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Abstract

We consider edge-coloured multigraphs. A trail in such a multi-
graph is alternating if its successive edges differ in colour. Let G
be a 2-edge-coloured complete graph and let M be a 2-edge-coloured
complete multigraph. M. Bankfalvi and Zs. Bankfalvi [2] obtained
a necessary and sufficient condition for G to have a Hamiltonian al-
ternating cycle. Generalizing this theorem, P. Das and S.B. Rao [7]
characterized those G which contain a closed alternating trail visiting
each vertex v in G exactly f(v) > 0 times. We solve the more general
problem of determining the length of a longest closed alternating trail
Tf visiting each vertex v in M at most f(v) > 0 times. Our result
is a generalization of a theorem by R. Saad [18] that determines the
length of a longest alternating cycle in G. We prove the existence of
a polynomial algorithm for finding the desired trail Tf . In particular,
this provides a solution to a question in [18].
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1 Introduction

A trail in an edge-coloured multigraph is called alternating if its successive
edges differ in colour.
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In applications to genetics (cf. [8, 9]) researchers consider 2-edge-coloured
multigraphs which are unions of two monochromatic graphs. From a theo-
retical point of view there is no good reason to restrict investigation to multi-
graphs without parallel edges when more general results may be available.
Therefore, we shall often deal with 2-edge-coloured multigraphs rather than
2-edge-coloured graphs.

Let G be a 2-edge-coloured complete graph and let M be a 2-edge-
coloured complete multigraph. In 1968, solving a problem by P. Erdős, M.
Bankfalvi and Zs. Bankfalvi [2] obtained a necessary and sufficient condition
for G to have a Hamiltonian alternating cycle. Generalizing this theorem, P.
Das and S.B. Rao [7] characterized those G which contain a closed alternat-
ing trail visiting each vertex v in G exactly f(v) > 0 times. We solve the
more general problem of determining the length of a longest closed alternat-
ing trail Tf visiting each vertex v in M at most f(v) > 0 times. Our result is
a generalization of a theorem by R. Saad [18] that determines the length of a
longest alternating cycle in G. We prove the existence of a polynomial algo-
rithm for finding the desired trail Tf . In particular, this provides a solution
to the following problem in [18]: is there a polynomial (deterministic) algo-
rithm for finding a longest alternating cycle in a 2-edge-coloured complete
graph. The best previous known result is due to R. Saad [18] who proved
the existence of a polynomial random algorithm.

In our proof of the main theorem (Theorem 3.5) we use a very useful con-
nection between directed cycles in bipartite digraphs and alternating cycles
in 2-edge-coloured bipartite graphs first discovered by P. Das [6] (see also
[15]). This connection as well as several other relations between directed and
alternating trails are also discussed in the survey paper [1].

2 Notation and terminology

The terminology is fairly standard, generally following [3] and [5]. All graphs,
multigraphs and digraphs considered are finite and have no loops. When
multigraphs have no parallel edges, we call them graphs, as usual. In this
paper we deal with 2-edge-coloured multigraphs, i.e. multigraphs so that each
edge has colour 1 (red) or 2 (blue) and no two parallel (i.e. joining the same
pair of vertices) edges have the same colour. In the rest of this section, G
will stand for a 2-edge-coloured multigraph.
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The red subgraph (blue subgraph, resp.) of G contains the vertices of G
and all red (blue, resp.) edges of G. A trail is a walk with distinct edges. A
walk with distinct vertices is a path. A closed trail whose origin and internal
vertices are distinct is a cycle. In particular, a pair of parallel edges forms a
cycle (of length two). A cycle, path or trail in G is called alternating if its
successive edges differ in colour. In particular, every cycle of length two in a
2-edge-coloured multigraph is alternating (as parallel edges differ in colour).
A cycle subgraph F of G is a union of alternating cycles in G, all vertex
disjoint. A cycle subgraph F of G is maximum if F has maximum number of
vertices among all cycle subgraphs of G. An alternating path P is called an
(x, y)-path if x and y are the end vertices of P . An alternating cycle in G is
Hamiltonian if it contains all vertices of G. A multigraph G is Hamiltonian
if it has a Hamiltonian alternating cycle.

The colour of an edge e in G will be denoted by χG(e). Let X and Y be
two sets of the vertices of G. Then XY denotes the set of all edges having
one end vertex in X and the other in Y . In case all the edges in XY have
the same colour, say i, we write χG(XY ) = i. Note that we use the notation
χG(XY ) only if all the edges in XY have the same colour.

In order to keep notation on multigraphs as simple as possible, we shall
sometimes denote an edge with end vertices x and y by xy, even if there are
two such edges. In such cases, the complete identification will follow from
the context. We shall use this convention not only for distinct edges but also
for cycles, paths, etc.

The following notion of colour-connectivity was invented by Saad [18] (he
used another name for this notion). A pair of vertices x, y of G is called
colour-connected if there exist alternating (x, y)-paths P = xx′ . . . y′y and
P ′ = xu′ . . . v′y such that χ(xx′) 6= χ(xu′) and χ(y′y) 6= χ(v′y). (Notice that
P and P ′ are paths, not trails.) We define a vertex x to be colour-connected
to itself. We say that G is colour-connected if every pair of vertices of G is
colour-connected.

Clearly, every alternating cycle is a colour-connected graph. This in-
dicates that colour-connectivity may be useful for solving alternating cycle
problems. We can use colour-connectivity more effectively if we know that
this is an equivalence relation on the vertices of G. This leads us to the fol-
lowing definition: a multigraph G is convenient if colour-connectivity is an
equivalence relation on the vertices of G. If G is convenient, an equivalence
class of colour-connectivity is called a colour-connected component of G.
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Unfortunately, there are non-convenient multigraphs. Consider the graph
H on 5 vertices, 1, 2, 3, 4, 5, and 6 edges, 13, 23, 45 of colour 1 and 12, 34, 35
of colour 2. It is easy to check that the vertices 1 and 2 are colour-connected
to 4, but 1 and 2 are not colour-connected in H.

A multigraph G is complete if every two distinct vertices in G are adja-
cent. Let H be a 2-edge-coloured multigraph with vertices v1, ..., vk (k ≥ 2).
A multigraph L is called an extension of H if the vertex set of L can be
partitioned into non-trivial subsets V1, ..., Vk (called partite sets) so that, for
every pair i, j (1 ≤ i < j ≤ k) and every pair x ∈ Vi, y ∈ Vj, the number of
edges between x and y coincides with the number of edges between vi and
vj (in H; there can be none, one or two edges between vi and vj), and if H
has only one edge between vi and vj, then χL(ViVj) = χH(vivj). An extended
2-edge-coloured complete multigraph is an extension of a 2-edge-coloured com-
plete multigraph. We denote the set of all extended 2-edge-coloured complete
multigraphs by ECM.

3 Statement of main results

Let f be a mapping from the vertex set of a 2-edge-coloured complete multi-
graph G into the set of all positive integers. A subgraph H of G is called
an f≥-subgraph of G if d1,H(x) = d2,H(x) ≤ f(x) for every vertex x in G,
where di,H(x) is the number of edges of colour i in H incident with x. A
connected f≥-subgraph H of G is called maximum if H has maximum num-
ber of edges among all connected f≥-subgraphs of G. Clearly, if f(x) = 1
for every x ∈ V (G), then the problem of finding a maximum connected
f≥-subgraph of G coincides with the longest alternating cycle problem. By
Kotzig’s characterization of edge-coloured graphs which contain connected
alternating Eulerian trails (cf. [11, 16]), every connected f≥-subgraph of G
can be viewed as a closed alternating trail in G visiting each vertex x in G
at most f(x) times and vise versa.

In this paper we consider the following problem:

Problem 3.1 Find a maximum connected f≥-subgraph in a 2-edge-coloured
complete multigraph G on n vertices.

Here we may assume that each f(x) ≤ |E(G)|/2, since every value of
f(x) > |E(G)|/2 can be replaced by |E(G)|/2 without changing the solution
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of the problem.
It is easy to check that this problem is equivalent to the problem of

finding a longest alternating cycle in the extension of G with n partite sets
{Vx : x ∈ V (G)} of sizes |Vx| = f(x). Therefore, a solution of Problem 3.1
can be obtained from a solution of the following problem:

Problem 3.2 Find a longest alternating cycle in an extended 2-edge-coloured
complete multigraph.

Since each f(x) ≤ |E(G)|/2, a polynomial algorithm for solving Problem
3.2 can be converted into a polynomial algorithm for Problem 3.1.

It is easier for us to deal with Problem 3.2 than Problem 3.1. Hence, in
the sequel, we shall consider only Problem 3.2.

Obviously, each alternating cycle of a convenient 2-edge-coloured multi-
graph G is contained in a colour-connected component of G. Hence, we
may restrict our attention only to colour-connected multigraphs G ∈ ECM
because of the following two theorems proved in Section 5.

Theorem 3.3 Every multigraph G ∈ ECM is convenient.

Theorem 3.4 Let G be a convenient 2-edge-coloured multigraph G = (V, E).
Then we can check whether G is colour-connected in time O(|V ||E|) and find
the colour-connected components of G in time O(|V |2|E|).

The following result, which is the main result of this paper, generalizes a
characterization of longest alternating cycles in 2-edge-coloured graphs [18]
(see Corollary 3.6). We prove Theorem 3.5 in Section 4.

Theorem 3.5 The length of a longest alternating cycle in a colour-connected
extended 2-edge-coloured complete multigraph G is equal to the number of
vertices in a maximum cycle subgraph of G. Given a maximum cycle subgraph
of a colour-connected G ∈ ECM, a longest alternating cycle in G can be
constructed in time O(n3), where n is the number of vertices in G.

Corollary 3.6 [18] The length of a longest alternating cycle in a colour-
connected 2-edge-coloured complete graph H is equal to the number of vertices
in a maximum cycle subgraph of H.
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The following theorem is proved in Section 5.

Theorem 3.7 One can construct a maximum cycle subgraph in a 2-edge-
coloured multigraph G on n vertices in time O(n3).

Theorems 3.3-3.5 and 3.7 imply the next result which, in particular, solves
the problem mentioned in the introduction.

Theorem 3.8 A longest alternating cycle in a multigraph G ∈ ECM with n
vertices can be constructed in time O(n4).

4 Proof of Theorem 3.5

To prove Theorem 3.5, we shall use the following lemma from [12, 14]. We
have stated the lemma in a more general way here, but it is easy to see from
the proof in [12, 14], that the proof actually covers this case also. Recall that
a digraph D is called strong if, for every pair x, y of distinct vertices in D,
there is a directed path from x to y and a directed path from y to x in D.

Lemma 4.1 [12, 14] Let D be a bipartite digraph obtained by taking two dis-
joint even directed cycles C = u1u2 . . . u2k−1u2ku1 and Z = v1v2 . . . v2r−1v2rv1

and adding an arc between v2i−1 and u2j and between v2i and u2j−1 (in
any direction, possibly one in each direction) for all i = 1, 2, . . . , k and
j = 1, 2, . . . , r. D is Hamiltonian if and only if it is strong. Moreover, if
D is strong, then, given cycles C and Z as above, a Hamiltonian directed
cycle of D can be found in time O(|V (C)||V (Z)|).

In the statements of this section as well as in their proofs, we use the
following notation: G is an extended 2-edge-coloured complete multigraph
with n vertices, Fp = C1 ∪ ... ∪ Cp is a cycle subgraph in G consisting of
p cycles, C1, ..., Cp; for each i = 1, 2, ..., p, Ci = vi

1v
i
2...v

i
2k(i)v

i
1 such that

χ(vi
1v

i
2) = 1, χ(vi

2k(i)v
i
1) = 2, and Xi = {vi

1, v
i
3, ..., v

i
2k(i)−1}, Yi = V (Ci) −

Xi. We write Cj→Ci to denote that χ(XiXi) = χ(XiV (Cj)), χ(YiYi) =
χ(YiV (Cj)) and χ(XiXi) 6= χ(YiYi). We point out that the meaning of
Cj→Ci is that, for any choice of vertices x ∈ V (Cj) and y ∈ V (Ci), there
exist alternating (x, y)-paths P and P ′ such that the colours of the edges
incident with x in P and P ′ are distinct, but for every such choice of paths
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P and P ′, the colours of the edges in P and P ′ incident with y are equal.
Hence, if Cj→Ci, then the multigraph induced by the vertices of these two
cycles is not colour-connected.

In the special case when G is a 2-edge-coloured complete graph, the fol-
lowing two lemmas can be deduced from the results in [2, 4].

Lemma 4.2 Suppose G has a spanning cycle subgraph F2 = C1∪C2. Then,
G is Hamiltonian if and only if neither C1→C2 nor C2→C1. Given a pair C1

and C2 of cycles of G, so that neither C1→C2 nor C2→C1, a Hamiltonian
alternating cycle of G can be found in time O(|V (C1)||V (C2)|).

Proof: It is easy to see that if either C1→C2 or C2→C1, then G is not
colour-connected. Hence, G is not Hamiltonian.

Assume that neither C1→C2 nor C2→C1, but G is not Hamiltonian.
First observe that there is a complete connection between the vertices

of C1 and C2, because if there is a pair of nonadjacent vertices, say v1
i

and v2
j , then one of the following two Hamiltonian cycles is alternating:

v1
i v

2
j+1v

2
j+2 . . . v2

j P , where P = v1
i+1v

1
i+2 . . . v1

i or v1
i−1v

1
i−2 . . . v1

i .
Consider the bipartite digraph T with partite sets V1 = X1 ∪ X2 and

V2 = Y1 ∪ Y2 obtained from G in the following way: delete all edges between
vertices both on C1 or on C2 except those edges that are on the cycles and
delete all edges between vertices both in the same partite set. Now make
the following orientations of the edges in the resulting bipartite multigraph.
For i = 1, 2 and any pair v1 ∈ V1, v2 ∈ V2, if there is an edge e between v1

and v2, then delete the colour of the edge e and orient it as the arc (vi, v3−i)
iff χ(e) = i. Obviously, T has a spanning cycle subgraph consisting of two
directed cycles Z1, Z2 which are orientations of the cycles C1, C2, respectively.
Similarly we see that every directed cycle in T corresponds to an alternating
cycle in G. Thus, since G is not Hamiltonian, T is not Hamiltonian either.
By Lemma 4.1, this means that T is not strong, i.e. all arcs between Z1 and
Z2 have the same orientation. W.l.o.g, we may assume that all these arcs
are oriented from Z1 to Z2. Then, by the definition of T , we obtain that
χ(X1Y2) = 1, χ(Y1X2) = 2.

Consider next the bipartite digraph T ′ with partite sets V ′
1 = X1 ∪ Y2

and V ′
2 = Y1 ∪ X2. The rest of the definition of T ′ coincides with that of

T . T ′ also contains a spanning cycle subgraph consisting of orientations of
C1 and C2. Since G is not Hamiltonian, T ′ is not Hamiltonian either. By

7



Lemma 4.1, this means that T ′ is not strongly connected. This leads us to
the conclusion that either χ(X1X2) = 1 and χ(Y1Y2) = 2 or χ(X1X2) =
2 and χ(Y1Y2) = 1. The first possibility together with the conclusion of
the previous paragraph implies χ(X1V (C2)) = 1 χ(Y1V (C2)) = 2. The
second gives χ(X2V (C1)) = 2, χ(Y2V (C1)) = 1. W.l.o.g, we may assume
that χ(X1V (C2)) = 1 χ(Y1V (C2)) = 2.

Suppose that, for some i 6= j, there exists an edge v1
2i+1v

1
2j+1 of colour 2.

Then G has the Hamiltonian alternating cycle

v2
1v

1
2jv

1
2j−1 . . . v1

2i+1v
1
2j+1 . . . v1

2k(1)v
1
1 . . . v1

2iv
2
2k(2) . . . v2

1.

Hence, χ(X1X1) = 1. Analogously, χ(Y1Y1) = 2. Now C2 → C1 and we have
obtained a contradiction.

The complexity bound follows from that of Lemma 4.1. 2

A cycle subgraph R of G is called irreducible if there is no other cycle
subgraph Q in G so that V (R) = V (Q) and Q has fewer cycles than R.

Theorem 4.3 Let G have a spanning cycle subgraph F consisting of p ≥ 2
cycles. F is an irreducible spanning cycle subgraph of G if and only if we
can label the cycles in F as C1, . . . , Cp, such that, with the notation intro-
duced above, for every 1 ≤ i < j ≤ p, χ(XjV (Ci)) = 1, χ(YjV (Ci)) =
2, χ(XjXj) = 1, χ(YjYj) = 2. An irreducible spanning cycle subgraph of G (if
any) can be found in time O(n2.5).

Proof: If the edges have the structure described above, then each of the
cycles in F form a colour-connected component and F is clearly irreducible.
To prove the other direction we let F be a irreducible spanning cycle subgraph
of G and let p ≥ 2 be the number of cycles in F .

By Lemma 4.2, no two cycles in F induce a colour-connected subgraph.
Thus, for all 1 ≤ i < j ≤ p, either Ci→Cj or Cj→Ci. Therefore, the digraph
with vertex set {C1, ..., Cp} and arc set {(Ci, Cj) : Ci→Cj; 1 ≤ i 6= j ≤ p}
is a tournament. So, if there exist cycles C ′

1, C
′
2, . . . , C

′
k from F such that

C ′
1→C ′

2→ . . .→C ′
k→C ′

1, then there also exists such a collection for k = 3 and
the reader can easily find an alternating cycle covering precisely the vertices
of those cycles, contradicting the irreducibility of F . Hence we can assume
that there is no such cycle. Thus there is a unique way to label the cycles in F
as C1, C2, . . . , Cp, so that Ci→Cj if and only if i < j. If there are three cycles
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Ci, Cj and Ck from F such that Ci→Cj, Ck and Cj→Ck, but χ(XkV (Ci)) 6=
χ(XkV (Cj)), then we can easily find an alternating cycle covering precisely
the vertices of Ci, Cj and Ck, contradicting the irreducibility of F . Hence we
may assume that for all 1 ≤ i < j ≤ p, χ(XjV (Ci)) = 1 and χ(YjV (Ci)) = 2.
The fact that χ(XjXj) = 1, χ(YjYj) = 2 follows from the proof of Lemma
4.1.

Using the proof of Lemma 4.2, the proof above can be converted into an
O(n2)-algorithm similar to that in [13], p. 12. Now the complexity bound
of the lemma follows from a simple fact that one can find a spanning cycle
subgraph (if any) in a 2-edge-coloured multigraph L in time O(|V (L)|2.5).
Indeed, find maximum matchings in the red and blue subgraphs of L. Ob-
viously, L has a spanning cycle subgraph iff both subgraphs have perfect
matchings. The complexity bound follows from that of the algorithm for
finding a maximum matching in a general graph described in [10]. 2

Now we are ready to give a proof of Theorem 3.5.
We will make use of the following simple lemma whose easy proof is left

to the reader. We only point out that, under the conditions of Lemma 4.4,
x1 is adjacent to each vertex of C since χ(x1V (C)) = i.

Lemma 4.4 Let P = x1x2 . . . xk be an alternating path and C an alternating
cycle disjoint from P in G. Suppose χ(x1V (C)) = i 6= χ(x1x2) where i = 1
or i = 2 and that G contains an edge xkz, where z ∈ V (C) and χ(xk−1xk) 6=
χ(xkz). If χ(xkz) = i, then G contains a cycle C ′ with V (C ′) = V (P )∪V (C).
Otherwise G has a cycle C ′′ with V (C ′′) = V (P )∪V (C)−w, where w is the
neighbour of z on C for which χ(wz) = 3− i. 2

The following proof is shorter and simpler than the original proof of Corol-
lary 3.6 in [18] since we show that there is always a ’suitable’ alternating path
from Cp to the rest of cycles in F (see the proof below).

Proof of Theorem 3.5: Let F = C1 ∪ ...∪Cp be a cycle subgraph of G
and let F ′ = C1 ∪ ... ∪ Cp−1. If p = 1, we are done. So, assume that p ≥ 2.
We shall show by induction on p that G has a cycle C∗ covering at least the
same number of vertices as F . By Theorem 4.3, we may assume, using the
(obvious) induction hypothesis, that, for all 1 ≤ i < j ≤ p,

χ(XjV (Ci)) = 1, χ(YjV (Ci)) = 2, χ(XjXj) = 1, χ(YjYj) = 2. (1)

9



Note that, in particular, this implies that there is no pair of cycles
C ′, C ′′ ∈ F so that there is a pair of nonadjacent vertices x ∈ C ′ and y ∈ C ′′.

Since G is colour-connected there is an alternating (x, y)-path R of min-
imum length such that x ∈ V (Cp), {y} = V (R) ∩ V (F ′) and χ(xx′) 6=
χ(xV (F ′)), where x′ is the successor of x in R. We prove that (V (R) −
{x, y}) ∩ V (F) = ∅. Assume this is not so, that is R contains at least two
vertices from Cp. Consider a vertex z in (V (R) ∩ V (Cp)) − x. Let z′ be
the successor of z in R. Clearly, χ(zz′) = χ(zV (F ′)) since the (z, y)-part
of R is shorter than R. On the other hand, by (1) x′ is not in Cp and by
the minimality of R, χ(x′V (F ′)) = χ(xx′). Then, the alternating path Qv,
where Q is the reverse of the (x′, z)-part of R and v is a vertex in Cp−1, is
shorter than R; a contradiction.

Now consider an alternating (x, y)-path R with the properties above in-
cluding (V (R) − {x, y}) ∩ V (F) = ∅. We may assume w.l.o.g. that x = vp

1

and χ(xV (F ′)) = χ(vp
2v

p
1). Let y ∈ V (Ct). Apply Lemma 4.4 to the path

vp
2k(p)v

p
2k(p)−1 . . . vp

2R
′, where R′ is the path R without y, and the cycle Ct. We

get a new cycle C ′, with V (C ′) ⊂ V (R) ∪ V (Ct) ∪ V (Cp), covering at least
as many vertices as Ct and Cp together, so by replacing Ct and Cp by C ′ in
F , we obtain a new cycle subgraph with fewer cycles which cover at least as
many vertices as F and the existence of C∗ follows by induction.

The proof above can be converted into an O(n3)-algorithm for finding
a longest cycle in G, provided we are given a maximum cycle subgraph as
input. The complexity bound of the theorem follows from this bound along
with that of Theorem 3.7. 2

5 Proofs of Theorems 3.3, 3.4 and 3.7

Proof of Theorem 3.7: Suppose that G is a 2-edge-coloured multigraph
with n vertices. Form a weighted graph H = H(G) as follows: V (H) =
{x1, x2 : x ∈ V } and, for every x ∈ V , x1x2 is an edge of H and its weight
is 2. Moreover, xiyi is an edge of H of weight 1 iff G has an edge of colour
i with endvertices x and y. Let F be a minimum weight perfect matching
of H and let F1 be the set of all edges of F of weight 1. It is easy to see
that F1 corresponds to a maximum cycle subgraph T of G. Since a minimum
weight perfect matching in a weighted graph on n vertices can be found in
time O(n3) (cf. [17], Ch. 11), we can construct T in time O(n3). 2
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It is easy to see that Theorem 3.4 follows from Proposition 5.1.
For a graph G and its matching M , a path P in G is augmenting with

respect to M if, for any pair of adjacent edges in P , exactly one of them
belongs to M , and the first and last edges of P do not belong to M .

Proposition 5.1 Let G = (V,E) be a connected 2-edge-coloured multigraph
and let x and y be distinct vertices of G. For each choice of i, j ∈ {1, 2} we
can find an alternating path P = x1x2 . . . xk with x1 = x, xk = y, χ(x1x2) = i
and χ(xk−1xk) = j in time O(|E|) (if one exists).

Proof: Let W = V −{x, y} and create an uncoloured graph Gxy,ij in the
following way: V (Gxy,ij) = {x, y} ∪W 1 ∪W 2, where W r = {zr|z ∈ W} for
r = 1, 2, E(Gxy,ij) = {xzi|z ∈ Wand χ(xz) = i} ∪ {zjy|z ∈ Wand χ(zy) =
j} ∪ {ukvk|u, v ∈ Wand χ(uv) = k} ∪ {z1z2|z ∈ W}.

The reader can easily verify that G has the desired path if and only if
there exists an augmenting path in Gxy with respect to the matching M =
{z1z2|z ∈ W}. The latter can be checked, and a path constructed if one
exists, in time O(|E|) [19, page 122]. From any augmenting path P in Gxy

we can obtain the desired path in G, simply by contracting those edges of M
which are on P . 2

The rest of this section is a proof of Theorem 3.3.
Saad [18] proved that 2-edge-coloured complete graphs are convenient.

Below we expand this result to extended 2-edge-coloured complete multi-
graphs. It is worth noting that our proof can be adopted to provide a con-
siderably shorter proof of Saad’s result above.

Let P = {H1, ..., Hp} be a set of subgraphs of a multigraph G. The
intersection graph, Ω(P), of P has the vertex set P and the edge set {HiHj :
V (Hi) ∩ V (Hj) 6= ∅, 1 ≤ i < j ≤ p}. A pair, x, y, of vertices in a 2-edge-
coloured multigraph H is called cyclic connected if H has a collection of
alternating cycles P = {C1, ..., Cp} such that x and y belong to some cycles
in P and Ω(P) is a connected graph.

The following lemma can be easily proved using only the definition of
colour-connectivity. Lemma 5.2 provides a slightly simpler way of checking
colour-connectivity.

Lemma 5.2 A pair of vertices, x1, x2, in a 2-edge-coloured multigraph G is
colour-connected if and only if G has four (x1, x2)-paths, P j

i = x1v
j
i ...u

j
ix2

(i = 1, 2; j = 1, 2), such that χ(x1v
j
1) = χ(uj

2x2) = j for j = 1, 2.
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The following lemma shows that cyclic connectivity implies colour-connectivity,
even for general multigraphs.

Lemma 5.3 If a pair, x, y, of vertices in a 2-edge-coloured multigraph G is
cyclic connected, then x and y are colour-connected.

Proof: If x and y belong to a common alternating cycle, then they are
colour-connected. So, suppose that this is not the case.

Since x and y are cyclic connected, there is a collection P = {C1, ..., Cp}
of alternating cycles in G so that x ∈ V (C1), y ∈ V (Cp), and, for every
i = 1, 2, ..., p − 1 and every j = 1, 2, ..., p, |i − j| > 1, V (Ci) ∩ V (Ci+1) 6= ∅,
V (Ci) ∩ V (Cj) = ∅. (P corresponds to a shortest (C1, Cp)-path in Ω(R),
where R is the set of all alternating cycles in G.) We traverse P as follows:
We start at the red (blue, resp.) edge of C1 incident with x (from x) and
go along C1 to the first vertex u that belongs to both C1 and C2. After
meeting u, we go along C2 such that the path that we are forming will stay
alternating. We repeat the procedure above when we meet the first vertex
that belongs to both C2 and C3 and so on. Clearly, we shall eventually reach
y. It follows that there is an (x, y)-path that starts from a red (blue, resp.)
edge. By symmetry, we can construct an (x, y)-path that ends at a red (blue,
resp.) edge. Hence x and y are colour-connected by Lemma 5.2. 2

We formulate the following trivial but useful observation as a lemma.
This observation shows that the notion of cyclic connectivity, in general, has
some better properties than colour-connectivity. However, we use colour-
connectivity in our treatment of Problem 3.2, since we do not know how to
check whether a 2-edge-coloured multigraph is cyclic connected in polynomial
time.

Lemma 5.4 Cyclic connectivity is an equivalence relation on the vertices of
a 2-edge-coloured multigraph.

In the rest of this section, H denotes an extended 2-edge-coloured com-
plete multigraph.

Lemma 5.5 Let x and y be vertices in H and let i, j ∈ {1, 2}. If every
alternating (x, y)-path that starts at an edge of colour i and ends at an edge
of colour j has at least 5 vertices, then x and y are cyclic connected.
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Proof: Let P = x1x2...xk be a shortest alternating (x, y)-path (x1 = x, xk =
y ) so that χ(x1x2) = i, χ(xk−1xk) = j, k ≥ 5. W.l.o.g, we may assume that
i = 1.

Case 1: i = j = 1. If x and y are adjacent, then χ(xy) = 2 and x, y
belong to a common alternating cycle. Hence, we may assume that x and y
are from the same partite set. If there is an edge e1 between x1 and x4 in
H, then χ(e1) = 2 since P is shortest. Analogously, if there is an edge e2

between x3 and xk in H, then χ(e2) = 2. Hence, if both e1 and e2 are in
H, x1x2x3x4x1 and x3x4...xkx3 are alternating cycles, i.e. x and y are cyclic
connected. W.l.o.g, we may assume that e1 is not in H. Since x and y are
in the same partite set of H, e2 ∈ A(H). Then, x3x4...xkx3 is an alternating
cycle. Since x1 and x4 belong to the same partite set, we can replace x4 in
the last cycle by x1. Therefore, x, y belong to a common alternating cycle.

Case 2: i = 1, j = 2. If there is an edge e1 between x1 and xk−1 in H,
then χ(e1) = 2 since P is shortest. By the same reasoning, if there is an edge
e2 between x2 and xk in H, then χ(e2) = 1. Hence, if H contains both e1 and
e2, then x and y belong to two intersecting alternating cycles. Suppose that
only one of e1 and e2, say e1, is in H. Then x2 and xk are in the same partite
set of H. Therefore, x1xkx3x4...xk−1x1 is an alternating cycle. If H contains
none of the edges e1 and e2, then x1 and xk−1 (x2 and xk, resp.) belong to
the same partite set of H. This implies the existence of the following three
alternating cycles: x1x2x1, xk−1xkxk−1 and x2xk−1x2. Hence, x and y are
cyclic connected. 2

Lemma 5.6 Let x and y be vertices in H. If x and y are colour-connected,
then they are cyclic connected.

Proof: Since x and y are colour-connected, there is a pair of alternating
(x, y)-paths P and Q so that P (resp. Q) starts at an edge of colour i (3− i,
resp.) and ends at an edge of colour j (3 − j, resp.) We may assume that
|V (P )| ≥ |V (Q)| and |V (P )| is minimum possible. If |V (P )| ≥ 5, we are
done by Lemma 5.5. Suppose that |V (P )| ≤ 4 and i = j. If x and y are
not in the same alternating cycle, then x and y are in the same partite set
and |V (Q)| = 4. A simple analysis of the remaining case shows that x and
y are cyclic connected. If |V (P )| ≤ 4 and i 6= j, then 3 ≥ |V (P )| ≥ |V (Q)|.
Clearly, x and y are cyclic connected. 2

Lemmas 5.3,5.4 and 5.6 imply immediately Theorem 3.3.
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