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Fixed-parameter Tractability

A parameterized problem Π: a set of pairs (I , k) where I is
the main part and k (usually an integer) is the parameter; I is
an instance of the classical sense.

Π is fixed-parameter tractable (FPT) if membership of (I , k)
in Π can be decided in time O(f (k)|I |c), where |I | is the size
of I , c = O(1) and f (k) is a computable function.

The idea: for small values of k , O(f (k)|I |c) is not too large.
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Fixed-parameter Tractability

Examples of FPT problems:

Does a graph G have a vertex cover of size ≤ k? An
algorithm of runtime O(1.2852k + kn) (Chen, Kanj and Jia,
2001) instead of an O(nkm)-algorithm.

Does a digraph D have a spanning out-tree with ≥ k leaves?
Algorithms of runtime 4knO(1) (Kneis, Langer and
Rossmanith, 2008) and 3.72knO(1) (Daligault, Gutin, Kim and
Yeo, JCSS 2010) instead of an O(nkm)-algorithm.
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Bikernelization-1

Suggested by Alon, Gutin, Kim, Szeider and Yeo (arXiv’09).

A bikernelization of Π to Π′: a polynomial-time algorithm that
maps an instance (x , k) ∈ Π to an instance (x ′, k ′) ∈ Π′ (the
bikernel) such that

(x , k) is yes iff (x ′, k ′) is yes
k ′ ≤ f (k) and |x ′| ≤ g(k) for some functions f and g .

The function g(k) is called the size of the bikernel.
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Bikernelization-2

A decidable parameterized problem is FPT iff it is and admits
a bikernelization to a parameterized problem.

Wanted: low degree polynomial-size bikernels to well-studied
problems.

Similar to a theorem in Bodlaender, Thomassé and Yeo on
polynomial time and parameter transformations (ESA’09):

Lemma (Alon, Gutin, Kim, Szeider and Yeo)

Let P,P ′ be a pair of parameterized problems such that P ′ is in
NP and P is NP-complete. If there is a bikernelization from P to
P ′ producing a bikernel of polynomial size, then P has a
polynomial-size kernel.
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Kernelization

A kernelization of Π: a polynomial-time algorithm that maps
an instance (x , k) ∈ Π to an instance (x ′, k ′) ∈ Π (the kernel)
such that

(x , k) is yes iff (x ′, k ′) is yes
k ′ ≤ f (k) and |x ′| ≤ g(k) for some functions f and g .

The function g(k) is called the size of the kernel.

A decidable parameterized problem is FPT if and only if it
admits a kernelization.

Wanted: low degree polynomial-size kernels (for
preprocessing).

Does a graph G have a vertex cover of size ≤ k? Kernel of
size ≤ 2k (Chen, Kanj and Jia, 2001).
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Acyclic Subgraphs of Digraphs: Parameterization
Above Average

Parameterization Above Average: Does D = (V ,A) have an
acyclic subgraph with at least |A|/2 + k arcs? [Acyclic AA]

The bound is tight: For symmetric digraphs, k = 0: a digraph
D is symmetric if xy ∈ A implies yx ∈ A.

Mahajan, Raman and Sikdar (JCSS, 2009): Is Acyclic AA
fixed-parameter tractable?
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Strictly Above Expectation Method (SAEM):
Symmetric Case

Gutin, Kim, Szeider and Yeo [JCSS, ta]. Problem Π
parameterized AA.

Apply some reduction rules.

Introduce a random variable X s.t. E(X ) = 0 and if
Prob(X ≥ k) > 0 then the answer to Π is yes.

If X is symmetric (X and −X have the same distribution),
then Prob( X ≥

√
E(X 2) ) > 0.

If k ≤
√

E(X 2) then yes. Otherwise,
√

E(X 2) < k and we
can often solve the problem using a brute-force algorithm.
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Strictly Above Expectation Method (SAEM):
Asymmetric Case

Lemma (Alon, Gutin, Krivelevich, 2004; Alon, Gutin, Kim,
Szeider, Yeo, SODA’2010)

Let X be a real random variable and suppose that its first, second
and forth moments satisfy E(X ) = 0, E(X 2) = σ2 > 0 and
E(X 4) ≤ b · (E(X 2))2, respectively. Then Prob( X > σ

2
√

b
) > 0.

Lemma (Hypercontractive Inequality, Bonami, Gross, 1970s)

Let f = f (x1, . . . , xn) be a polynomial of degree r in n variables
x1, . . . , xn. Define a random variable X by choosing a vector
(ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting
X = f (ε1, . . . , εn). Then E(X 4) ≤ 9r (E(X 2))2.
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Reduction Rule for Linear Ordering Problem AA

Linear Ordering AA: Each arc ij has positive integral
weight wij , does D = (V ,A) have an acyclic subgraph of
weight at least W /2 + k , where W =

∑
ij∈A wij?

Reduction rule: Assume D has a directed 2-cycle iji ;

if wij = wji delete the cycle,
if wij > wji delete the arc ji and replace wij by wij − wji ,
if wji > wij delete the arc ij and replace wji by wji − wij .

Thus, we’ve reduced Linear Ordering AA to the one on
oriented graphs.
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SAEM for Linear Ordering AA-1

Let D = (V ,A) be an oriented graph, n = |V |; a bijection:
α : V→{1, . . . , n}.
Define X (α) = 1

2

∑
ij∈A εij , where εij = wij if α(i) < α(j) and

εij = −wij , otherwise.

We have X (α) =
∑
{wij : ij ∈ A, α(i) < α(j)} −W /2. Thus,

the answer is yes iff there is an α : V→{1, . . . , n} such that
X (α) ≥ k .

Consider a random bijection: α : V→{1, . . . , n}. Then X is a
random variable.

Since E(εij) = 0, we have E(X ) = 0.
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SABEM for Linear Ordering AA-2

Lemma

E(X 2) ≥W (2)/12, where W (2) =
∑

ij∈A w2
ij .

Since X is symmetric, we have Prob( X ≥
√

W (2)/12 ) > 0.
Hence, if

√
W (2)/12 ≥ k, there is an α : V→{1, . . . , n} such that

X (α) ≥ k and, thus, the answer is yes. Otherwise,
|A| ≤W (2) < 12 · k2. Thus, we have:

Theorem (GG, Kim, Szeider, Yeo, JCSS, ta)

Linear Ordering AA is FPT and has an O(k2)-size kernel.
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Exact r-SAT

Exact r-SAT: A CNF formula F which contains m clauses
each with r literals. Is there a truth assignment satisfying all
m clauses of F?

Max Exact r-SAT: Find a truth assignment satisfying the
max number of clauses.

The prob. of a clause to be satisfied: 1− 2−r .

The average number of satisfied clauses: (1− 2−r )m. This
lower bound is tight.
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Exact r-SAT AA-1

Exact r-SAT AA: Is there a truth assignment satisfying
≥ (1− 2−r )m + k2−r clauses?

Mahajan, Raman and Sikdar (JCSS, 2009): What is the
parameterized complexity of Exact r-SAT AA for each
fixed r?

Alon, GG, Kim, Szeider and Yeo (SODA 2010): Exact
r-SAT AA is FPT.
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Exact r-SAT AA-2

−1 = true.

X =
∑

C∈F [1−
∏

xi∈var(C)(1 + εixi )], where var’s
xi ∈ {−1, 1}, coef’s εi ∈ {−1, 1} and εi = 1 iff xi is in C .

For a truth assignment τ , we have
X = 2r (sat(τ,F )− (1− 2−r )m).

The answer to Exact r-SAT AA is Yes iff X ≥ k.
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Exact r-SAT AA-3

After algebraic simplification: X =
∑

I∈S XI , where
XI = cI

∏
i∈I xi , where each cI is a nonzero integer and S is a

family of nonempty subsets of [n] each with at most r
elements.

This is a Fourier expansion of X over orthogonal basis∏
i∈I xi , I ⊆ [n].
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Exact r-SAT AA-4

Choose xi randomly. Then X is random.

E(X ) = 0 [Condition 1 of the Alon et al. inequality]

E(X 2) =
∑

I∈S c2
I > 0 [by Parseval’s Theorem]

By Hypercontractive Inequality, E(X 4) ≤ 9rE(X 2)2.
[Condition 2 of the Alon et al. inequality]

Gregory Z. Gutin Establishing Complexity



Introduction
Problems Parameterized Above Average and Strictly Above Expectation Method

Linear Ordering AA
Exact r-SAT AA

Boolean CSPs AA
Pseudo-boolean Functions and Max Lin AA

Betweenness AA

Exact r-SAT AA-5

By the Alon et. al. inequality, Prob(X ≥
√

E(X 2)
2·3r ) > 0.

E(X 2) =
∑

I∈S c2
I ≥ |S| > 0

If k ≤
√
|S|

2·3r then yes.

Otherwise r |S| ≤ 4r9r k2 = O(k2).
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Exact r-SAT AA-6

Max r-Lin AA: X =
∑

I∈S XI , where XI = cI
∏

i∈I xi ; is
max X ≥ k?

Thus, an O(k2)-size bikernel from Exact r -SAT AA to Max
r -Lin AA.

More work gives: O(k2)-size kernel (Alon, GG, Kim, Szeider
and Yeo, arXiv’09):
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Boolean CSP AA-1

Let r be a fixed positive integer.

Let Φ be a set of Boolean functions, each with at most r var’s
out of n var’s x1, . . . , xn.

Max-r-CSP: F = {f1, f2, . . . , fm}, fi ∈ Φ; satisfy the max
number of fi ’s.
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Boolean CSP AA-2

Alon, GG, Kim, Szeider and Yeo, arXiv’09.

Max-r-CSP AA: Is there a truth assignment satisfying
≥ E(sat(F )) + k formulas?

If Φ is closed under replacing each xi by x i , then E(sat(F )) is
a tight LB.

There is an O(k2)-size bikernel from Max-r-CSP AA to
Max r-Lin AA.

Bikernel Lemma implies polynomial-size kernel for
Max-r-CSP AA.
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Fourier Expansions of Pseudo-boolean Functions

Pseudo-boolean function: an arbitrary f : {−1,+1}n → R.

It can be uniquely written as f (x) =
∑

S⊆[n] cS
∏

i∈S xi

(Fourier expansion of f ).

cS are the Fourier coefficients of f ; cS = f̂ (S).∏
i∈S xi form an orthogonal basis.
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Pseudo-boolean Functions and Linear Equations

f (x) = f̂ (∅) +
∑

S∈F cS
∏

i∈S xi , where
F = {∅ 6= S ⊆ [n] : cS 6= 0}.
A weighted system Az = b of linear equations on Fn

2: for each
S ∈ F , we have an equation

∑
i∈S zi = bS with weight |cS |,

where bS = 0 if cS > 0 and bS = 1, otherwise.

The max excess of Az = b is max of the total weight of
satisfied equations minus the total weight of falsified
equations.

maxx∈{−1,+1}n f (x)− f̂ (∅) = max excess of Az = b.

Lower bounds on max f via max excess.
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Max Lin

Max Lin: Given a weighted system (all weights are positive)
of linear equations over Fn

2, maximize the max excess of
Az = b.

Max r-Lin: Each equation has at most r variables.

Håstad (2001): unless P=NP for each ε > 0, there is no
polynomial algorithm for distinguishing instances of Max
3-Lin in which at least (1− ε)m equations can be
simultaneously satisfied from instances in which less than
(1/2 + ε)m equations can be simultaneously satisfied.
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Max Lin AA

Max Lin AA: Given a weighted system (all weights are
positive integers) of m linear equations over Fn

2, is the max
excess of Az = b at least k?

It can be solved in time O(mk+O(1)) (Crowston, GG, Jones,
Kim, Ruzsa, SWAT 2010)

We believe that Max Lin AA is not FPT (too ‘general’).
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FPT Special Cases of Max Lin AA: ‘Symmetric’

Assumption: rankA = n, the number of variables.

Using Symmetric SAEM (GG, Kim, Szeider, Yeo, JCSS 2010):

Theorem

If ∃ a set U of vars s.t. each equation has odd number of vars
from U, then Max Lin AA is FPT and has a quadratic kernel.
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FPT Special Cases of Max Lin AA: ‘Small’ Systems

Assumptions: (i) Equations in Az = b are distinct, (2) rankA = n.

Theorem (Excess Theorem; Crowston, GG, Jones, Kim,
Ruzsa, SWAT 2010)

Let k ≥ 2. If k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of
Az = b is at least k, i.e., Az = b constitutes a yes-instance.
Moreover, we can find an assignment that achieves an excess of at
least k in time mO(1).

Using the Excess Theorem:

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

Let p(n) be an arbitrary function s.t. p(n) = o(n). If m ≤ 2p(n)

then Max Lin AA is FPT.
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Smaller Kernels

Using the Excess Theorem:

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

For each fixed integral r ≥ 2 Max r-Lin AA admits a kernel on
O(k log k) variables.

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

For each fixed integral r ≥ 2 Max Exact r-SAT AA admits a
kernel on O(k log k) variables.
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Betweenness AA

Let V = {v1, . . . , vn} be a set of variables and let C be a set
of m betweenness constraints of the form (vi , {vj , vk}).

Given a bijection α : V→{1, . . . , n}, we say that a constraint
(vi , {vj , vk}) is satisfied if either α(vj) < α(vi ) < α(vk) or
α(vk) < α(vi ) < α(vj).

Betweenness: find a bijection α satisfying the max number
of constraints in C.

Tight Lower Bound: m/3, the expectation number of satisfied
constraints is m/3.

Gregory Z. Gutin Establishing Complexity



Introduction
Problems Parameterized Above Average and Strictly Above Expectation Method

Linear Ordering AA
Exact r-SAT AA

Boolean CSPs AA
Pseudo-boolean Functions and Max Lin AA

Betweenness AA

Difficulties

Betweenness AA: Is there α that satisfies ≥ m/3 + κ
constraints? (κ is the parameter)

Benny Chor’s question in Niedermeier’s book (2006): What is
the parameterized complexity of Betweenness AA?

Difficult to estimate E(X 2), practically impossible to do
E(X 4), but we cannot use Hypercontractive Inequality as X is
not a polynomial of constant-bounded degree.

What to do?
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Way Around Difficulties-1

Gutin, Kim, Mnich and Yeo [JCSS, ta]: Betweenness AA
has an O(κ2)-kernel.

An instance (V , C), where V is the set of variables and
C = {C1, . . . ,Cm} is the set of betweenness constraints.

A random function φ : V → {0, 1, 2, 3}.
φ-compatible bijections α: if φ(vi ) < φ(vj) then
α(vi ) < α(vj).

Gregory Z. Gutin Establishing Complexity



Introduction
Problems Parameterized Above Average and Strictly Above Expectation Method

Linear Ordering AA
Exact r-SAT AA

Boolean CSPs AA
Pseudo-boolean Functions and Max Lin AA

Betweenness AA

Way Around Difficulties-2

Let α be a random φ-compatible bijection and νp(α) = 1 if
Cp is satisfied and 0, otherwise.

Let the weights w(Cp, φ) = E(νp(α))− 1/3 and
w(C, φ) =

∑m
p=1 w(Cp, φ).

Lemma

If w(C, φ) ≥ κ then (V , C) is a Yes-instance of Betweenness
AA.

Thus, to solve Betweenness AA, it suffices to find φ for
which w(C, φ) ≥ κ.

We may forget about bijections α !
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Thank you!

Questions?

Comments?
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