Establishing Complexity of Problems Parameterized Above Average

Gregory Z. Gutin

Department of Computer Science Royal Holloway, University of London

RHUL, June 2010

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Outline

Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA
- 6 Pseudo-boolean Functions and Max Lin AA
 - Betweenness AA

Introduction

Problems Parameterized Above Average and Strictly Above Expe Linear Ordering AA Exact r-SAT AA Boolean CSPs AA Pseudo-boolean Functions and Max Lin AA Betweenness AA

Outline

1 Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA
- **6** Pseudo-boolean Functions and Max Lin AA
 - 7 Betweenness AA

イロト イポト イヨト イヨト

Introduction

Problems Parameterized Above Average and Strictly Above Expe Linear Ordering AA Exact r-SAT AA Boolean CSPs AA Pseudo-boolean Functions and Max Lin AA Betweenness AA

Fixed-parameter Tractability

- A parameterized problem Π: a set of pairs (*I*, *k*) where *I* is the main part and *k* (usually an integer) is the parameter; *I* is an instance of the classical sense.
- Π is fixed-parameter tractable (FPT) if membership of (I, k)in Π can be decided in time $O(f(k)|I|^c)$, where |I| is the size of I, c = O(1) and f(k) is a computable function.
- The idea: for small values of k, $O(f(k)|I|^c)$ is not too large.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

Problems Parameterized Above Average and Strictly Above Expe Linear Ordering AA Exact r-SAT AA Boolean CSPs AA Pseudo-boolean Functions and Max Lin AA Betweenness AA

Fixed-parameter Tractability

Examples of FPT problems:

- Does a graph G have a vertex cover of size $\leq k$? An algorithm of runtime $O(1.2852^k + kn)$ (Chen, Kanj and Jia, 2001) instead of an $O(n^km)$ -algorithm.
- Does a digraph *D* have a spanning out-tree with $\geq k$ leaves? Algorithms of runtime $4^k n^{O(1)}$ (Kneis, Langer and Rossmanith, 2008) and $3.72^k n^{O(1)}$ (Daligault, Gutin, Kim and Yeo, JCSS 2010) instead of an $O(n^km)$ -algorithm.

イロト イポト イヨト イヨト

- Suggested by Alon, Gutin, Kim, Szeider and Yeo (arXiv'09).
- A bikernelization of Π to Π': a polynomial-time algorithm that maps an instance (x, k) ∈ Π to an instance (x', k') ∈ Π' (the bikernel) such that
 - (x, k) is YES iff (x', k') is YES
 - $k' \leq f(k)$ and $|x'| \leq g(k)$ for some functions f and g.
- The function g(k) is called the size of the bikernel.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Bikernelization-2

- A decidable parameterized problem is FPT iff it is and admits a bikernelization to a parameterized problem.
- Wanted: low degree polynomial-size bikernels to well-studied problems.
- Similar to a theorem in Bodlaender, Thomassé and Yeo on polynomial time and parameter transformations (ESA'09):

Lemma (Alon, Gutin, Kim, Szeider and Yeo)

Let P, P' be a pair of parameterized problems such that P' is in NP and P is NP-complete. If there is a bikernelization from P to P' producing a bikernel of polynomial size, then P has a polynomial-size kernel.

Kernelization

- A kernelization of Π: a polynomial-time algorithm that maps an instance (x, k) ∈ Π to an instance (x', k') ∈ Π (the kernel) such that
 - (x, k) is YES iff (x', k') is YES
 - $k' \leq f(k)$ and $|x'| \leq g(k)$ for some functions f and g.
- The function g(k) is called the size of the kernel.
- A decidable parameterized problem is FPT if and only if it admits a kernelization.
- Wanted: low degree polynomial-size kernels (for preprocessing).
- Does a graph G have a vertex cover of size ≤ k? Kernel of size ≤ 2k (Chen, Kanj and Jia, 2001).

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Outline

Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA
- 6 Pseudo-boolean Functions and Max Lin AA
 - Betweenness AA

Acyclic Subgraphs of Digraphs: Parameterization Above Average

- Parameterization Above Average: Does D = (V, A) have an acyclic subgraph with at least |A|/2 + k arcs? [ACYCLIC AA]
- The bound is tight: For symmetric digraphs, k = 0: a digraph D is symmetric if xy ∈ A implies yx ∈ A.
- Mahajan, Raman and Sikdar (JCSS, 2009): Is ACYCLIC AA fixed-parameter tractable?

イロト イポト イラト イラト

Strictly Above Expectation Method (SAEM): Symmetric Case

- Gutin, Kim, Szeider and Yeo [JCSS, ta]. Problem Π parameterized AA.
- Apply some reduction rules.
- Introduce a random variable X s.t. E(X) = 0 and if Prob(X ≥ k) > 0 then the answer to Π is YES.
- If X is symmetric (X and -X have the same distribution), then Prob($X \ge \sqrt{\mathbb{E}(X^2)}$) > 0.
- If $k \leq \sqrt{\mathbb{E}(X^2)}$ then YES. Otherwise, $\sqrt{\mathbb{E}(X^2)} < k$ and we can often solve the problem using a brute-force algorithm.

イロン イヨン イヨン イヨン

Strictly Above Expectation Method (SAEM): Asymmetric Case

Lemma (Alon, Gutin, Krivelevich, 2004; Alon, Gutin, Kim, Szeider, Yeo, SODA'2010)

Let X be a real random variable and suppose that its first, second and forth moments satisfy $\mathbb{E}(X) = 0$, $\mathbb{E}(X^2) = \sigma^2 > 0$ and $\mathbb{E}(X^4) \le b \cdot (\mathbb{E}(X^2))^2$, respectively. Then Prob($X > \frac{\sigma}{2\sqrt{b}}$) > 0.

Lemma (Hypercontractive Inequality, Bonami, Gross, 1970s)

Let $f = f(x_1, ..., x_n)$ be a polynomial of degree r in n variables $x_1, ..., x_n$. Define a random variable X by choosing a vector $(\varepsilon_1, ..., \varepsilon_n) \in \{-1, 1\}^n$ uniformly at random and setting $X = f(\varepsilon_1, ..., \varepsilon_n)$. Then $\mathbb{E}(X^4) \leq 9^r (\mathbb{E}(X^2))^2$.

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Outline

Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- 3 Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA
- 6 Pseudo-boolean Functions and Max Lin AA

7 Betweenness AA

同 ト イヨ ト イヨト

Reduction Rule for Linear Ordering Problem AA

- LINEAR ORDERING AA: Each arc *ij* has positive integral weight w_{ij} , does D = (V, A) have an acyclic subgraph of weight at least W/2 + k, where $W = \sum_{ii \in A} w_{ij}$?
- Reduction rule: Assume D has a directed 2-cycle iji;
 - if $w_{ij} = w_{ji}$ delete the cycle,
 - if $w_{ij} > w_{ji}$ delete the arc *ji* and replace w_{ij} by $w_{ij} w_{ji}$,
 - if $w_{ji} > w_{ij}$ delete the arc *ij* and replace w_{ji} by $w_{ji} w_{ij}$.
- Thus, we've reduced LINEAR ORDERING AA to the one on oriented graphs.

イロト イヨト イヨト イヨト

SAEM for Linear Ordering AA-1

- Let D = (V, A) be an oriented graph, n = |V|; a bijection: $\alpha : V \rightarrow \{1, \dots, n\}.$
- Define $X(\alpha) = \frac{1}{2} \sum_{ij \in A} \varepsilon_{ij}$, where $\varepsilon_{ij} = w_{ij}$ if $\alpha(i) < \alpha(j)$ and $\varepsilon_{ij} = -w_{ij}$, otherwise.
- We have $X(\alpha) = \sum \{ w_{ij} : ij \in A, \alpha(i) < \alpha(j) \} W/2$. Thus, the answer is YES iff there is an $\alpha : V \rightarrow \{1, \ldots, n\}$ such that $X(\alpha) \ge k$.
- Consider a random bijection: α : V→{1,...,n}. Then X is a random variable.
- Since $\mathbb{E}(\varepsilon_{ij}) = 0$, we have $\mathbb{E}(X) = 0$.

< □ > < @ > < 注 > < 注 > ... 注

SABEM for Linear Ordering AA-2

Lemma

$$\mathbb{E}(X^2) \geq W^{(2)}/12$$
, where $W^{(2)} = \sum_{ij \in A} w_{ij}^2$.

Since X is symmetric, we have Prob($X \ge \sqrt{W^{(2)}/12}$) > 0. Hence, if $\sqrt{W^{(2)}/12} \ge k$, there is an $\alpha : V \rightarrow \{1, \ldots, n\}$ such that $X(\alpha) \ge k$ and, thus, the answer is YES. Otherwise, $|A| \le W^{(2)} < 12 \cdot k^2$. Thus, we have:

Theorem (GG, Kim, Szeider, Yeo, JCSS, ta)

LINEAR ORDERING AA is FPT and has an $O(k^2)$ -size kernel.

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline

Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA
- 6 Pseudo-boolean Functions and Max Lin AA
 - 7 Betweenness AA

イロト イポト イヨト イヨト

Exact *r*-SAT

- EXACT *r*-SAT: A CNF formula \mathcal{F} which contains *m* clauses each with *r* literals. Is there a truth assignment satisfying all *m* clauses of \mathcal{F} ?
- MAX EXACT *r*-SAT: Find a truth assignment satisfying the max number of clauses.
- The prob. of a clause to be satisfied: $1 2^{-r}$.
- The average number of satisfied clauses: (1 2^{-r})m. This lower bound is tight.

イロト イヨト イヨト イヨト

Exact r-SAT AA-1

- EXACT r-SAT AA: Is there a truth assignment satisfying $\geq (1 2^{-r})m + k2^{-r}$ clauses?
- Mahajan, Raman and Sikdar (JCSS, 2009): What is the parameterized complexity of EXACT *r*-SAT AA for each fixed *r*?
- Alon, GG, Kim, Szeider and Yeo (SODA 2010): EXACT *r*-SAT AA is FPT.

Exact r-SAT AA-2

•
$$-1 = true$$

•
$$X = \sum_{C \in \mathcal{F}} [1 - \prod_{x_i \in var(C)} (1 + \varepsilon_i x_i)]$$
, where var's $x_i \in \{-1, 1\}$, coef's $\varepsilon_i \in \{-1, 1\}$ and $\varepsilon_i = 1$ iff x_i is in C.

• For a truth assignment
$$\tau$$
, we have $X = 2^r (\operatorname{sat}(\tau, F) - (1 - 2^{-r})m).$

• The answer to EXACT *r*-SAT AA is YES iff $X \ge k$.

æ

Exact r-SAT AA-3

- After algebraic simplification: $X = \sum_{I \in S} X_I$, where $X_I = c_I \prod_{i \in I} x_i$, where each c_I is a nonzero integer and S is a family of nonempty subsets of [n] each with at most r elements.
- This is a Fourier expansion of X over orthogonal basis $\prod_{i \in I} x_i, I \subseteq [n]$.

イロン イヨン イヨン イヨン

Exact r-SAT AA-4

- Choose x_i randomly. Then X is random.
- $\mathbb{E}(X) = 0$ [Condition 1 of the Alon et al. inequality]
- $\mathbb{E}(X^2) = \sum_{I \in S} c_I^2 > 0$ [by Parseval's Theorem]
- By Hypercontractive Inequality, 𝔼(𝑋⁴) ≤ 9^r𝔼(𝑋²)².
 [Condition 2 of the Alon et al. inequality]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Exact r-SAT AA-5

- By the Alon et. al. inequality, $\operatorname{Prob}(X \geq \frac{\sqrt{\mathbb{E}(X^2)}}{2 \cdot 3^r}) > 0.$
- $\mathbb{E}(X^2) = \sum_{I \in \mathcal{S}} c_I^2 \ge |\mathcal{S}| > 0$
- If $k \leq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 3^r}$ then YES.
- Otherwise $r|\mathcal{S}| \leq 4r9^r k^2 = O(k^2)$.

・ロン ・回と ・ヨン ・ヨン

Exact r-SAT AA-6

- MAX *r*-LIN AA: $X = \sum_{I \in S} X_I$, where $X_I = c_I \prod_{i \in I} x_i$; is max $X \ge k$?
- Thus, an $O(k^2)$ -size bikernel from Exact *r*-SAT AA to Max *r*-Lin AA.
- More work gives: O(k²)-size kernel (Alon, GG, Kim, Szeider and Yeo, arXiv'09):

イロト イヨト イヨト イヨト

Outline

Introduction

- **2** Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA

5 Boolean CSPs AA

6 Pseudo-boolean Functions and Max Lin AA

Betweenness AA

イロト イポト イヨト イヨト

Boolean CSP AA-1

- Let *r* be a fixed positive integer.
- Let Φ be a set of Boolean functions, each with at most r var's out of n var's x₁,..., x_n.
- MAX-*r*-CSP: $\mathcal{F} = \{f_1, f_2, \dots, f_m\}, f_i \in \Phi$; satisfy the max number of f_i 's.

イロン イヨン イヨン イヨン

Boolean CSP AA-2

- Alon, GG, Kim, Szeider and Yeo, arXiv'09.
- MAX-r-CSP AA: Is there a truth assignment satisfying ≥ 𝔼(sat(𝓕)) + 𝑘 formulas?
- If Φ is closed under replacing each x_i by \overline{x}_i , then $\mathbb{E}(\operatorname{sat}(F))$ is a tight LB.
- There is an $O(k^2)$ -size bikernel from MAX-r-CSP AA to MAX r-LIN AA.
- Bikernel Lemma implies polynomial-size kernel for MAX-*r*-CSP AA.

イロン イヨン イヨン イヨン

Outline

Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA

6 Pseudo-boolean Functions and Max Lin AA

Betweenness AA

イロト イヨト イヨト イヨト

Fourier Expansions of Pseudo-boolean Functions

- Pseudo-boolean function: an arbitrary $f : \{-1, +1\}^n \to \mathbb{R}$.
- It can be uniquely written as $f(x) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$ (Fourier expansion of f).
- c_S are the Fourier coefficients of f; $c_S = \hat{f}(S)$.
- $\prod_{i \in S} x_i$ form an orthogonal basis.

イロン イヨン イヨン イヨン

Pseudo-boolean Functions and Linear Equations

•
$$f(x) = \hat{f}(\emptyset) + \sum_{S \in \mathcal{F}} c_S \prod_{i \in S} x_i$$
, where
 $\mathcal{F} = \{\emptyset \neq S \subseteq [n] : c_S \neq 0\}.$

- A weighted system Az = b of linear equations on \mathbb{F}_2^n : for each $S \in \mathcal{F}$, we have an equation $\sum_{i \in S} z_i = b_S$ with weight $|c_S|$, where $b_S = 0$ if $c_S > 0$ and $b_S = 1$, otherwise.
- The max excess of Az = b is max of the total weight of satisfied equations minus the total weight of falsified equations.
- $\max_{x \in \{-1,+1\}^n} f(x) \hat{f}(\emptyset) = \max$ excess of Az = b.
- Lower bounds on max f via max excess.

イロト イポト イラト イラト

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Max Lin

- MAX LIN: Given a weighted system (all weights are positive) of linear equations over 𝔽ⁿ₂, maximize the max excess of Az = b.
- MAX r-LIN: Each equation has at most r variables.
- Håstad (2001): unless P=NP for each ε > 0, there is no polynomial algorithm for distinguishing instances of MAX 3-LIN in which at least (1 ε)m equations can be simultaneously satisfied from instances in which less than (1/2 + ε)m equations can be simultaneously satisfied.

回 と く ヨ と く ヨ と

Introduction Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Max Lin AA

- MAX LIN AA: Given a weighted system (all weights are positive integers) of *m* linear equations over 𝔽ⁿ₂, is the max excess of Az = b at least k?
- It can be solved in time $O(m^{k+O(1)})$ (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)
- We believe that MAX LIN AA is not FPT (too 'general').

FPT Special Cases of Max Lin AA: 'Symmetric'

- Assumption: rank A = n, the number of variables.
- Using Symmetric SAEM (GG, Kim, Szeider, Yeo, JCSS 2010):

Theorem

If \exists a set U of vars s.t. each equation has odd number of vars from U, then MAX LIN AA is FPT and has a quadratic kernel.

< ロ > < 回 > < 回 > < 回 > <</p>

FPT Special Cases of Max Lin AA: 'Small' Systems

Assumptions: (i) Equations in Az = b are distinct, (2) rankA = n.

Theorem (Excess Theorem; Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

Let $k \ge 2$. If $k \le m \le 2^{n/(k-1)} - 2$, then the maximum excess of Az = b is at least k, i.e., Az = b constitutes a YES-instance. Moreover, we can find an assignment that achieves an excess of at least k in time $m^{O(1)}$.

Using the Excess Theorem:

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

Let p(n) be an arbitrary function s.t. p(n) = o(n). If $m \le 2^{p(n)}$ then MAX LIN AA is FPT.

Smaller Kernels

Using the Excess Theorem:

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

For each fixed integral $r \ge 2$ MAX r-LIN AA admits a kernel on $O(k \log k)$ variables.

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

For each fixed integral $r \ge 2$ MAX EXACT r-SAT AA admits a kernel on $O(k \log k)$ variables.

イロト イヨト イヨト イヨト

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Outline

Introduction

- Problems Parameterized Above Average and Strictly Above Expectation Method
- **3** Linear Ordering AA
- Exact r-SAT AA
- **5** Boolean CSPs AA
- 6 Pseudo-boolean Functions and Max Lin AA

Betweenness AA

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Betweenness AA

- Let V = {v₁,..., v_n} be a set of variables and let C be a set of m betweenness constraints of the form (v_i, {v_j, v_k}).
- Given a bijection α : $V \rightarrow \{1, ..., n\}$, we say that a constraint $(v_i, \{v_j, v_k\})$ is satisfied if either $\alpha(v_j) < \alpha(v_i) < \alpha(v_k)$ or $\alpha(v_k) < \alpha(v_i) < \alpha(v_j)$.
- BETWEENNESS: find a bijection α satisfying the max number of constraints in C.
- Tight Lower Bound: m/3, the expectation number of satisfied constraints is m/3.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Introduction	
Problems Parameterized Above Average and Strictly Above Expe	
Linear Ordering AA	
Exact r-SAT AA	
Boolean CSPs AA	
Pseudo-boolean Functions and Max Lin AA	
Betweenness AA	

Difficulties

- BETWEENNESS AA: Is there α that satisfies ≥ m/3 + κ constraints? (κ is the parameter)
- Benny Chor's question in Niedermeier's book (2006): What is the parameterized complexity of BETWEENNESS AA?
- Difficult to estimate E(X²), practically impossible to do E(X⁴), but we cannot use Hypercontractive Inequality as X is not a polynomial of constant-bounded degree.
- What to do?

Way Around Difficulties-1

- Gutin, Kim, Mnich and Yeo [JCSS, ta]: BETWEENNESS AA has an O(κ²)-kernel.
- An instance (V, C), where V is the set of variables and $C = \{C_1, \ldots, C_m\}$ is the set of betweenness constraints.
- A random function $\phi : V \rightarrow \{0, 1, 2, 3\}.$
- ϕ -compatible bijections α : if $\phi(v_i) < \phi(v_j)$ then $\alpha(v_i) < \alpha(v_j)$.

イロン 不同と 不同と 不同と

Way Around Difficulties-2

- Let α be a random ϕ -compatible bijection and $\nu_p(\alpha) = 1$ if C_p is satisfied and 0, otherwise.
- Let the weights $w(C_p, \phi) = \mathbb{E}(\nu_p(\alpha)) 1/3$ and $w(\mathcal{C}, \phi) = \sum_{p=1}^m w(C_p, \phi)$.

Lemma

If $w(\mathcal{C}, \phi) \geq \kappa$ then (V, \mathcal{C}) is a YES-instance of BETWEENNESS AA.

- Thus, to solve BETWEENNESS AA, it suffices to find ϕ for which $w(\mathcal{C}, \phi) \geq \kappa$.
- We may forget about bijections α !

・ロト ・回ト ・ヨト ・ヨト

Thank you!

- Questions?
- Comments?

・ロト ・回ト ・ヨト ・ヨト

æ