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Abstract

A path or cycle in an edge-coloured multigraph is called alternating
if its successive edges differ in colour. We survey results of both the-
oretical and algorithmic character concerning alternating cycles and
paths in edge-coloured multigraphs. We also show useful connections
between the theory of paths and cycles in bipartite digraphs and the
theory of alternating paths and cycles in edge-coloured graphs.

1 Introduction

We consider graphs (and sometimes multigraphs) so that each edge has a
colour. A trail in such a graph is called alternating if its successive edges
differ in colour. J. Petersen’s famous paper [47] seems to be the first place
where one can find applications of alternating trails (cf. [45]). Besides a
number of applications in graph theory and algorithms (cf. [53], p. 58, [36]),
the concept of alternating trails and the special cases, alternating paths and
cycles, appears in various other fields: genetics (cf. [23, 24, 25]), social
sciences (cf. [19]), etc.

The reader will see below bilateral connections between the theory of al-
ternating cycles and paths in edge-coloured graphs and the theory of cycles
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and paths in directed and undirected graphs, matching theory, and other
branches of graph theory (cf. [12, 29, 36, 37, 38, 43, 52]). These results
have been scattered in the literature and seem not well known to a broader
audience. In particular, in Section 4 we provide some examples of results on
2-edge-coloured complete bipartite graphs and bipartite tournaments which
are either equivalent (with a very easy transformation from one to the other),
or one can be derived from the other fairly easily. We describe some other
examples when results on directed paths and cycles in bipartite and gen-
eral digraphs imply results on alternating paths and cycles in edge-coloured
graphs.

In applications to genetics (cf. [23, 24, 25]) researchers consider edge-
coloured multigraphs which are unions of monochromatic graphs. From a
theoretical point of view there is no good reason to restrict investigation
to multigraphs without parallel edges when more general results may be
available. Therefore, we shall sometimes deal with edge-coloured multigraphs
rather than edge-coloured graphs.

Our paper is organized as follows. In the next section we provide the
reader with necessary notation and terminology. Section 3 is devoted to
problems on alternating cycles in general edge-coloured multigraphs. First,
we consider the problem of characterizing c-edge-coloured graphs containing
at least one alternating cycle. We point out that the well known theorem by
Grossman and Häggkvist, solving the problem for c = 2, also holds for c ≥ 3
(proved by Yeo [54]). We describe a number of applications of the result by
Grossman and Häggkvist. In the second part of Section 3 we show how to
find a maximum collection (with respect to the number of vertices covered)
of disjoint alternating cycles in a c-edge-coloured multigraph in polynomial
time. This construction, is a generalization of one used for the case c = 2
in [3]. In the end of Section 3, we consider results on colour-connectivity
for edge-coloured multigraphs which is, in a sense, an analogue of strong
connectivity for digraphs. The notion of colour-connectivity, first introduced
by Saad in [48], has already proved its importance for the longest alternating
cycle problem in certain 2-edge-coloured multigraphs [48].

In Section 4, we describe two known approaches which allow one to obtain
results for bipartite 2-edge-coloured multigraphs using results on directed
graphs. Applying the approaches we derive new results from known ones, as
well as show equivalence, or similarity, of known results obtained separately
for bipartite 2-edge-coloured graphs and bipartite digraphs.
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In Section 5, we deal with cycles, trails and paths in 2-edge-coloured
complete multigraphs. We first describe characterizations of 2-edge-coloured
complete multigraphs containing a Hamiltonian alternating cycle as well as
some of their extensions. Then we consider a generalization of problems
treated by Saad [48], and Das and Rao [21]: determine the length of a longest
closed alternating trail visiting each vertex v of a complete 2-edge-coloured
multigraph at most f(v) > 0 times. In Section 5, we also consider pan-
cyclicity problems (the main result on this topic, Theorem 5.10, is a slight
generalization of a result in [20]) and some other problems on alternating
cycles and paths in complete 2-edge-coloured multigraphs.

Section 6 is devoted to a number of interesting and difficult open problems
on alternating cycles and paths in c-edge-coloured complete graphs for c ≥ 2
as well as to some results on the topic. In Section 7, we describe results on
alternating Eulerian trails in general edge-coloured graphs and Hamiltonian
alternating cycles in a special family of 2-edge-coloured graphs which appear
in an application to genetics.

2 Notation and terminology

The terminology is fairly standard, generally following [8] and [16]. All graphs
and digraphs considered are finite and have no loops. A set with k elements
is called a k-set.

In this paper we consider edge-coloured multigraphs, i.e. multigraphs so
that each edge has a colour and no two parallel (i.e. joining the same pair of
vertices) edges have the same colour. If the number of colours is restricted
by an integer c, we speak about c-edge-coloured multigraphs. We usually use
the integers 1, 2, ..., c to denote the colours in c-edge-coloured multigraphs.
In case c = 2, we also use the names red and blue for colours 1 and 2,
respectively. The red subgraph (blue subgraph, resp.) of a 2-edge-coloured
multigraph G consists of the vertices of G and all red (blue, resp.) edges of
G.

When multigraphs have no parallel edges, we call them graphs, as usual.
A multigraph G is complete k-partite, if it is possible to partition V (G) into
k subsets (called partite sets) such that, for every pair u ∈ Vi and v ∈ Vj, u
is adjacent to v if and only if i 6= j. A multigraph G with n vertices is called
complete if G is complete n-partite.
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We consider only simple paths and cycles. Let G be a c-edge-coloured
multigraph (c ≥ 2). A cycle or path in G is called alternating if its successive
edges differ in colour. Since, in edge-coloured multigraphs, we consider only
alternating paths and cycles, we shall sometimes omit the adjective ’alter-
nating’ before the words ’path’ and ’cycle’. An m-path-cycle subgraph Fm of
G is a union of m (alternating) paths and a number of (alternating) cycles
in G, all vertex disjoint. When m = 0, we shall call F0 an cycle subgraph.
An m-path-cycle subgraph F of G is maximum if F has maximum number
of vertices among all m-path-cycle subgraphs of G. An alternating path or
cycle is called Hamiltonian if it contains all the vertices of G. If G has a
Hamiltonian alternating cycle, G is called Hamiltonian. An alternating path
P is called an (x, y)-path if x and y are the end vertices of P .

The j’th degree of v, dj,G(v), is the number of vertices in G joined to v
by an edge of colour j (1 ≤ j ≤ c). The maximum monochromatic degree of
G (denoted by ∆(G)) is max{dj(v) : v ∈ V (G), j = 1, 2, ..., c}. For a set
X ⊂ V (G), dj(X) =

∑
x∈X dj(x).

The colour of an edge e in G will be denoted by χG(e). Let X and Y be
two sets of the vertices of G. Then XY denotes the set of all edges having
one end vertex in X and the other in Y . In case all the edges in XY have
the same colour, say i, we write χ(XY ) = i.

An edge-coloured multigraph G is called even-pancyclic if G contains an
even number of vertices and has an alternating cycle of length 2k for each
k = 2, 3, ..., m, where 2m = |V (G)|. G is vertex even-pancyclic if G has an
even number of vertices and, for every k = 2, ..., m and every v ∈ V (G), G
contains an alternating cycle through v of length 2k, where 2m = |V (G)|.
Similarly one can define even-pancyclic and vertex even-pancyclic bipartite
digraphs.

A digraph obtained by replacing each edge of a complete bipartite graph
by an arc or a pair of mutually opposite arcs with the same end vertices is
called a semicomplete bipartite digraph. A semicomplete bipartite digraph
with no directed cycles of length two is called a bipartite tournament. A
digraph D is called strongly connected (or strong, for short) if, for each pair
x, y of distinct vertices of D, there is a path from x to y and a path from y
to x.
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3 General edge-coloured multigraphs

Problems on alternating cycles and paths in general 2-edge-coloured graphs
are at least as difficult as the corresponding ones for directed cycles and paths
in directed graphs. To see that, we consider the following simple transfor-
mation attributed to Häggkvist in [43]. Let D be a digraph. Replace each
arc xy of D by two (unoriented) edges xzxy and zxyy by adding a new ver-
tex zxy and then colour the edge xzxy red and the edge zxyy blue. Let G
be the 2-edge-coloured graph obtained in this way. It is easy to see that
each alternating cycle in G corresponds to a directed cycle in D and vice
versa. Hence, in particular, the following problems on paths and cycles in
2-edge-coloured graphs are NP-complete: the Hamiltonian alternating cycle
problem and the problem to find an alternating cycle through a pair of ver-
tices. Using the transformation above, we also see that the problem to check
whether a c-edge-coloured graph has an alternating cycle is more general,
even for c = 2, than the simple problem to verify whether a digraph contains
a directed cycle. So, we start with the following:

Problem 3.1 Given a c-edge-coloured graph G, check whether G contains
an alternating cycle.

Grossman and Häggkvist [29] were the first to study this problem. They
proved Theorem 3.2 below in the case c = 2. The case c ≥ 3 was proved
recently by Yeo [54]. Let v be a cut vertex in a 2-edge-coloured graph G.
We say that v separates colours if no component of G − v is joined to v by
at least two edges of different colours.

Theorem 3.2 [29, 54] Let G be a c-edge-coloured graph, c ≥ 2, such that
every vertex of G is incident with at least two edges of different colours. Then
either G has a cut vertex separating colours, or G has an alternating cycle.

We shall see that Theorem 3.2 actually solves Problem 3.1. Indeed, nei-
ther a vertex incident with only edges of the same colour, nor a vertex that
separates colours can be on any alternating cycle. Thus all such vertices may
be deleted without destroying any alternating cycle.

The following theorem by Whitehead [52] shows that some stronger ex-
tension of Theorem 3.2 for c = 2 to general c does not hold.
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Theorem 3.3 Let G be a graph with minimum degree at least 2. Then we
can colour the edges of G with three colours so that each of the following
conditions hold:

1. Every vertex is incident with edges in exactly two colour classes.

2. There is no alternating cycle with edges of just two colours.

We give three interesting corollaries of Theorem 3.2 (for the case c = 2),
all proved in [29].

Corollary 3.4 Let M be a perfect matching in a graph G. If no edge of M
is a cut edge of G, then G has a cycle whose edges are taken alternately from
M and G−M .

Corollary 3.5 Let G be a 2-edge-coloured Eulerian graph so that all monochro-
matic degrees are odd. Then G has an alternating cycle.

Corollary 3.6 Let G be a 2-edge-coloured graph so that both red and blue
subgraphs of G are regular and non-trivial. Then G has an alternating cycle.

Theorem 3.2 also implies:

Corollary 3.7 [11, 40, 42] There does not exist a bridge-less graph that
contains a unique perfect matching.

The last result was generalized in [39].

It is easy to see that Theorem 3.2 implies that the problem of checking
whether a c-edge-coloured graph has an alternating cycle is polynomially
solvable. Another possibility to solve Problem 3.1 is to use the following
well-known construction. Here, we can actually find a cycle subgraph with
maximum number of vertices of a c-edge-colored multigraph in polynomial
time. This result seems very useful, as a starting point, for a number of
problems on alternating cycles and paths.

Let G be an arbitrary c-edge-colored multigraph (with colours 1,2,...,c).
For each vertex v of G we form the following graph Hv: V (Hv) = {v1, ..., v2c−2}
and vi is adjacent to vj (i < j) iff either both i, j ∈ {1, ..., c} or i ∈

6



{1, ..., c}, j ∈ {c + 1, ..., 2c − 2}. Construct a new graph R from the dis-
joint union of the graphs Hv (v ∈ V (G)) as follows. An edge viuj is in R iff
i = j = χG(vu). Let the edges of R of the form vivj where both i, j ∈ {1, ..., c}
have the weight 0 and all other edges have the weight 1. Then, a maximum
weight matching in R corresponds to a cycle subgraph F of G with maxi-
mum number of vertices. To see this, it suffices to note that for any perfect
matching of R and any Hv (corresponding to one vertex v of G), all but two
of the vertices v1, v2, . . . , vc will be matched to vertices within Hv and with
index at least c + 1. Hence if the edge between the two remaining vertices
in Hv is not in the matching, then in G this corresponds to v being on an
alternating cycle and vice versa. This construction implies the existence of a
polynomial algorithm for finding F since a maximum weight perfect match-
ing in a weighted graph on n vertices can be found in time O(n3) (cf. [46],
Ch. 11).

Sometimes, one needs to find a maximum 1-path-cycle subgraph of a c-
edge-coloured multigraph G. We can easily transform the last problem to the
maximum cycle subgraph problem as follows. Add an extra-vertex x to G and
join x to every vertex of G by two edges of colour c+1 and c+2 respectively
( new colours). Clearly, a maximum cycle subgraph of the new multigraph
corresponds to a maximum 1-path-cycle subgraph of G. We formulate the
obtained results as a theorem:

Theorem 3.8 One can construct a maximum cycle subgraph and a maxi-
mum 1-path-cycle subgraph, respectively in a c-edge-coloured multigraph G
on n vertices in time O(n3).

In the rest of this section we consider the notion of colour-connectivity.
This is in some sense an analogue of strong connectivity for (bipartite) di-
graphs. The notion of colour-connectivity was introduced by Saad [48] in the
case when c = 2 (he used another name, but the definition was the same).

Definition 3.9 A pair of vertices x, y of a c-edge-coloured multigraph G is
called colour-connected if there exist alternating (x, y)-paths P = xx′ . . . y′y
and P ′ = xu′ . . . v′y such that χ(xx′) 6= χ(xu′) and χ(y′y) 6= χ(v′y). We
define a vertex x to be colour-connected to itself. We say that G is colour-
connected if every pair of vertices of G are colour-connected.
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Clearly, every Hamiltonian edge-coloured multigraph is colour connected.
This simple remark shows that colour-connectivity may be an important
condition for alternating cycle problems. In Section 5, we shall see that this
is indeed so at least when c = 2.

The following lemma from [3] shows that we can efficiently check whether
two given vertices in a 2-edge-coloured multigraph are colour-connected.

Lemma 3.10 [3] Let G = (V, E) be a connected 2-edge-coloured multigraph
and let x and y be distinct vertices of G. For each choice of i, j ∈ {1, 2} we
can find an alternating path P = x1x2 . . . xk with x1 = x, xk = y, χ(x1x2) = i
and χ(xk−1xk) = j in time O(|E|) (if one exists).

We can use colour-connectivity more effectively if we know that this is an
equivalence relation on the vertices of a given 2-edge-coloured multigraph.
This leads us to the following:

Definition 3.11 A 2-edge-coloured multigraph G is convenient if colour-
connectivity is an equivalence relation on the vertices of G. If G is conve-
nient, an equivalence class of colour-connectivity is called a colour-connected
component of G.

Unfortunately, there are non-convenient multigraphs. Consider the graph G
on 5 vertices, 1, 2, 3, 4, 5, and 6 edges, 13, 23, 45 of colour 1 and 12, 34, 35 of
colour 2. It is easy to check that the vertices 1 and 2 are colour-connected
to 4, but 1 and 2 are not colour-connected in G. On the other hand, all
2-edge-coloured bipartite multigraphs are convenient (see the next section).
Thus Lemma 3.10 implies

Corollary 3.12 [3] Let G be a convenient 2-edge-coloured multigraph G =
(V, E). Then we can check whether G is colour-connected in time O(|V ||E|)
and find the colour-connected components of G in time O(|V |2|E|).

4 2-edge-coloured bipartite multigraphs ver-

sus digraphs

The aim of this section is to describe some applications of two approaches
which allow one to obtain results for bipartite 2-edge-coloured multigraphs
using results on directed graphs.
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Let D be a bipartite digraph with partite sets V1, V2. Define a 2-edge-
coloured bipartite multigraph M = M(D) in the following way: M has the
same partite sets as D and xix3−i is an edge of colour i in M iff (xi, x3−i)
is an arc in D and x1 ∈ V1, x2 ∈ V2. Moreover, M−1(G) = H if M(H) =
G. This trivial correspondence which we shall call the BB-correspondence
leads us to a number of easy and some more complex results which are
described in this and the next sections. One example is the fact that the
Hamiltonian alternating cycle problem for bipartite 2-edge-coloured graphs
is NP-complete. In many of our results on cycles we shall exploit the following
simple observation:

Proposition 4.1 A bipartite digraph G is strongly connected iff M(G) is
colour-connected.

The following correspondence which we shall call the BD-correspondence
is less universal but may allow one to exploit the wider area of results on
general digraphs (cf. [14]). The idea of the BD-correspondence can be traced
back to Häggkvist [36]. Let G be a 2-edge-coloured bipartite multigraph with
partite sets V1 and V2 so that |V1| = |V2| = m and let G′ be the red subgraph
of G. Suppose that G′ has a perfect matching v11v21, v12v22, ..., v1mv2m, where
vij ∈ Vi (i = 1, 2 and 1 ≤ j ≤ m). Construct a digraph D = D(G) as
follows: V (D) = {1, 2, ...,m} and, for 1 ≤ i 6= j ≤ m, (i, j) is an arc of D iff
v1iv2j ∈ E(G) − E(G′). It is easy to see that if D has a Hamiltonian cycle,
then G has a Hamiltonian alternating cycle including all the edges of the
perfect matching. Using BD-correspondence and Ghouila-Houri’s theorem
on Hamiltonian cycles in digraphs [28], Hilton [38] proved the following:

Theorem 4.2 Let G be a 2-edge-coloured regular bipartite graph such that
each of the partite sets of G has m vertices and let G′′ be the blue subgraph
of G. If the degree d(G) of G is at least m

2
+ 1 and G′′ is regular of degree at

least m
2

and at most d(G)− 1, then G has a Hamiltonian alternating cycle.

Although the last theorem is best possible (consider two disjoint copies of
Km/2,m/2 with perfect matchings in both copies in red and all other edges in
blue), Hilton [38] guesses that the bound on d(G) could be lowered consid-
erably if we assume that G is connected. He also claims that the regularity
condition could be weakened a great deal.

It was noticed in [18] that Theorem 4.2 follows easily from the following
result by Häggkvist [36].
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Theorem 4.3 Let G be any bipartite graph so that each of the partite sets
contains m vertices. If d(v)+d(w) ≥ m+1, for every pair v, w of vertices from
different partite sets, then every perfect matching of G lies in a Hamiltonian
cycle.

The following theorem is a straightforward application of the BB-correspondence
to Theorem 3 in [2]. In this theorem, we do not indeed require any regular-
ity but pay for that by stronger demands on minimum monochromatic de-
grees. To state Theorem 4.4, we need to define the following 2-edge-coloured
bipartite multigraphs. Let n2 ≥ 3 be an integer and let Kr,p, r ≤ p ≤
n2 − r (Kr−1,n2−p, respectively) be a complete bipartite graph with bipar-
tition (X1, Y1) ((X2, Y2), respectively). Then each of the monochromatic
subgraphs of G1(n1, n2) (n1 = 2r − 1) consists of the disjoint union of Kr,p

and Kr−1,n2−p, together with all the edges between exactly one vertex of X1

and the vertices of Y2.
G2 = G2(3, n2) has partite sets X = {x1, x2, x3} and Y = {y1, ..., yn2}

(n2 ≥ 3). The red (blue, resp.) subgraph of G2 has edge set {xiyi : i =
1, 2}∪R ({xiy3−i : i = 1, 2}∪R, resp.), where R = {x3yi : i = 1, 2}∪{xjyi :
i = 3, 4, ..., n2; j = 1, 2}.
Theorem 4.4 Let G be a 2-edge-coloured bipartite multigraph with partite
sets V1 and V2 so that n1 = |V1| ≤ |V2| = n2. If the minimum monochromatic
degree r of G is at least (n1 +1)/2, then G has an alternating cycle of length
2n1 unless:

1. n2 > n1 = 2r − 1 and G is isomorphic to G1(n1, n2) or

2. r = 2, n1 = 3, and G is isomorphic to G2(3, n2).

The BB-correspondence is very useful when we consider 2-edge-coloured
complete bipartite multigraphs. In this case we can use the rich theory
of semicomplete bipartite digraphs (cf. [9, 33]). In [30, 37, 44], the fol-
lowing characterization of Hamiltonian semicomplete bipartite digraphs was
obtained.

Theorem 4.5 A semicomplete bipartite digraph is Hamiltonian if and only
if it is strong and has a spanning cycle subgraph. There is an algorithm for
constructing a Hamiltonian cycle in a strong semicomplete bipartite digraph
on n vertices in time O(n2.5) (if one exists).
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Through the BB-correspondence and Proposition 4.1, this theorem im-
plies

Theorem 4.6 A 2-edge-coloured complete bipartite multigraph is Hamilto-
nian iff it is colour-connected and has a spanning cycle subgraph. There is
an algorithm for constructing a Hamiltonian alternating cycle in a colour-
connected 2-edge-coloured complete bipartite multigraph on n vertices in time
O(n2.5) (if one exists).

Another condition for a 2-edge-coloured complete multigraph to contain
a Hamiltonian alternating cycle was obtained by Chetwynd and Hilton [18]:

Theorem 4.7 A 2-edge-coloured complete bipartite graph B with partite sets
U and W (|U | = |W | = n) is Hamiltonian iff B has a spanning cycle subgraph
and, for every k = 2, ..., n − 1 and every pair of k-sets X and Y such that
X ⊂ U , Y ⊂ W , d1(X) + d2(Y ) > k2 and d2(X) + d1(Y ) > k2.

We point out that the proof of Theorem 4.7 is quite similar to that of
Theorem 4.5 in [30] (see also [34]).

Using the corresponding result on longest cycles in semicomplete bipartite
digraphs proved in [34], one obtains the following:

Theorem 4.8 The length of the longest alternating cycle in a colour-connected
2-edge-coloured complete bipartite multigraph G is equal to the number of ver-
tices in maximum cycle subgraph of G. There is an algorithm for finding a
longest alternating cycle in a colour-connected 2-edge-coloured complete bi-
partite multigraph on n vertices in time O(n3).

Therefore, the longest alternating cycle (longest directed cycle, resp.)
problem for 2-edge-coloured complete bipartite multigraphs (semicomplete
bipartite digraphs, resp.) is polynomially solvable. This provides a positive
answer to a question by Saad [48].

The following result is a characterization of vertex even-pancyclic 2-edge-
coloured complete bipartite multigraphs obtained from the corresponding
characterization for semicomplete bipartite digraphs [55] (actually, Zhang
[55] proved this characterization only for bipartite tournaments but it is valid
for semicomplete bipartite digraphs as well, cf. [35].) Let r be a positive
integer. The 2-edge-coloured complete bipartite graph B(r) has partite sets
{x1, ..., x2r} and {y1, ..., y2r}. The set of red edges of B(r) is {xiyj : 1 ≤ i ≤
r, 1 ≤ j ≤ r} ∪ {xiyj : r + 1 ≤ i ≤ 2r, r + 1 ≤ j ≤ 2r}.
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Theorem 4.9 A 2-edge-coloured complete bipartite multigraph is vertex even-
pancyclic iff it is Hamiltonian and not isomorphic to one of the graphs
B(r) (r = 2, 3, . . .).

Corollary 4.10 A 2-edge-coloured complete bipartite multigraph is even-
pancyclic if and only if it is Hamiltonian and not isomorphic to one of the
graphs B(r) (r = 2, 3, . . .).

The last result was obtained by Das [20]. The equivalent (via the BB-
correspondence) claim was proved by Beineke and Little [10] for bipartite
tournaments. (Both results were published in the same year!)

To save the space we shall not give any other ’BB-translations’ of results
obtained for cycles and paths in semicomplete bipartite digraphs (cf. [33])
into the alternating cycles and paths language. A less trivial application of
the BB-correspondence is provided in the proof of Theorem 5.10.

5 2-edge-coloured complete multigraphs

In 1968, solving a problem by Erdős, M. Bankfalvi and Z. Bankfalvi [6]
gave the following characterization of Hamiltonian 2-edge-coloured complete
graphs.

Theorem 5.1 A 2-edge-coloured complete graph G of order 2n is Hamilto-
nian iff it has a spanning cycle subgraph and, for every k = 2, ..., n − 1 and
every pair of disjoint k-sets X and Y , d1(X) + d2(Y ) > k2.

Our formulation is somewhat different from the one in [6], but it is obvi-
ously equivalent and simpler to state. Saad [48] proved the following more
general result, using the notion of colour-connectivity rather than a degree
condition.

Theorem 5.2 The length of a longest alternating cycle in a colour-connected
2-edge-coloured complete graph G is equal to the number of vertices in a
maximum cycle subgraph of G.

Corollary 5.3 A 2-edge-coloured complete multigraph G is Hamiltonian if
and only if G is colour-connected and contains a spanning cycle subgraph.
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Manoussakis (cf. [48]) posed the following problem: is there a polynomial
algorithm for finding a longest alternating cycle in a 2-edge-coloured complete
graph. Using Theorem 5.2, Saad [48] proved the existence of a randomized
polynomial algorithm for Manoussakis’ problem. An affirmative solution of
Manoussakis’ problem was recently obtained in [3]. Below, in this section,
we provide a short schema of the solution of a more general problem treated
in [3].

Das [20] and later Häggkvist and Manoussakis [37] observed that the
Hamiltonian cycle problem for 2-edge-coloured complete bipartite multi-
graphs (or semicomplete bipartite digraphs) can be reduced to that for 2-
edge-coloured complete multigraphs using the following simple construction.
Consider a 2-edge-coloured complete bipartite multigraph L with bipartition
(X, Y ). Add to L the edges {x′x′′, y′y′′ : x′, x′′ ∈ X, y′, y′′ ∈ Y } and set
χ(XX) = 1, χ(Y Y ) = 2. Let K be the 2-edge-coloured complete multigraph
obtained in this way. It is not difficult to verify that K has no alternating
cycle containing any of the edges from XX ∪ Y Y . Hence, K is Hamiltonian
iff L is Hamiltonian. Moreover, it is easy to check that K is colour-connected
iff L is colour-connected. In the sequel, we shall call the construction above
the DHM-construction.

The DHM-construction shows that (the non-algorithmic part of) Theorem
4.6 for graphs follows immediately from Corollary 5.3. On the other hand,
Corollary 5.3 can be derived from a key lemma to prove Theorem 4.6 (Lemma
4.1 in [3]) using mostly the same ideas as in the proof of Theorem 4.6 in
[30, 34]. This means that Theorem 4.6 and Corollary 5.3 are in some sense
equivalent. The same can be said about the non-algorithmic part of Theorem
4.8 and Theorem 5.2.

As another indication of the usefulness of the DHM-construction, consider
the following simple derivation of Theorem 4.7 from Theorem 5.1: Let B =
(U, V, E) be a 2-edge-coloured complete bipartite graph with partite sets
U, V , each of size n. Suppose B has a spanning cycle subgraph. Because the
number of edges between an arbitrary k-set X ⊂ U and an arbitrary k-set
Y ⊂ V is equal to k2, it follows that the condition d1(X) + d2(Y ) > k2 and
d2(X)+d1(Y ) > k2 is necessary for the existence of a Hamiltonian alternating
cycle in B.

To see the sufficiency we proceed as follows. Suppose
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(∗) for every k-set X ′ ⊂ U and every k-set Y ′ ⊂ V we have d1,B(X ′) +
d2,B(Y ′) > k2 and d2,B(X ′) + d1,B(Y ′) > k2.

Construct a 2-edge-coloured complete graph G on 2n vertices from B by
adding all edges inside U and colouring them i and adding all edges inside
V and colouring them 3 − i, where i = 1, or i = 2. The actual choice of
i is not important, but the proof is simpler if we do not specify the value
of i. If G satisfies that for every k ∈ {2, 3, . . . , n − 1} and every choice
of disjoint k-sets X ′ and Y ′, d1,G(X ′) + d2,G(Y ′) > k2, then, by Theorem
5.1 and the DHM-construction, B is Hamiltonian. Hence we may assume
that there exists a k ∈ {2, 3, . . . , n − 1} and disjoint k-sets X and Y , such
that d1,G(X) + d2,G(Y ) = k2. Note that this means that there are no edges
of colour 1 from X to (U ∪ V ) − Y and no edges of colour 2 from Y to
(U∪V )−X. From this and the fact that all edges inside U and V respectively
are monochromatic, it follows that if each of the sets X∩U (X∩V )and Y ∩U
(Y ∩V ) are non-empty, then U ⊂ X∪Y (V ⊂ X∪Y ). Thus, because each of
X and Y have size at most n− 1, we may assume without loss of generality
that X ⊂ U (here we used that i is not specified).

Suppose first that Y ∩ U 6= ∅. Then, by the remark above, U ⊂ X ∪ Y .
It is easy to see that |V − Y | > |Y ∩ U | and since in B the set V − Y only
has edges of colour 1 to vertices in Y ∩ U (all edges of colour 1 from X go
to Y ), it follows from Hall’s matching theorem that B has no spanning cycle
subgraph, contradicting our assumption above. Thus we may assume that
Y ⊂ V , but then the choice of k-sets X ′ = X and Y ′ = Y contradicts (∗).
2.

Let f be a mapping from the vertex set of a 2-edge-coloured complete
multigraph G into the set of all positive integers. A subgraph H of G is called
an f=-subgraph (an f≥-subgraph, resp.) of G if d1,H(x) = d2,H(x) = f(x) (
d1,H(x) = d2,H(x) ≤ f(x), resp.) for every vertex x in G. A connected f≥-
subgraph H of G is called maximum if H has the maximum number of edges
among all connected f≥-subgraphs of G.

Note that if f(x) = 1 for every x ∈ V (G), then the problems of finding
a connected f=-subgraph and a maximum connected f≥-subgraph of G coin-
cide with the Hamiltonian alternating cycle problem and longest alternating
cycle problem, respectively. In general, every connected f≥-subgraph (or f=-
subgraph) of G can be viewed as a closed alternating trail in G (cf. Theorem
7.1).
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Das and Rao [21] gave the following characterization of 2-edge-coloured
complete graphs which contain connected f=-subgraphs.

Theorem 5.4 Let G be a 2-edge-coloured complete graph of order 2n. G
contains a connected f=-subgraph iff G has a f=-subgraph and, for each pair
k1, k2 of positive integers with k1+k2 ≤ n−4 and every disjoint pair consisting
of a k1-set X and a k2-set Y , d1(X) + d2(Y ) > k1k2.

Consider the more general problem:

Problem 5.5 Find a maximum connected f≥-subgraph in a 2-edge-coloured
complete multigraph G on n vertices.

Because d1,H(x) = d2,H(x) in any f≥-subgraph H of G, we may assume
that each f(x) ≤ |E(G)|/2, since every value of f(x) > |E(G)|/2 can be
replaced by |E(G)|/2 without changing the solution of the problem.

To describe a scheme (from [3]) of solving this problem in polynomial
time, we need some more definitions.

Let H be a 2-edge-coloured multigraph with vertices v1, ..., vk (k ≥ 2). A
multigraph L is called an extension of H if the vertex set of L can be parti-
tioned into non-trivial subsets V1, ..., Vk (called partite sets) so that, for every
pair i, j (1 ≤ i < j ≤ k) and every pair x ∈ Vi, y ∈ Vj, the number of edges
between x and y coincides with the number of edges between vi and vj (in
H), and if H has only one edge between vi and vj, then χL(ViVj) = χH(vivj).
(If H has two edges between vi and vj (of different colours, of course; see the
definition of edge-coloured multigraphs), then there are two edges between
every x ∈ Vi and y ∈ Vj.) An extended 2-edge-coloured complete multigraph
is an extension of a 2-edge-coloured complete multigraph. We denote the set
of all extended 2-edge-coloured complete multigraphs by ECM.

It is easy to check that Problem 5.5 is equivalent to the problem of finding
a longest alternating cycle in the extension of G with n partite sets {Vx :
x ∈ V (G)} of sizes |Vx| = f(x). Therefore, a solution of Problem 5.5 can be
obtained from a solution of the following problem:

Problem 5.6 Find a longest alternating cycle in an extended 2-edge-coloured
complete multigraph.
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Since each f(x) ≤ |E(G)|/2, a polynomial algorithm for solving Problem
5.6 can be converted into a polynomial algorithm for Problem 5.5. It is easier
for us to deal with Problem 5.6 than Problem 5.5. Hence, in the sequel, we
shall consider only Problem 5.6.

Obviously, each alternating cycle of a convenient 2-edge-coloured multi-
graph G is contained in a colour-connected component of G (recall Definition
3.11). Hence, we may restrict our attention only to colour-connected multi-
graphs G ∈ ECM because of Theorem 3.12 and the following:

Theorem 5.7 [3] Every multigraph G ∈ ECM is convenient.

The main result of [3] is the next theorem.

Theorem 5.8 The length of a longest alternating cycle in a colour-connected
extended 2-edge-coloured complete multigraph G is equal to the number of
vertices in a maximum cycle subgraph of G. Given a maximum cycle subgraph
of a colour-connected G ∈ ECM, a longest alternating cycle in G can be
constructed in in time O(n3), where n is the number of vertices in G.

By Theorem 3.8, Theorem 5.8 implies the next result which actually gives
a solution to Problem 5.6.

Theorem 5.9 A longest alternating cycle in a colour-connected multigraph
G ∈ ECM with n vertices can be constructed in time O(n3).

Our next topic is even-pancyclicity. Consider the following Hamilto-
nian 2-edge-coloured complete graphs which are not even-pancyclic (see the
proof of this fact below). Let r ≥ 2 be an integer. Each of the graphs
H(r), H ′(r), H ′′(r) has a vertex set A∪B∪C∪D so that the sets A,B,C,D
are mutually disjoint and each of these sets contains r vertices. Moreover, the
edge set of the red subgraph of H(r) consists of AA∪CC ∪AC ∪AD∪CB.
The edge set of the red (blue, resp.) subgraph of H ′(r) (H ′′(r), resp.) con-
sists of AC∪CB∪BD∪DA. Note that each of H(r), H ′(r), H ′′(r) contains
B(r) (see the definition just before Theorem 4.9).

By the DHM-construction, the following result is a generalization of The-
orem 4.9.
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Theorem 5.10 A 2-edge-coloured complete multigraph G is vertex even-
pancyclic if and only if G is Hamiltonian and not isomorphic to the graphs
H(r), H ′(r), H ′′(r) for r = 2, 3, ....

Since the graphs H(r), H ′(r), H ′′(r) are not even-pancyclic for r =
2, 3, ..., we obtain the following characterization proved in [20].

Corollary 5.11 A 2-edge-coloured complete multigraph G is even-pancyclic
if and only if G is Hamiltonian and not isomorphic to the graphs H(r), H ′(r), H ′′(r)
for r = 2, 3, ....

We prove Theorem 5.10 below. This proof is completely different from the
proof of Corollary 5.11 in [20]. Moreover, our proof is shorter and somewhat
simpler.

Proof of Theorem 5.10: We first show that none of H(r), H ′(r), H ′′(r) (r =
2, 3, ...) are even-pancyclic. By the DHM-construction, H(r) is not even-
pancyclic since B(r) is not either (see Theorem 4.10). We prove that each
of H ′(r), H ′′(r) (r = 2, 3, ...) does not contain a cycle subgraph with 4r − 2
vertices. Clearly, we only need to prove this fact for H ′(r) (r = 2, 3, ...).
Assume that some H ′(r) (r ≥ 2) has a cycle subgraph F with 4r−2 vertices.
Let L be the subgraph of H ′(r) induced by V (F ). Since the red subgraph of
L is complete bipartite, it contains a perfect matching iff the partite sets of
L have the same size. In such a case, the blue subgraph of L has no perfect
matching since L consists of a disjoint union of two complete graphs such
that each of them has odd number of vertices; a contradiction.

The rest of the proof is based on Theorem 4.9. Let G be a Hamiltonian
2-edge-coloured complete multigraph that is not isomorphic to the graphs
H(r), H ′(r), H ′′(r) (r = 2, 3, ...). We show that G is vertex even-pancyclic.
Let W = x1x2...x4r−2jx1 (where j = 0 or 1) be a Hamiltonian alternating
cycle of G. Then, W is a Hamiltonian alternating cycle in the spanning
complete bipartite subgraph Q of G with partite sets A ∪ C and B ∪ D,
where A (B, C, D, resp.) consists of all vertices of W having subscripts
which are congruent to 1 (2,3,4, resp.) modulo 4. If Q is not isomorphic
to B(r), then we are done by Theorem 4.9. Therefore, we may assume that
|A| = |B| = |C| = |D| = r and χ(AB) = χ(CD) = 2, χ(AD) = χ(BC) = 1.
Let a, b, c, d be arbitrary vertices from A,B, C and D, respectively. Observe
that B(r) contains alternating cycles of lengths 4, 8, 12, ..., 4r through any
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vertex. Therefore, it is sufficient to prove that, for every k = 2, 3, ..., r, G
contains an alternating cycle Z4k−2 of length 4k − 2 through {a, b, c, d}.

Suppose that BD has edges of both colours such that b and d are joined
by an edge e of colour i. Since |B| = |D| = r ≥ 2, this implies that there
exists an edge e′ = b′d′ (b′ ∈ B, d′ ∈ D) of colour 3− i so that either all the
vertices of e and e′ are distinct or b 6= b′, d = d′ or b = b′, d 6= d′ or b = b′ and
d = d′. Because of symmetry between B and D, it is sufficient to consider
the first two cases and, moreover, we may assume that i = 1.

In the first case (e and e′ are disjoint), Z4k−2 = bdcb′d′P , where P is an
alternating path of length 4k− 7 starting in a, finishing in b and visiting the
sets A,B, C,D in the order A,B, C, D, A, .... In the second case, Z4k−2 =
bdb′cd′′P , where d′′ ∈ D − d and P is an alternating path of length 4k − 7
starting in a, finishing in b and visiting the sets A,B, C, D in the order
A,B,C, D,A, ....

We conclude that if at least one the sets BD and AC has edges of both
colours, then G is vertex even-pancyclic. Therefore, we may assume that
the sets BD and AC are monochromatic, and either χ(BD) = χ(AC) or
χ(BD) 6= χ(AC).

Case 1: χ(BD) = χ(AC) = i. We may suppose, w.l.o.g, that i = 1.
Since G is not isomorphic to H ′(r), at least one of the sets AA,BB, CC, DD
has an edge of colour 1. Let, w.l.o.g, AA contains an edge of colour 1. We
consider the following two subcases: 1) there is an edge aa′, a′ ∈ A, of colour
1, 2) there is an alternating path aa1a2 in AA so that χ(aa1) = 2. In the first
subcase, Z4k−2 = aa′bcdP , where P is an alternating path of length 4k − 7
starting in a vertex of B− b, finishing in a and visiting the sets A,B,C,D in
the order B,A, C, D, B, .... The second subcase can be treated analogously
to the first one, but now we start Z4k−2 with a1a2 instead of aa′ and pick
up a later. This approach is not valid only in the case k = 2. In this case,
aa1a2bcda is the desired alternating cycle.

Case 2: χ(BD) 6= χ(AC). We may suppose, w.l.o.g, that χ(BD) =
2, χ(AC) = 1. Since G is not isomorphic to H(r), the following is not valid:
χ(AA) = χ(CC) = 1, χ(BB) = χ(DD) = 2. We may assume, w.l.o.g, that
AA has an edge of colour 2. Now we have two subcases analogous to those
in Case 1. These two subcases can be treated similarly to the subcases of
Case 1. 2.
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The longest path problem for 2-edge-coloured complete multigraphs is
much simpler than the longest cycle problem.

Theorem 5.12 Let G be a 2-edge-coloured complete multigraph with n ver-
tices. Then

1. for any 1-path-cycle subgraph F of G there is an alternating path P of
G satisfying V (P ) = V (F ) (if F is a maximum 1-path-cycle subgraph
of G, then P is a longest alternating path in G);

2. there exists an O(n3) algorithm for finding a longest alternating path
in G.

Proof: Obviously, F is contained in a complete bipartite subgraph B of
G. F corresponds to a collection of a directed path and directed cycles, all
vertex disjoint, F ′ of M−1(B) (see the definition of the BB-correspondence in
the beginning of Section 4) so that V (F ) = V (F ′). Therefore, by the main
theorem of [32], there is a path P ′ in M−1(B) such that V (P ′) = V (F ′).
This path corresponds to an alternating path P of B so that V (P ′) = V (P ).
Clearly, P is an alternating path in G and, moreover, V (P ) = V (F ).

The complexity result easily follows from the construction above, the
proof of the main theorem in [32] and Theorem 3.8. 2.

Corollary 5.13 A 2-edge-coloured complete multigraph has a Hamiltonian
alternating path if and only if it contains a spanning 1-path-cycle subgraph.

Note that the last characterization is simpler and more intuitive than
the corresponding one in [12]. Recently, Yeo (private communication) con-
structed an infinite family of examples showing that Corollary 5.13 cannot
be extended to all 2-edge-coloured complete multipartite graphs.

We conclude this section with the following interesting problem from [12].

Problem 5.14 Let x and y be two specified vertices in a 2-edge-coloured
complete graph. Is there a polynomial algorithm for finding a Hamiltonian
alternating (x, y)-path (if one exists)?
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An affirmative answer to the same question for 2-edge-coloured complete
bipartite graphs follows from the corresponding result by Bang-Jensen and
Manoussakis [5] for bipartite tournaments. In [5] a complete characterization
is given of those bipartite tournaments that do not have a Hamiltonian path
with endvertices x and y. Since this characterization is rather complicated,
we shall not state the translation of it (via the BB-correspondence) to 2-
edge-coloured complete bipartite graphs.

6 c-edge-coloured (c ≥ 3) complete and com-

plete bipartite graphs

Let Kc
n denote a c-edge-coloured complete graph with n vertices.

The Hamiltonian cycle problem for c-edge-coloured complete graphs seems
to be much more difficult in the case when c ≥ 3, than in the case c = 2
treated above.

Problem 6.1 [12] Determine the complexity of the Hamiltonian alternating
cycle problem for c-edge-coloured complete graphs when c ≥ 3.

We raise the following analogous problem for Hamiltonian alternating
paths.

Problem 6.2 Determine the complexity of the Hamiltonian alternating path
problem for c-edge-coloured complete graphs when c ≥ 3.

There is a polynomial time algorithm for the Hamiltonian alternating
path problem above if the following generalization of Corollary 5.13 is true.

Conjecture 6.3 A Kc
n (c ≥ 2) has a Hamiltonian alternating path if and

only if Kc
n contains a spanning 1-path-cycle subgraph.

We state a weaker result proved in [4].

Theorem 6.4 If a Kc
n (c ≥ 2) contains a spanning cycle subgraph, then it

has a Hamiltonian alternating path.

We conclude our discussion of Hamiltonian alternating paths by the fol-
lowing simple but perhaps surprising result of Barr [7].
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Theorem 6.5 Every Kc
n without monochromatic triangles has a Hamilto-

nian alternating path.

Another interesting problem is to find a non-trivial characterization of
Hamiltonian c-edge-coloured (c ≥ 3) complete graphs. In the rest of this
section, we consider results from [12] related to Problem 6.1, we give an
example showing that the obvious analogue of Corollary 5.3 is not valid for
c ≥ 3. Later we present some conditions which guarantee the existence of
a Hamiltonian alternating cycle in a c-edge-coloured complete graph. We
also describe results on disjoint alternating paths with fixed end vertices in
c-edge-coloured complete graphs as well as some related problems.

A strictly alternating cycle in Kc
n is a cycle of length pc (p is an integer)

so that the sequence of colours (12...c) is repeated p times.

Theorem 6.6 [12] Let c ≥ 3. The problem of determining the existence of
a Hamiltonian strictly alternating cycle in Kc

n is NP-complete.

The following result shows that if we relax the strict places of colours,
but maintain the number of their appearances in a Hamiltonian cycle, then
we still have an NP-complete problem.

Theorem 6.7 [12] Given positive integers p and c ≥ 3, the problem of de-
termining the existence of a Hamiltonian alternating cycle C of Kc

cp so that
each colour appears p times in C is NP-complete.

The following example shows that the obvious analog of Corollary 5.3
is not valid for c ≥ 3. G6 is 3-edge-coloured complete graph on vertices
1,2,3,4,5,6. All the edges of G6 has colour 1 except of the following: the trian-
gles 2342 and 2562 have colours 2 and 3, resp., χ(36) = χ(45) = 2, χ(12) = 3.
It is easy to check that G6 is colour-connected and has the spanning cycle
subgraph 1231 ∪ 4564, but G6 is not Hamiltonian. Note that the paths that
show that G6 is colour-connected may be chosen so that for each choice of
vertices x and y the two paths P and P ′ described in Definition 3.9 are
internally disjoint. Hence it will not enough to change Definition 3.9 to re-
quire that P and P ′ are disjoint, a condition which is obviously necessary for
the existence of a Hamiltonian alternating cycle. Using the definition of G6,
given an even number n, one can easily construct a 3-edge-coloured complete
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graph on n ≥ 6 vertices which is colour-connected and has a spanning cycle
subgraph, but has no Hamiltonian alternating cycle.

An edge-coloured graph G on n vertices is pancyclic if G has an alternating
cycle of length i, for every i = 3, 4, ..., n.

In [22], Daykin posed the following interesting problem: Find a positive
constant d such that every Kc

n with ∆(Kc
n) ≤ dn is Hamiltonian.

This problem was independently solved by Bollobás and Erdös [15], and
Chen and Daykin [17]. In [15] (in [17]), it was proved that if 69∆(Kc

n) < n
(17∆(Kc

n) ≤ n, resp.), then Kc
n is pancyclic. Shearer improved the last

result showing that if 7∆(Kc
n) < n, then Kc

n is pancyclic. So far, the best
asymptotic estimate was obtained by Alon and the second author [1].

Theorem 6.8 [1] For every ε > 0 there exists an n0 = n0(ε) so that for
every n > n0, every Kc

n satisfying

∆(Kc
n) ≤ (1− 1√

2
− ε)n ( = (0.2928...− ε)n )

is pancyclic.

However, Theorem 6.8 seems to be far from the best possible, at least, if
the following is true.

Conjecture 6.9 [15] Every Kc
n with ∆(Kc

n) ≤ bn/2c − 1 is Hamiltonian.

Clearly, for every n = 4k+1, there exists a K2
n so that both its monochro-

matic graphs is regular of degree 2k. Since such a K2
n is not Hamiltonian (n

is odd), Conjecture 6.9 is sharp. The results above indicate that the graphs
satisfying the conditions of Conjecture 6.9 may be pancyclic.

Chen and Daykin [17] proved that if Kc
m,m is an edge-coloured complete

bipartite graph with partite sets of cardinality m each and ∆(Kc
m,m) ≤ m/25

then Kc
m,m contains a Hamiltonian alternating cycle. This result was im-

proved in [1]:

Theorem 6.10 For every ε > 0 there exists an m0 = m0(ε) so that for every
m > m0, every Kc

m,m satisfying

∆(Kc
m,m) ≤ (1− 1√

2
− ε)m ( = (0.2928...− ε)m )

contains an alternating cycle of every even length between 4 and 2m.
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The estimate of the last theorem again seems to be far from best possible.
Therefore, we pose the following:

Problem 6.11 Determine the maximum constants t1 and t2 such that Kc
m,m

satisfying ∆(Kc
m,m) ≤ t1 (∆(Kc

m,m) ≤ t2, resp.) is Hamiltonian (even-
pancyclic, resp.)

The following problem was considered in [13]:

Problem 6.12 Is there a polynomial algorithm for finding an alternating
cycle through p fixed vertices x1, ..., xp in a c-edge-coloured complete graph?

The same problem for general graphs is proved to be NP-complete [13]
(note that this is a trivial consequence of the BB-correspondence, as described
in Section 4). The authors of [13] gave the positive answer to Problem 6.12
for two cases: c ≥ 2, p = 1 and c = 2, p = 2. In the first case, the solution
follows from the next non-difficult result:

Theorem 6.13 Let x be a vertex in a c-edge-coloured complete graph G.
There exists an alternating cycle through x in G if and only if there exists
an alternating cycle of length three or four containing x.

For the case c = 2, p = 2, Benkouar, Manoussakis and Saad [13] proved
the following:

Theorem 6.14 There is an O(n2)-algorithm for finding an alternating cycle
(if one exists) through two given vertices in a 2-edge-coloured complete graph
with n vertices.

By the DHM-construction, we obtain:

Corollary 6.15 [13] There is an O(n2)-algorithm for finding a cycle (if one
exists) through two given vertices in a bipartite tournament with n vertices.

The last corollary improves the O(n3)-algorithm of Manoussakis and Tuza
[44] for finding a cycle through two given vertices in a bipartite tournament.

The authors of [19] investigated the complexity of the following problem
related to Problem 6.12:
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Problem 6.16 [19] Given a pair of distinct vertices x and y in a c-edge-
coloured complete graph G, find an alternating (x, y)-path through p fixed
vertices x1, ..., xp in G (if one exists).

In [19], it was shown that Problem 6.16 is polynomially solvable for p = 1
and c = 2. The complexity of Problem 6.16 for p = 1 and c ≥ 3 is still open.

Manoussakis [43] proved the existence of a polynomial algorithm for find-
ing the maximum number of internally pairwise vertex-disjoint alternating
(x, y)-paths in a c-edge-coloured complete graph Kc

n with distinct vertices x
and y. He also posed:

Problem 6.17 Is there a polynomial algorithm for finding the maximum
number of internally pairwise edge-disjoint alternating (x, y)-paths in Kc

n?

Manoussakis [43] also considered the so-called linkage problems: for a
given positive integer p and given 2p distinct vertices x1, y1, x2, y2, ..., xp, yp

in Kc
n, construct p pairwise vertex-disjoint (edge-disjoint, resp.) alternating

(xi, yi)-paths, i = 1, 2, ..., p, in Kc
n. He proved that there exists an O(np)-

algorithm for the ”vertex-disjoint” version and an O((n7/ log n)1/2)-algorithm
for the ”edge-disjoint” version of this problem.

7 Miscellaneous results

In this section, we describe some results on the Eulerian trail problem for
edge-coloured graphs as well as results on a special family of 2-edge-coloured
multigraphs that appear in genetics [24].

In [41], Kotzig proved the following characterization of edge-coloured
graphs which contain alternating closed Eulerian trails (see also [27], Theo-
rem VI-1).

Theorem 7.1 An edge-coloured graph G has a closed alternating Eulerian
trail if and only if G is connected, and for each vertex x and each colour i,
d(x) is even and di(x) ≤ ∑

j 6=i dj(x).

Obviously, the conditions above are necessary. To see their sufficiency,
consider an outline of the proof of Theorem 7.1 that is due to the authors of
[12]:
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Suppose G satisfies the conditions of Theorem 7.1. We shall show that,
for every vertex x, the edges of G incident to x can be partitioned into
disjoint pairs of distinct edges so that the colours of the edges in each pair
are different. This guarantees that each time we visit x through an edge e
we can leave it through the edge f forming one of the above pairs with e. In
order to determine this partition, for each vertex x we define a new graph
Gx so that the vertices of Gx are the edges incident to x. Two vertices are
connected in Gx if their corresponding edges in G have different colours. It is
easy to see that the above partition exists iff each Gx has a perfect matching.
Since each Gx is a complete multipartite graph, it is not difficult to prove,
using Tutte’s 1-factor theorem, that each Gx indeed has a perfect matching.
Such a matching can be found in time O(n log n) [12]. The ideas above lead
to an O(n2 log n)-algorithm for finding an alternating Eulerian trail in an
edge-coloured graph G on n vertices that satisfies the conditions of Theorem
7.1.

In [23, 24], Dorninger considers the following family of 2-edge-coloured
multigraphs that appear in genetics. Let π be a permutation of the set N =
{1, 2, ..., 2n} and k be a positive integer. The 2-edge-coloured multigraph
G(π, k) has V (G(π, k)) = N , the red edges {ij : |i − j| ≤ k} and the blue
edges {ij : |π(i)− π(j)| ≤ k}. Dorninger [24] proved the following:

Theorem 7.2 For k = 3 and every permutation π of N , the multigraph
G(π, k) is Hamiltonian.

It was shown [24] that the analogous result does not hold for k = 2 and
an algorithm for checking Hamiltonicity in this case was provided.
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