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Abstract

We consider edge-coloured complete graphs. A path or cycle Q is called
properly coloured (PC) if any two adjacent edges of Q differ in colour. Our
note is inspired by the following conjecture by B. Bollobás and P. Erdős (1976)
: if G is an edge-coloured complete graph on n vertices in which the maximum
monochromatic degree of every vertex is less than bn/2c, then G contains a
PC Hamiltonian cycle. We prove that if an edge-coloured complete graph
contains a PC 2-factor then it has a PC Hamiltonian path. R. Häggkvist
(1996) announced that every edge-coloured complete graph satisfying Bol-
lobás-Erdős condition contains a PC 2-factor. These two results imply that
every edge-coloured complete graph satisfying Bollobás-Erdős condition has
a PC Hamiltonian path.

1 Introduction

Properly coloured Hamiltonian paths and cycles in edge-coloured graphs have ap-
plications in genetics (cf. [7, 8, 9]) and social sciences (cf. [6]) besides a number of
applications in graph theory and algorithms. A path or cycle Q is called properly
coloured (abbreviated to PC) if any two adjacent edges of Q differ in colour.

In our note, we consider edge-coloured complete graphs. We use the notation Kc
n

to denote a complete graph on n vertices, each edge of which is coloured by a colour
from the set {1, 2, . . . , c}. Our note is inspired by the following conjecture due to B.
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Bollobás and P. Erdős [4]: if ∆(Kc
n) < bn/2c then Kc

n contains a PC Hamiltonian
cycle. Here ∆(Kc

n) is the maximum number of edges of the same colour adjacent to
a vertex of Kc

n.

B. Bollobás and P. Erdős [4] managed to prove that ∆(Kc
n) < n/69 implies the

existence of a properly coloured Hamiltonian cycle in Kc
n. This result was improved

by C.C. Chen and D.E. Daykin [5] to ∆(Kc
n) < n/17 and by J. Shearer [11] to

∆(Kc
n) < n/7. Recently, N. Alon and G. Gutin [1] proved that for every ε > 0 there

exists an n0(ε) so that for each n > n0(ε), Kc
n satisfying ∆(Kc

n) ≤ (1− 1√
2
− ε)n has

a PC Hamiltonian cycle.

In our note the following result is shown:

Theorem 1.1 If Kc
n contains a properly coloured 2-factor, then it has a properly

coloured Hamiltonian path.

Another sufficient condition for Kc
n to contain a PC Hamiltonian path was found

by O. Barr [3]: every Kc
n without monochromatic triangles has a PC Hamiltonian

path. The following necessary and sufficient conditions for the existence of a PC
Hamiltonian path in Kc

n were conjectured in the survey paper [2].

Conjecture 1.2 A Kc
n has a PC Hamiltonian path if and only if Kc

n contains a
collection F consisting of a PC path P and a number of cycles C1, ..., Ct (t ≥ 0), each
PC, such that the members of F are pairwise vertex disjoint and V (P∪C1∪...∪Ct) =
V (Kc

n).

Theorem 1.1 provides some support to the conjecture. In [2], the conjecture was
verified for the case of two colours (c = 2). The proof in [2] is indirect and uses the
corresponding result on Hamiltonian directed paths in bipartite tournaments. For
the sake of completeness, we give a short direct proof of the case c = 2 of Conjecture
1.2 in the next section.

R. Häggkvist [10] announced a non-trivial proof of the fact that every edge-
coloured complete graph satisfying Bollobás-Erdős condition contains a PC 2-factor.
Theorem 1.1 and Häggkvist’s result imply that every edge-coloured complete graph
satisfying Bollobás-Erdős condition has a PC Hamiltonian path.

For a set of vertices W of Kc
n and a vertex x not in W , we denote by xW the

set of edges between x and W , i.e. xW = {xy : y ∈ W}; if all the edges of xW are
of the same colour k, then χ(xW ) denotes the colour k.
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2 Proofs

Proof of Theorem 1.1:

Let C1, C2, ..., Ct be the cycles of a PC 2-factor F in Kc
n. Let F be chosen so

that, among all PC 2-factors of Kc
n, the number of cycles t is minimum. We say that

Ci dominates Cj (i 6= j) if, for every edge xy of Ci, there exists an edge between x
and Cj and an edge between y and Cj whose colours differ from the colour of xy.
Construct a digraph D as follows. The vertices of D are 1, 2, ..., t and an arc (i, j)
is in D (1 ≤ i 6= j ≤ t) if and only if Ci dominates Cj.

First we show that D is semicomplete, i.e. every pair of vertices of D are adjacent.
Suppose this is not so, i.e. there exist vertices i and j which are not adjacent. This
means that neither Ci dominates Cj nor Cj dominates Ci. Thus Ci has an edge xy
such that χ(xV (Cj)) = χ(xy) and Cj has an edge uv such that χ(uV (Ci)) = χ(uv).
It follows that χ(xy) = χ(xu) = χ(uv) = χ(xv) = χ(uy). Therefore, we can merge
the two cycles to obtain a new properly coloured one as follows: delete xy and uv,
and append xv and yu. However, this is a contradiction to t being minimum. Thus,
D is indeed semicomplete.

Since D is semicomplete, it follows from the well-known Redei theorem that D
has a Hamiltonian directed path: (i1, i2, ..., it). Without loss of generality we may
assume that ik = k for every k = 1, 2, ..., t. In other words, Ci dominates Ci+1 for
every 1 ≤ i ≤ t− 1.

Let Ci = zi
1z

i
2...z

i
mi

zi
1 (i = 1, 2, ..., t). As C1 dominates C2, without loss of

generality, we may assume the labelings of the vertices in C1 and C2 are such that
χ(z1

m1
z1
1) 6= χ(z1

1z
2
2). Since the edges z2

1z
2
2 and z2

2z
2
3 have different colours, without

loss of generality we may assume that χ(z2
2z

2
3) 6= χ(z1

1z
2
2). Analogously, for every

i = 1, 2, ..., t− 1, we may assume that χ(zi
mi

zi
1) 6= χ(zi

1z
i+1
2 ) 6= χ(zi+1

2 zi+1
3 ). Now we

obtain the following PC Hamiltonian path:

z1
2z

1
3 ...z

1
m1

z1
1z

2
2z

2
3 ...z

2
m2

z2
1 ...z

t
2z

t
3...z

t
mt

zt
1.
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Proof of Conjecture 1.2 for the case c = 2:

It is easy to see that to prove our claim it suffices to show that if K2
n has a PC

path P and a PC cycle C such that V (P )∩V (C) = ∅ and V (P ∪C) = V (K2
n), then

K2
n contains a PC Hamiltonian path.

Assume that K2
n has no PC Hamiltonian path.
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Let P = x1x2...xk and C = y1y2...ymy1. If there exists i ∈ {1, 2, ..., m} such that
χ(x1x2) 6= χ(x1yi), then at least one of the following two Hamiltonian paths is prop-
erly coloured: yi+1yi+2...ymy1...yix1x2...xk; yi−1yi−2...y1ymym−1...yix1...xk. Thus, we
conclude that χ(x1x2) = χ(x1V (C)). Analogously, we can prove that χ(xkV (C)) =
χ(xk−1xk).

Suppose that we have proved that χ(xj−1xj) = χ(xj−1V (C)) for some j ∈
{2, ..., k − 1}. Then χ(xjxj+1) = χ(xjV (C)) holds. Indeed, assume that there is
i ∈ {1, ..., k} such that χ(xjxj+1) 6= χ(xjyi). As c = 2, we may assume without
loss of generality that χ(xj−1xj) = χ(yi−1yi) = 1. Again, since c = 2, we obtain
that χ(xjyi) = χ(xj−1yi−1) = 1. Thus, x1...xj−1yi−1yi−2...y1ym...yixjxj+1...xk is a
PC Hamiltonian path in K2

n; a contradiction.

Now, by induction, we conclude that χ(xk−1xk) = χ(xk−1V (C)). Recall that
χ(xkV (C)) = χ(xk−1xk). Without loss of generality, assume that χ(y1y2) = χ(xk−1xk).
Hence, xky2y3...ymy1xk−1xk−2...x1 is a PC Hamiltonian path in K2

n; a contradiction.
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