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Abstract

It is shown that for every ε > 0 and n > n0(ε), any complete graph K on n vertices whose
edges are colored so that no vertex is incident with more than (1 − 1√

2
− ε)n edges of the same

color, contains a Hamilton cycle in which adjacent edges have distinct colors. Moreover, for every
k between 3 and n any such K contains a cycle of length k in which adjacent edges have distinct
colors.

1 Introduction

Let Gc denote a graph G whose edges are colored in an arbitrary way. In particular, Kc
n denotes

an edge-colored complete graph on n vertices and Kc
m,m denotes an edge-colored complete bipartite

graph with equal partite sets of cardinality m each. For an edge-colored graph Gc, let ∆(Gc) denote
the maximum number of edges of the same color incident with a vertex of Gc. A properly colored
cycle in Gc, that is, a cycle in which adjacent edges have distinct colors is called an alternating cycle.
In particular, an alternating Hamilton cycle is a properly colored Hamilton cycle in Gc. Bollobás
and Erdős [6] proved that if ∆(Kc

n) < n/69 then Kc
n contains an alternating Hamilton cycle. This

was improved by Chen and Daykin [8] and Shearer [10] who proved that the same conclusion holds
under the weaker assumptions ∆(Kc

n) ≤ n/17 and ∆(Kc
n) < n/7, respectively. The authors of [6]

conjectured that in fact it is enough to assume that ∆(Kc
n) < bn/2c which, if true, would be best

possible. In this note we prove the following theorem, which improves the estimate of [10], but still
falls short of establishing the above mentioned conjecture.

Theorem 1.1 For every ε > 0 there exists an n0 = n0(ε) so that for every n > n0, every Kc
n

satisfying

∆(Kc
n) ≤ (1− 1√

2
− ε)n ( = (0.2928...− ε)n ) (1)
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contains an alternating Hamilton cycle.

Our proof combines probabilistic arguments with some of the known results on directed Hamilton
cycles in digraphs. The basic idea for an even n = 2m is the following (the proof for the odd case
is similar). Given a Kc

n satisfying (1), split the set of vertices randomly into two disjoint subsets A

and B of cardinality m each, and let aibi, (1 ≤ i ≤ m) be a random matching between the members
of A and those of B. Construct a digraph D = (V, E) on the set V = {v1, v2, . . . , vm} by letting vivj

be a directed edge (for i 6= j) iff the color of aibj in Kc
n differs from that of aibi and that of ajbj .

By applying some large deviation inequalities we show that for large m, with high probability every
indegree and every outdegree of D exceeds m/2, implying, by a known result of Nash-Williams, that
D contains a directed Hamilton cycle. This yields an alternating Hamilton cycle that contains all
matching edges aibi in Kc

n. The detailed proof appears in the next section. The final section contains
some related remarks and extensions to cycles of other lengths.

For additional information on properly colored paths and cycles we refer the reader to the survey
paper [3].

2 The Proof

In this section we prove Theorem 1.1. For simplicity we assume first that n = 2m is even, and remark
at the end of the section how to modify the argument for the case of odd n. Fix a positive ε, and
let K = Kc

n be an edge colored complete graph on n = 2m vertices satisfying (1). We first prove the
following simple lemma (similar results are proved in various places, see, e.g., [1]).

Lemma 2.1 For all sufficiently large m, K contains a spanning edge colored complete bipartite graph
Kc

m,m satisfying

∆(Kc
m,m) ≤ (1− 1√

2
− ε

2
)m. (2)

Proof. Let uivi, (1 ≤ i ≤ m) be an arbitrary perfect matching in K and choose a random partition
of the set of vertices of K into two disjoint subsets A and B of cardinality m each by choosing, for
each i, 1 ≤ i ≤ m, randomly and independently, one element of the set {ui, vi} to be a member of
A and the other to be a member of B. Fix a vertex w of K and a color, say red, that appears in
the edge-coloring of K. The number of neighbors a of w in A so that the edge wa is red can be
written as a sum of m independent indicator random variables x1, . . . , xm, where xi is the number
of red neighbors of w in A among ui, vi. Thus each xi is either 1 with probability one (in case both
edges wui, wvi are red) or 0 with probability 1 (in case none of the edges wui, wvi is red) or 1 with
probability 1/2 (in case exactly one of these two edges is red). It follows that if the total number of
red edges incident with w is r then the probability that w has more than (r + s)/2 red neighbors in
A is equal to the probability that more than (q + s)/2 flips among q independent flips of a fair coin
give ”heads”, where q is the number of nonconstant indicator random variables among the xi’s. This
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can be bounded by the well known inequality of Chernoff (cf., e.g., [2], Theorem A.4, page 235) by
e−2s2/q < e−2s2/m. Since the same argument applies to the number of red neighbors of w in B, and
since there are less than 8m3 choices for a vertex w, a color in the given coloring of K and a partite
set (A or B), we conclude that the probability that there exists a vertex with more than

(1− 1√
2
− ε

2
)m

neighbors of the same color in either A or B is at most

8m3e−2ε2m,

which is (much) smaller than 1 for all sufficiently large m. Therefore, there exists a choice for A and
B so that the above does not occur, completing the proof. 2

The next lemma is proved by applying a large deviation result for martingales.

Lemma 2.2 Let U be a subset of M = {1, 2, . . . , m− 1} and suppose that for each u ∈ U there is a
subset Su ⊂ M , where |Su| ≤ r for all u. Let f : U 7→ M be a random one-to-one mapping of U into
M , chosen uniformly among all one-to-one mappings of U into M , and define:

B(f) = |{u ∈ U : f(u) ∈ Su}|.

Then the expectation of B(f) is given by

E = E(B(f)) =
∑

u∈U

|S(u)|
m− 1

( ≤ |U |r
m− 1

, )

and the probability that B(f) is larger satisfies the following inequality. For every λ > 0

Prob[B(f)− E > 4λ
√

m− 1] < e−λ2
.

Proof. For each fixed u ∈ U , the probability that f(u) ∈ Su is precisely |S(u)|/(m − 1), and the
claimed expression for the expectation of B(f) thus follows from linearity of expectation. To prove
the second assertion in the lemma we apply a martingale inequality of Azuma (cf., e.g., [2], Chapter
7). Let u1, u2, . . . , ul be all elements of U (|U | = l ≤ m− 1). Define a martingale X0, X1, . . . , Xl by
setting

Xi(g) = E[B(f) : f(uj) = g(uj) for all j ≤ i].

Therefore X0 is a constant and equals the expectation E of B(f), whereas Xl is B(f) itself. Moreover,
if f, f ′ : U 7→ M differ only on k members of U then |B(f) − B(f ′)| ≤ k. Therefore, using the
technique in [9], pp. 33-35 or in [2], pp. 89-92 one can prove that for each i, 0 ≤ i ≤ l − 1,
|Xi+1(g)−Xi(g)| ≤ 2. Here are the details. Consider, first, two one-to-one functions g, g′ : U 7→ M

that agree on {1, 2, . . . , i} but may differ on i + 1. For each one-to-one f : U 7→ M that agrees
with g on {1, 2, . . . , i + 1}, define a function f ′ : U 7→ M as follows. f ′(uj) = g′(uj) for j ≤ i + 1.
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If g′(ui+1) 6∈ f(U) then f ′(uj) = f(uj) for all j > i + 1. Otherwise, suppose f(ui∗) = g′(ui+1).
In this case, define f ′(ui∗) = g(ui+1) and f ′(uj) = f(uj) for all j > i + 1, j 6= i∗. Note that
|B(f)−B(f ′)| ≤ 2, as f and f ′ differ on at most two points. Moreover, the correspondence between
f and f ′ is a bijection between all possible one-to-one extensions of g and those of g′. Therefore
|Xi+1(g) −Xi+1(g′)| ≤ 2, and as Xi(g) is a weighted average of quantities of the form Xi+1(g′) for
functions g′ as above, it follows that Xi(g) cannnot differ from any of those by more than 2, and
hence |Xi(g)−Xi+1(g)| ≤ 2, as claimed.
This, together with the Azuma Inequality and the method in the above references supplies the desired
estimate for the probability that B(f) exceeds E + 4λ

√
m− 1. 2

Corollary 2.3 Let Kc
m,m be an edge colored complete bipartite graph on the partite sets A and B,

and suppose that (2) holds. Then, for all sufficiently large m, there exists a perfect matching aibi,
1 ≤ i ≤ m, in Kc

m,m so that the following two conditions hold.
(i) For every i the number d+(i) of edges aibj between ai and B whose colors differ from those of
aibi and of ajbj is at least m/2 + 1.
(ii) For every j the number d−(j) of edges aibj between bj and A whose colors differ from those of
aibi and of ajbj is at least m/2 + 1.

Proof. Let aibi, 1 ≤ i ≤ m, be a random perfect matching between A and B, chosen among all
possible matchings with uniform probability. Put r = ∆(Kc

m,m) and notice that by (2)

r ≤ (1− 1√
2
− ε

2
)m.

Fix an i, say i = m, and let us estimate the probability that the condition (i) fails for i. Suppose
the edge ambm has already been chosen for our random matching, and the rest of the matching still
has to be chosen randomly. There are at most r edges amb, (b ∈ B) having the same color as ambm.
Let U be the set of all the remaining elements B. Then |U | ≥ m− r. For each u ∈ U , let Su denote
the set of all elements a ∈ A− am so that the color of the edge au is equal to that of the edge amu.
The random matching restricted to U is simply a random one-to-one function f from U to A− am.
Moreover, the edge amu will not be counted among the edges incident with am and having colors
that differ from those of ambm and of the edge matched to u if and only if the edge matched to u will
lie in Su. It follows that the random variable counting the number of such edges of the form amu

behaves precisely like the random variable B(f) in Lemma 2.2. By choosing say, λ =
√

log(4m) we
conclude that the probability that B(f) exceeds |U |r/(m− 1) + 4λ

√
m− 1 is smaller than 1/(4m).

Therefore, with probability at least 1− 1
4m

d+(m) ≥ |U | − |U |r/(m− 1)− 4
√

m
√

log(4m) ≥ (m− r)(m− r − 1)
m− 1

− 4
√

m
√

log(4m) > m/2 + 1,

for all sufficiently large m, (using the fact that r ≤ (1− 1√
2
− ε

2)m.)
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Since there are m choices for the vertex ai (and similarly m choices for the vertex bj for which the
computation is similar) we conclude that with probability at least a half d+(i) > m/2 + 1, and
d−(j) > m/2 + 1 for all i and j. In particular there exists such a matching, completing the proof of
the corollary. 2

To complete the proof of Theorem 1.1 we need the following result of Nash-Williams (cf., e.g.,
[5], page 201); for some stronger sufficient conditions for a digraph to be Hamiltonian see, e.g., [4, 7].

Theorem 2.4 (Nash-Williams) Any directed graph on m vertices in which every indegree and
every outdegree is at least m/2 contains a directed Hamilton cycle.

Returning to the proof of Theorem 1.1 with n = 2m, and given an edge colored Kc
n satisfying (1)

apply Lemma 2.1 and Corollary 2.3 to obtain a matching aibi satisfying the two conditions in the
corollary. Construct a digraph D = (V, E) on the set of vertices V = {v1, v2, . . . , vm} by letting vivj

be a directed edge (for i 6= j) iff the color of aibj in Kc
n differs from that of aibi and that of ajbj .

By Corollary 2.3 every indegree and every outdegree of D exceeds m/2, implying, by Theorem 2.4,
that D contains a directed Hamilton cycle vπ(1)vπ(2) . . . vπ(m)vπ(1), where π = π(1), π(2), . . . , π(m) is a
permutation of {1, 2, . . . , m}. The cycle bπ(1)aπ(1)bπ(2)aπ(2) . . . bπ(m)aπ(m)bπ(1) is clearly an alternating
Hamilton cycle in Kc

n, as needed.
In case n = 2m + 1 is odd we fix a path P = a1c1b1 of length 2, so that the edges a1c1 and c1b1

have distinct colors, choose a random perfect matching a2b2, . . . , ambm in the rest of the graph and
show that with high probability there is an alternating Hamilton cycle containing the path P and
the matching by applying Theorem 2.4 as before. Since the details are almost identical to the ones
for the even case, we omit them. This completes the proof of the theorem. 2

3 Concluding remarks, extensions and problems

1. Chen and Daykin [8] proved that if Kc
m,m is an edge colored complete bipartite graph with

partite sets of cardinality m each and ∆(Kc
m,m) ≤ m/25 then Kc

m,m contains an alternating
Hamilton cycle. Our proof of Theorem 1.1 contains a proof of the following;

Proposition 3.1 For every ε > 0 there exists an m0 = m0(ε) so that for every m > m0, every
Kc

m,m satisfying

∆(Kc
m,m) ≤ (1− 1√

2
− ε)m ( = (0.2928...− ε)m )

contains an alternating Hamilton cycle.

2. The authors of [6] show that if ∆(Kc
n) < n/69 then, in fact, Kc

n contains alternating cycles of
all lengths from 3 to n. Similarly, in [8] the same conclusion is shown to follow from the weaker
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assumption ∆(Kc
n) ≤ n/17. Our method here enables us to prove the following stronger result,

which extends Theorem 1.1.

Theorem 3.2 For every ε > 0 there exists an n0 = n0(ε) so that for every n > n0, every Kc
n

satisfying

∆(Kc
n) ≤ (1− 1√

2
− ε)n ( = (0.2928...− ε)n )

contains alternating cycles of all lengths between 3 and n.

The proof is very similar to the proof of Theorem 1.1, but instead of Theorem 2.4 we need the
following result, which is very similar to a result of Häggkvist and Thomassen (cf., e.g., [7])
and may be known. Since we were unable to find a reference we include a simple proof.

Lemma 3.3 Any directed graph D on m vertices in which every indegree and every outdegree
is at least m/2 + 1 is vertex pancyclic. That is, for every vertex v of D and every integer k

between 2 and m, there is a directed cycle of length k through v.

Proof. By Theorem 2.4 there is a Hamilton cycle u1u2 . . . um−1u1 in D − v. Let N+ and
N− be the sets of outneighbors and inneighbors of v, respectively. If there is no cycle of
length k through v then for every i, |N+ ∩ {ui}|+ |N− ∩ {ui+k−2}| ≤ 1, where the indices are
computed modulo m − 1. By summing over all values of i, 1 ≤ i ≤ m − 1 we conclude that
|N−| + |N+| ≤ m − 1, contradicting the assumption that all indegrees and outdegrees exceed
m/2. 2

Proof of Theorem 3.2. Consider, first, the case n = 2m. As in the proof of Theorem
1.1, given an edge colored Kc

n satisfying (1) apply Lemma 2.1 and Corollary 2.3 to obtain a
matching aibi satisfying the two conditions in the corollary. Construct a digraph D = (V, E)
on the set of vertices V = {v1, v2, . . . , vm} by letting vivj be a directed edge (for i 6= j) iff the
color of aibj in Kc

n differs from that of aibi and that of ajbj . By Corollary 2.3 every indegree
and every outdegree of D is at least m/2 + 1, implying, by Lemma 3.3, that D contains a
directed cycle of every length between 2 and m. This gives, as in the proof of Theorem 1.1,
that Kc

n contains an alternating cycle of each even length between 4 and n. To get the odd
cycles we argue as follows. The expected number of pairs of edges with the same color in a
randomly chosen triangle is less than 1, proving the existence of an alternating triangle. For
the larger odd lengths we first fix a path P = a1c1b1 of length 2, so that the edges a1c1 and
c1b1 have distinct colors, choose a random perfect matching a2b2, a3b3, . . . , am−1bm−1 in the
graph Kc

n−{a1, b1, c1, v}, where v /∈ {a1, b1, c1}, and define a directed graph D on the vertices
v1, v2, v3, . . . , vm−1 in which the edges are defined as follows. For i, j > 1, i 6= j, vivj is a
directed edge iff the color of aibj in Kc

n differs from that of aibi and that of ajbj . For j > 1,
v1vj is a directed edge if the color of a1bj differs from that of a1c1 and that of ajbj , whereas vjv1
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is a directed edge if the color of ajb1 differs from that of ajbj and that of c1b1. As in the proof
of Theorem 1.1 one can show that with positive probability every indegree and every outdegree
in D exceeds (m − 1)/2 + 1 and hence, by Lemma 3.3, for every k between 2 and m − 1 D

contains a cycle of length k through v1. This cycle easily gives an alternating cycle of length
2k + 1 in Kc

n. Note that it is crucial to choose a cycle through the vertex v1 here. The case
n = 2m + 1 is proved similarly. It is worth noting that the proof (with a slight modification)
in fact shows that every edge of Kc

n is contained in an alternating cycle of each desired length
between 4 and n (but not necessarily of length 3). 2

3. The last proof clearly contains a proof of the following extension of Proposition 3.1.

Proposition 3.4 For every ε > 0 there exists an m0 = m0(ε) so that for every m > m0, every
Kc

m,m satisfying

∆(Kc
m,m) ≤ (1− 1√

2
− ε)m ( = (0.2928...− ε)m )

contains an alternating cycle of every even length between 4 and 2m.

4. Finally, it would be interesting to decide if the conjecture of [6] that asserts that if ∆(Kc
n) <

bn/2c then Kc
n contains an alternating Hamilton cycle is correct.
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