1
t
z, (2)

since the items from B1 can be packed into n/t bins.
For B2 = Bm there exists a packing of B1 ∪ B2 into n/m bins, whereas A uses at least

n
∑t

i=m+1 xi bins each of which contains no items from B2 (as this many bins are already
packed too full), together with an additional n/m bins each of which contains precisely one
item from B2. We then have

t∑

i=m+1

xi +
1
m
≤ 1

m
z. (3)

Similarly, for B2 = Bj , 1 ≤ j ≤ m− 1,

t∑

i=j+1

xi +
1
j
≤ 1

j
z. (4)

3



Let ` ∈ {1, 2, . . . ,m}. We consider the sum of (4) over the values j = `, ` + 1, . . . , m− 1:

m−1∑

j=`

t∑

i=j+1

xi + λm(`) ≤ λm(`)z, (5)

where

λm(`) :=
m−1∑

j=`

1
j
.

Noting, by reordering of sums, that

m−1∑

j=`

t∑

i=j+1

xi =
m∑

i=`+1

(i− `)xi +
t∑

i=m+1

(m− `)xi,

we get by adding ` times (2) to t−m times (3) to (5),

`
t∑

i=1

xi + (t−m)
t∑

i=m+1

xi +
t−m

m
+

m∑

i=`+1

(i− `)xi+

+
t∑

i=m+1

(m− `)xi + λm(`) ≤ (
`

t
+

t−m

m
+ λm(`))z. (6)

Collecting first in (6) the terms involving xi, 1 ≤ i ≤ t, and finally applying (1) yields

`

t∑

i=1

xi + (t−m)
t∑

i=m+1

xi +
m∑

i=`+1

(i− `)xi +
t∑

i=m+1

(m− `)xi =

∑̀

i=1

`xi +
m∑

i=`+1

ixi +
t∑

i=m+1

txi ≥

t∑

i=1

ixi = 1.

We conclude by (6) that

t

m
+ λm(`) ≤ (

`

t
+

t

m
− 1 + λm(`))z,

and therefore

z ≥
t
m + λm(`)

t
m + λm(`)− 1 + `

t

= 1 +

(
t
m + λm(`)

1− `
t

− 1

)−1

. (7)

We will now assume that ` and m satisfy m ≥ ` > 1 and (m − 1)/(` − 1) ≤ σ ≤ m/(` − 1).
(For any ` > 1, it is clearly possible to achieve this by choosing an appropriate value of s.)
It follows that

4



λm(`) =
m−1∑

j=`

1
j
≤

∫ m−1

`−1

1
y
dy = ln

m− 1
`− 1

≤ lnσ = 2σ − 3.

Moreover, from σ ≤ m/(`− 1), we have

`

t
≤ 1

t
(
m

σ
+ 1) =

m

σt
+

1
t
.

It follows from (7) that

z ≥ 1 +

(
t
m + 2σ − 3
1− m

σt − 1
t

− 1

)−1

,

which, using that t/m converges to 2, approaches the value 2σ/(2σ−1) as t grows to infinity.
Hence, the lower bound

z ≥ 2σ/(2σ − 1) = r

is proved. ¤
We believe that the bound r in the above theorem is optimal:

Conjecture 1 There exists an algorithm A for 2-BBPP with R∞
A,2 = r.

We remark that (7) does not contradict this conjecture. The following lemma, which will
be used in the proof of Theorem 2 shows that the value of the right hand side of (7) is indeed
bounded from above by r.

Lemma 1 Let 0 < s < 1/2, t = b1/sc, m = d 1
2se − 1, 1 ≤ ` ≤ m, and λm(`) =

∑m−1
j=` 1/j.

Then

1 +

(
t
m + λm(`)

1− `
t

− 1

)−1

≤ r.

Proof: The estimate
λm(`) ≥

∫ m

`

1
y
dy = ln

m

`

implies

1 +

(
t
m + λm(`)

1− `
t

− 1

)−1

≤ 1 +

(
t
m − ln t

m − ln `
t

1− `
t

− 1

)−1

≤ 1 +

(
2− ln 2− ln `

t

1− `
t

− 1

)−1

,

where the last inequality follows from t/m ≥ 2 and the fact that x 7→ x − ln x defines an
increasing function on (1,∞). Finally it is straightforward to verify that the function defined
for 0 < x < 1 by

x 7→ 2− ln 2− ln x

1− x

assumes a unique minimum value of 2σ at the point x0 = 1/(2σ). This proves the lemma,
since r = 1 + 1/(2σ − 1). ¤

Further formal and informal support to Conjecture 1 is provided in Section 4.

5



3 Lower Bounds for a Variation of 2-BBPP

The bound (7) may be thought of as derived from instances L of 2-BBPP in which the
m− ` + 2 distinct values s, 1− `s, 1− (` + 1)s, . . . , 1−ms are the only item sizes which can
occur (as the batches B1, B2, . . . , B`−1 are not considered when deriving (5)).

Consider now only instances of 2-BBPP in which the number of different item sizes is
at most p(≥ 2). Suppose a batched algorithm is given the possible item sizes at the same
time as it gets the first batch of an instance L ∈ B(2). Then the lower bound (7) applies
to the competitive ratio of any such empowered algorithm, with ` = m − p + 2 and for any
suitable choice of s. For each p, we have chosen m = d(σ(p− 1)− 1)/(σ − 1)e, t = 2m, and
s = 2/(2t + 1).

This provides the values of r(p), a lower bound for the asymptotic competitive ratio of
such an empowered algorithm, given in the following table. It is in general not clear whether
these might be the best possible bounds r(p). It seems that r(2) is best possible (generalizing
a result from [7] our recent paper [10] shows the existence of an algorithm for on-line bin
packing which reaches an asymptotic competitive ratio of 4/3 when only two item sizes are
allowed and known in advance).

p s t m ` λm(`) r(p)

2 2/5 2 1 1 0 1.3333. . .
3 2/17 8 4 3 1/3 1.3658. . .
4 2/25 12 6 4 9/20 1.3738. . .
5 2/33 16 8 5 107/210 1.3773. . .
6 2/45 22 11 7 1207/2520 1.3793. . .

4 Possible Optimality of r

For every fixed s < 1/2 we have exhibited a lower bound (7) for the asymptotic competitive
ratio of any algorithm for the restriction of 2-BBPP to the special subclass of instances
L = (B1, B2) for which all items of the initial batch B1 have the same size s. The bound is
given as a function of t = b1/sc and m = d1/(2s)e − 1, and choosing the value of ` suitably,
1 ≤ ` ≤ m.

Let B′ denote the set of instances L = (B1, B2) ∈ B(2) for which all items of the initial
batch B1 are of the same size s = 1/t for some integer t > 2. We now confirm Conjecture 1
for this subclass B′ of B(2).

Theorem 2 There exists a batched algorithm A with the property

limsupN→∞max{ A(L)
OPT(L)

: L ∈ B′, OPT(L) = N} = r.

Proof: We will describe an algorithm A, such that for every ε > 0 the ratio A(L)/OPT (L)
exceeds the right hand side of (7) by at most ε for all instances L ∈ B′ for which OPT (L) is
sufficiently large. Using Lemma 1 this implies

limsupN→∞max{ A(L)
OPT(L)

: L ∈ B′, OPT(L) = N} ≤ r.

6



By the proof of Theorem 1, r is also a lower bound, so the Theorem follows.
Let L = (B1, B2) be an instance in B′ having n items in B1 all of size s = 1/t, where

t > 2 is an integer, and let m = d1/(2s)e − 1 = dt/2e − 1. Choose as ` the smallest positive
number satisfying λm(`) ≥ t

` − t
m − 1 (this inequality holds for ` = m, so the choice is indeed

possible), and let

z =
t
m + λm(`)

t
m + λm(`)− 1 + `

t

.

We observe that z ≥ 1 holds. Now define values w1, w2, . . . , wt, wt+1 by

wi =





0 if i = t + 1,
1
m(z − 1) if m + 1 ≤ i ≤ t,
1

i−1(z − 1) if ` + 1 ≤ i ≤ m,
1
t z if 1 ≤ i ≤ `.

The inequality w` ≥ w`+1 follows from the choice of `, which implies

z − 1
z

=
1− `

t
t
m + λm(`)

≤ 1− `
t

t
` − 1

=
`

t
,

and hence w` = 1
t z ≥ 1

` (z− 1) = w`+1. This and the fact z ≥ 1 imply w1 ≥ w2 ≥ · · · ≥ wt+1.
We will consider differences of the form bnwic − bnwi+1c for i = 1, 2, . . . , t. These are

non-negative integers having the property

t∑

i=1

i(bnwic − bnwi+1c) =
t∑

i=1

bnwic.

Using the equality

t∑

i=1

nwi = n((t−m)
1
m

(z − 1) +
m∑

i=`+1

1
i− 1

(z − 1) +
`

t
z)

= n((
t

m
− 1 + λm(`) +

`

t
)(z − 1) +

`

t
)

= n,

we deduce that

0 ≤ n−
t∑

i=1

i(bnwic − bnwi+1c) ≤ t.

We will let A pack B1 by first distributing a subset of the items in such a way that
the number of bins containing i items is precisely bnwic − bnwi+1c, followed by packing
any remaining items into one additional bin (if needed), which is possible by the preceding
inequality. When receiving B2, the existing packing of the items from B1 is completed in an
optimal way by A to a final packing of B1 ∪ B2. Again we remark that the running time
efficiency of A is not an issue.

Let yi denote the number of bins which contain i items when A has finished the packing
of B1, for i = 1, 2, . . . , t. Then with i′ = n−∑t

i=1 i(bnwic − bnwi+1c) we have

yi =
{ bnwic − bnwi+1c+ 1 if i = i′,
bnwic − bnwi+1c otherwise.

7



Let ε > 0. To prove the theorem it is sufficient to show, that there exists a number N(ε)
such that OPT (L) ≥ N(ε) implies

A(L)
OPT (L)

≤ z + ε.

Indeed we will show that this holds with N(ε) = 1/ε.

Let B2 consist of k items of sizes (s1, s2, . . . , sk). We begin by making a few simplifying
assumptions.

(A1) In any optimal solution to L each bin contains at most one item from B2.
Otherwise, if the items of sizes s1, s2, say, are placed in the same bin in some optimal solu-

tion, then we consider L′ = (B1, B
′
2) where B′

2 contains k−1 items of sizes (s1+s2, s3, . . . , sk).
Then OPT (L′) = OPT (L) and A(L′) ≥ A(L) are satisfied. We may now replace L by L′,
since A(L)/OPT (L) ≤ z + ε would follow from A(L′)/OPT (L′) ≤ z + ε.

(A2) sj/s is an integer for every j = 1, 2, . . . , k.
Indeed, if we replace B2 by B′

2 having item sizes (ds1/ses, ds2/ses, . . . , dsk/ses) and let
L′ = (B1, B

′
2), then OPT (L′) = OPT (L) follows from (A1) and the integrality of 1/s. As

before, A(L′) ≥ A(L) holds.

(A3) Any pair of items in B2 have combined size strictly greater than 1.
Otherwise, say if s1 + s2 ≤ 1, we consider the two bins of an optimal packing of L that

contain the items of sizes s1 and s2. Using (A2) and the integrality of 1/s, we may rearrange
the items between these two bins to obtain a new packing using equally many bins, but
having the items of sizes s1, s2 in the same bin. This packing would contradict (A1).

From these assumptions it follows that any bin can contain at most one item from B2.
Thus the solution A(L) is given by a largest matching between the items from B2 and the
partially packed bins containing the items from B1. Here an item may be matched to a
bin, only if its size is no larger than the space which remains in the bin. We will apply the
theorem of König on maximum matchings in bipartite graphs (e.g. see [6], Theorem 2.1.1):
The maximal size of a matching in a bipartite graph equals the minimal number of vertices
which cover all edges (where a vertex is said to ’cover’ its incident edges). For simplicity
assume s1 ≤ s2 ≤ · · · ≤ sk, and let b1, b2, . . . , bn′ with 0 < b1 ≤ b2 ≤ · · · ≤ bn′ denote the
contents of the bins which have been partially packed by A with items from B1. Applying
König’s theorem, the largest size of a matching between items and bins is equal to

M = min{i0 + j0 | bi + sj ≤ 1 ⇒ i ≤ i0 ∨ j ≤ j0},

where the minimum is taken over all i0, j0 with 0 ≤ i0 ≤ n′ and 0 ≤ j0 ≤ k. Suppose that
the minimum is achieved as M = i0 + j0, so that bi + sj ≤ 1 ⇒ i ≤ i0 ∨ j ≤ j0. Then
A(L) = n′ + k − i0 − j0 follows. Let k′ = k − j0. If k′ = 0, then we let B′

2 be empty.
Otherwise we let B′

2 be a batch consisting of k′ items each of size sj0+1. Applying König’s
theorem now for L′ = (B1, B

′
2), and noting that bi + sj0+1 ≤ 1 ⇒ i ≤ i0, it follows that

A(L′) ≥ n′ + k′ − i0 = A(L). Moreover, OPT (L′) ≤ OPT (L) is trivial. If strict inequality
OPT (L′) < OPT (L) holds, then we consider L” = (B1, B2”) instead, with B2” obtained
from B′

2 by adding more items of size sj0+1 until OPT (L”) = OPT (L) is satisfied. So we
may assume that all items of B2 have the same size.

For each j = 0, 1, . . . , m let B(j, k) be a batch of k items all of size 1− js, and let L(j, k)
denote the instance (B1, B2) = (B1, B(j, k)) of B′. Then by the above argument, using (A2),
(A3), and the integrality of 1/s, we may assume the following.

8



(A4) L = L(j, k) for some j = 0, 1, . . . , m.

This simplification allows us to directly calculate the values of A(L) and OPT (L). The
value for OPT (L) is easily deduced.

OPT (L) =
{

k if n < jk,
k + dn−jk

t e if n ≥ jk.

So in any case the bound OPT (L) ≥ k + (n− jk)/t follows.
For A(L) the precise value is depending on whether all items from B2 can be accomodated

by the already partially packed bins. For each that cannot, A must open an additional bin.
Thus we have

A(L) =

{ ∑t
i=1 yi if k <

∑j
i=1 yi,∑t

i=j+1 yi + k if k ≥ ∑j
i=1 yi.

Case 1. k <
∑j

i=1 yi.
Then A(L) ≤ bnz/tc+ 1 ≤ nz/t + 1, hence,

A(L)
OPT (L)

≤ nz/t

k + (n− jk)/t
+

1
OPT (L)

=
z

1 + k(t− j)/n
+

1
OPT (L)

≤ z +
1

OPT (L)
,

which concludes this case.

Case 2. k ≥ ∑j
i=1 yi.

It follows in particular that

A(L) ≤ bnwj+1c+ k + 1 =
{ bn(z − 1)/jc+ k + 1 if ` ≤ j ≤ m,
bnz/tc+ k + 1 if 0 ≤ j < `.

We distinguish two subcases.
Case 2.1. j < `.
The choice of ` yields

λm(`) = λm(`− 1)− 1
`− 1

<
t− 1
`− 1

− t

m
− 1,

and therefore
z − 1

z
=

1− `
t

t
m + λm(`)

>
1− `

t
t−1
`−1 − 1

=
`− 1

t
≥ j

t
.

Now we obtain

A(L)
OPT (L)

≤ nz/t + k

k + n/t− jk/t
+

1
OPT (L)

≤ nz/t + k

k + n/t− k(z − 1)/z
+

1
OPT (L)

= z +
1

OPT (L)
,

9



achieving the desired bound.

Case 2.2. j ≥ `.
Then we first observe that

OPT (L) ≥ k +
n− jk

t
= k + (n− jk)

w`

z
≥ k + (n− jk)

wj+1

z
= k + (

n

j
− k)

z − 1
z

.

Hence, with A(L) ≤ bn(z − 1)/jc+ k + 1,

A(L)
OPT (L)

≤ n(z − 1)/j + k

k + (n/j − k)(z − 1)/z
+

1
OPT (L)

= z +
1

OPT (L)
.

This finishes the final case of the proof. ¤

We remark that the assumption of integrality of 1/s, which has been used throughout this
section, can be relaxed at the cost of increasing the upper bound on asymptotic competitive
ratio by a factor of at most 1 + 1/t, where t = b1/sc. This can be seen by considering an
algorithm behaving like A, except that it treats the items from the batch B1 as if they were
all of size 1/t instead of s.

Considering again briefly the general version of 2-BBPP, in which the initial batch may
contain items of different sizes, it seems that the competitive ratio increases as the item sizes
within the initial batch decrease (cf. the table in Section 3). However, if more than one item
size occurs in the initial batch, and all item sizes are small, then it is intuitively reasonable to
attempt to achieve a good competitive ratio by approximating all sizes by a single size, say,
by their average. Thus altogether we feel that we have reasonable support for Conjecture 1.

5 Further Research

The introduction of BBPP raises several natural problems. It would be very interesting to
obtain algorithms for 2-BBPP whose asymptotic competitive ratios are lower than those of
on-line algorithms. This problem can be extended to k-BBPP, BBPP restricted to sequences
with exactly k batches, for fixed k ≥ 2.

It would also be interesting to obtain lower bounds for the asymptotic competitive ratio
of algorithms for k-BBPP for fixed k ≥ 3 and prove (or disprove) the optimality of our lower
bound r.

We believe that batched generalizations of other on-line problems are of definite interest
and deserve investigation.

References

[1] D.J. Brown, A lower bound for on-line one-dimensional bin packing algorithms. Tech.
report R-864, Coordinated Science Laboratory, Urbana, IL, 1979.

[2] B. Chandra, Does randomization help in on-line bin packing? Inform. Process. Lett. 43
(1992) 15-19.

10



[3] E. G. Coffman, Jr., G. Galambos, S. Martello and D. Vigo, Bin Packing Approxima-
tion Algorithms: Combinatorial Analysis. Handbook of Combinatorial OPtimization,
Supplement Volume A, D.-Z. Du and P.M. Pardalos (editors), Kluwer (1999) 151-208.

[4] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation Algorithms for Bin
Packing: A Survey. Approximation Algorithms for NP-Hard Problems, D. Hochbaum
(editor), PWS Publishing, Boston (1996), 46-93.

[5] J. Csirik and G. Woeginger, On-line packing and covering problems. On-line Algorithms
- the State of the Art, Lect. Notes In Comput. Sci. 1442, A. Fiat and G. Woeginger
(editors), Springer, New York (1998), 147-177.

[6] R. Diestel, Graph Theory, 2nd edition, Springer, Berlin, 2000.

[7] U. Faigle, W. Kern and G. Turan, On the performance of on-line algorithms for partition
problems. Acta Cybernetica 9 (1989), 107-119.

[8] G. Galambos and G. J. Woeginger, Repacking Helps in Bounded Space On-line Bin-
Packing. Computing 49 (1993), 329-338.

[9] E. F. Grove, Online bin packing with lookahead. Proc. the Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (1995), 430-436.

[10] G. Gutin, T. Jensen and A. Yeo, Optimal on-line bin packing with two item sizes.
Submitted.

[11] Z. Ivković and E. Lloyd, Partially dynamic bin packing can be solved within 1 + ε in
(amortized) polylogarithmic time. Inform. Proc. Lett. 63 (1997), 45-50.

[12] Z. Ivković and E. Lloyd, Fully Dynamic Algorithms for Bin Packing: Being (Mostly)
Myopic Helps. SIAM J. Comput. 28 (1998), 574-611.

[13] C.C. Lee and D.T. Lee, A simple on-line packing algorithm. J. ACM 32 (1985), 562-572.

[14] F.M. Liang, A lower bound for online bin packing. Inform. Process. Lett. 10 (1980) 76-79.

[15] A. van Vliet, An improved lower bound for online bin packing algorithms. Inform. Pro-
cess. Lett. 43 (1992) 277-284.

[16] A.C.C. Yao, New algorithms for bin packing. J. ACM 27 (1980) 207-227.

[17] G. Zhang, An on-line bin batching problem. Discrete Applied Mathematics 108 (2001)
329–333.

[18] G. Zhang, X. Cai and C.K. Wong, Scheduling two groups of jobs with incomplete infor-
mation. J. System Science and Systems Engineering 12 (2003), 73-81.

11


