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Introduction

Fixed-parameter Tractability

@ A parameterized problem [1: a set of pairs (/, k) where / is
the main part and k (usually an integer) is the parameter; [ is
an instance of the classical sense.

o [1is fixed-parameter tractable (FPT) if membership of (/, k)
in I can be decided in time O(f(k)|/|¢), where |/]| is the size
of I, ¢ = O(1) and f(k) is a computable function.

@ The idea: for small values of k, O(f(k)|l|) is not too large.
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Introduction

Fixed-parameter Tractability

Examples of FPT problems:

@ Does a graph G have a vertex cover of size < k7?7 An
algorithm of runtime O(1.2852% + kn) (Chen, Kanj and Jia,
2001) instead of an O(n*m)-algorithm.

@ Does a digraph D have a spanning out-tree with > k leaves?
Algorithms of runtime 4%p°) (Kneis, Langer and
Rossmanith, 2008) and 3.72¥n°(1) (Daligault, Gutin, Kim and
Yeo, JCSS 2010) instead of an O(n*m)-algorithm.
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Introduction

Bikernelization-1

@ Suggested by Alon, Gutin, Kim, Szeider and Yeo (arXiv'09).

@ A bikernelization of I to I’: a polynomial-time algorithm that
maps an instance (x, k) € I to an instance (x, k") € I’ (the
bikernel) such that

o (x,k)is YES iff (x', k") is YES
o k' < f(k)and |x'| < g(k) for some functions f and g.

@ The function g(k) is called the size of the bikernel.
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Introduction

Bikernelization-2

@ A decidable parameterized problem is FPT iff it is and admits
a bikernelization to a parameterized problem.

@ Wanted: low degree polynomial-size bikernels to well-studied
problems.

@ Similar to a theorem in Bodlaender, Thomassé and Yeo on
polynomial time and parameter transformations (ESA’'09):

Lemma (Alon, Gutin, Kim, Szeider and Yeo)

Let P, P’ be a pair of parameterized problems such that P’ is in
NP and P is NP-complete. If there is a bikernelization from P to
P’ producing a bikernel of polynomial size, then P has a
polynomial-size kernel.
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Introduction

Kernelization

@ A kernelization of I1: a polynomial-time algorithm that maps
an instance (x, k) € M to an instance (x', k") € N (the kernel)
such that

o (x,k)is YEs iff (x', k") is YES
e k' < f(k)and |x'| < g(k) for some functions f and g.
@ The function g(k) is called the size of the kernel.

@ A decidable parameterized problem is FPT if and only if it
admits a kernelization.

@ Wanted: low degree polynomial-size kernels (for
preprocessing).

@ Does a graph G have a vertex cover of size < k7 Kernel of
size < 2k (Chen, Kanj and Jia, 2001).
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Problems Parameterized Above Average and Strictly Above Expe

Acyclic Subgraphs of Digraphs: Parameterization
Above Average

@ Parameterization Above Average: Does D = (V, A) have an
acyclic subgraph with at least |A|/2 + k arcs? [ACYCLIC AA]

@ The bound is tight: For symmetric digraphs, kK = 0: a digraph
D is symmetric if xy € A implies yx € A.

@ Mahajan, Raman and Sikdar (JCSS, 2009): Is AcycLic AA
fixed-parameter tractable?
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Problems Parameterized Above Average and Strictly Above Expe

Strictly Above Expectation Method (SAEM):
Symmetric Case

@ Gutin, Kim, Szeider and Yeo [JCSS, ta]. Problem Il
parameterized AA.

@ Apply some reduction rules.

@ Introduce a random variable X s.t. E(X) =0 and if
Prob(X > k) > 0 then the answer to [ is YES.

e If X is symmetric (X and —X have the same distribution),

then Prob( X > /E(X?) ) > 0.
o If k < \/E(X?) then YEs. Otherwise, \/E(X?) < k and we
can often solve the problem using a brute-force algorithm.
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Problems Parameterized Above Average and Strictly Above Expe

Strictly Above Expectation Method (SAEM):

Asymmetric Case

Lemma (Alon, Gutin, Krivelevich, 2004; Alon, Gutin, Kim,
Szeider, Yeo, SODA’2010)

Let X be a real random variable and suppose that its first, second
and forth moments satisfy E(X) = 0, E(X?) = 02 > 0 and
E(X*) < b- (E(X?))?, respectively. Then Prob( X > 2\f )

Lemma (Hypercontractive Inequality, Bonami, Gross, 1970s)

Let f = f(x1,...,xn) be a polynomial of degree r in n variables
Xi,...,Xp. Define a random variable X by choosing a vector
(€1,...,en) € {—1,1}" uniformly at random and setting

X = f(e1,...,en). Then E(X*) < 97(E(X?))2.

> 0.
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Linear Ordering AA

Reduction Rule for Linear Ordering Problem AA

o LINEAR ORDERING AA: Each arc ij has positive integral
weight wjj, does D = (V/, A) have an acyclic subgraph of
weight at least W/2 + k, where W =} ., w;;?

@ Reduction rule: Assume D has a directed 2-cycle iji;

o if wj = wj; delete the cycle,
o if w; > wj delete the arc ji and replace wj by wj; — wy,
o if wji > wj; delete the arc jj and replace wj; by wj — w;.

@ Thus, we've reduced LINEAR ORDERING AA to the one on
oriented graphs.
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Linear Ordering AA

SAEM for Linear Ordering AA-1

@ Let D = (V,A) be an oriented graph, n = |V/|; a bijection:
a:V—{1,...,n}.

o Define X(a) = %ZUGA gij, where gj; = wj; if a(i) < a(j) and

€jj = —wjj, otherwise.

e We have X(a) = > {wj: ij € A (i) < a(j)} — W/2. Thus,
the answer is YES iff there is an a : V—{1,..., n} such that
X(a) > k.

o Consider a random bijection: a: V—{1,...,n}. Then X is a

random variable.
@ Since E(gj) =0, we have E(X) = 0.
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Linear Ordering AA

SABEM for Linear Ordering AA-2

IE(XQ) > W(Q)/12, where W) = ZijeA Wlf

Since X is symmetric, we have Prob( X > /W2 /12 ) > 0.
Hence, if /W(2) /12 > k, there is an a : V—{1,..., n} such that
X(a) > k and, thus, the answer is YES. Otherwise,

|Al < W) <12 k2. Thus, we have:

Theorem (GG, Kim, Szeider, Yeo, JCSS, ta)

LINEAR ORDERING AA is FPT and has an O(k?)-size kernel.
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Exact r-SAT AA

Exact r-SAT

o Exact r-SAT: A CNF formula F which contains m clauses
each with r literals. Is there a truth assignment satisfying all
m clauses of F?

@ MAX EXAcT r-SAT: Find a truth assignment satisfying the
max number of clauses.

@ The prob. of a clause to be satisfied: 1 —27".

@ The average number of satisfied clauses: (1 —27")m. This
lower bound is tight.
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Exact r-SAT AA

Exact r-SAT AA-1

@ ExACT r-SAT AA: Is there a truth assignment satisfying
> (1—=2"")m+ k27" clauses?

@ Mahajan, Raman and Sikdar (JCSS, 2009): What is the

parameterized complexity of ExacT r-SAT AA for each
fixed r?

@ Alon, GG, Kim, Szeider and Yeo (SODA 2010): Exact
r-SAT AA is FPT.
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Exact r-SAT AA

Exact r-SAT AA-2

@ —1 = true.

o X =3 cerll — [Tgevar(c)(1 +€ixi)], where var's
xi € {—1,1}, coef's ¢; € {)—1, 1} and g; = 1 iff x; is in C.

@ For a truth assignment 7, we have
X =2 (sat(r, F) — (1L =27 ")m).
@ The answer to ExacT r-SAT AA is YEs iff X > k.
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Exact r-SAT AA

Exact r-SAT AA-3

o After algebraic simplification: X =3, X;, where
Xi = ¢ [I;¢; xi» where each ¢, is a nonzero integer and S is a
family of nonempty subsets of [n] each with at most r
elements.

@ This is a Fourier expansion of X over orthogonal basis
[Lic/xi, 1 < [n].
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Exact r-SAT AA

Exact r-SAT AA-4

@ Choose x; randomly. Then X is random.
e E(X)=0 [Condition 1 of the Alon et al. inequality]
o E(X?) =35 ¢ > 0 [by Parseval’s Theorem]

e By Hypercontractive Inequality, E(X*) < 9"E(X?)2.
[Condition 2 of the Alon et al. inequality]
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Exact r-SAT AA

Exact r-SAT AA-5

@ By the Alon et. al. inequality, Prob(X > gg{”

0 B(X?) = Yyes > IS| > 0

) > 0.

o If k< \2/; then YES.

@ Otherwise r|S| < 4r9"k? = O(k?).
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Exact r-SAT AA

Exact r-SAT AA-6

@ MAX r-LIN AA: X = 37,5 X, where X; = ¢/ [T, xii is
max X > k?

@ Thus, an O(k?)-size bikernel from Exact r-SAT AA to Max
r-Lin AA.

@ More work gives: O(k?)-size kernel (Alon, GG, Kim, Szeider
and Yeo, arXiv'09):
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Boolean CSPs AA

Boolean CSP AA-1

@ Let r be a fixed positive integer.

@ Let ® be a set of Boolean functions, each with at most r var's
out of nvar's x,..., Xx,.

© MAX-r-CSP: F = {fi,f,...,fm}, fi € ®; satisfy the max
number of f's.
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Boolean CSPs AA

Boolean CSP AA-2

Alon, GG, Kim, Szeider and Yeo, arXiv'09.

MAX-r-CSP AA: Is there a truth assignment satisfying
> E(sat(F)) + k formulas?

@ If & is closed under replacing each x; by X;, then E(sat(F)) is
a tight LB.

There is an O(k?)-size bikernel from MAx-r-CSP AA to
MAX r-LIN AA.

Bikernel Lemma implies polynomial-size kernel for
Max-r-CSP AA.

Gregory Z. Gutin Establishing Complexity



Pseudo-boolean Functions and Max Lin AA

Outline

@ Pseudo-boolean Functions and Max Lin AA

Gregory Z. Gutin Establishing Complexity



Pseudo-boolean Functions and Max Lin AA

Fourier Expansions of Pseudo-boolean Functions

@ Pseudo-boolean function: an arbitrary f : {—1,+1}" — R.

@ It can be uniquely written as f(x) = ZSC[n] cs [ljesxi
(Fourier expansion of f).

@ cs are the Fourier coefficients of f; cs = £(S).

@ [];csxi form an orthogonal basis.
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Pseudo-boolean Functions and Max Lin AA

Pseudo-boolean Functions and Linear Equations

o f(x) =7(0) + Yser s [Ties xi, where
F={0£5Cn: cs#0}.

@ A weighted system Az = b of linear equations on [F5: for each
S € F, we have an equation ) ;¢ z = bs with weight |cs],
where bs = 0 if cs > 0 and bs = 1, otherwise.

@ The max excess of Az = b is max of the total weight of
satisfied equations minus the total weight of falsified
equations.

@ maxye(_141}n f(x) — 7(#) = max excess of Az = b.

@ Lower bounds on max f via max excess.
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Pseudo-boolean Functions and Max Lin AA

Max Lin

e Max LiN: Given a weighted system (all weights are positive)
of linear equations over F5, maximize the max excess of
Az = b.

@ MAX r-LiN: Each equation has at most r variables.

@ Hastad (2001): unless P=NP for each € > 0, there is no
polynomial algorithm for distinguishing instances of MAX
3-LIN in which at least (1 — €)m equations can be
simultaneously satisfied from instances in which less than
(1/2 4 €)m equations can be simultaneously satisfied.
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Pseudo-boolean Functions and Max Lin AA

Max Lin AA

e Max LIN AA: Given a weighted system (all weights are
positive integers) of m linear equations over F5, is the max
excess of Az = b at least k7

@ It can be solved in time O(m**+9(M) (Crowston, GG, Jones,
Kim, Ruzsa, SWAT 2010)

@ We believe that MAX LIN AA is not FPT (too ‘general’).
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Pseudo-boolean Functions and Max Lin AA

FPT Special Cases of Max Lin AA: ‘Symmetric’

@ Assumption: rankA = n, the number of variables.
@ Using Symmetric SAEM (GG, Kim, Szeider, Yeo, JCSS 2010):

If 3 a set U of vars s.t. each equation has odd number of vars
from U, then MAX LIN AA is FPT and has a quadratic kernel.
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Pseudo-boolean Functions and Max Lin AA

FPT Special Cases of Max Lin AA: ‘Small’ Systems

Assumptions: (i) Equations in Az = b are distinct, (2) rankA = n.

Theorem (Excess Theorem; Crowston, GG, Jones, Kim,

Ruzsa, SWAT 2010)

Let k > 2. If k < m<2"(k=1) _ 2 then the maximum excess of
Az = b is at least k, i.e., Az = b constitutes a YES-instance.
Moreover, we can find an assignment that achieves an excess of at

least k in time m©°).

Using the Excess Theorem:

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

Let p(n) be an arbitrary function s.t. p(n) = o(n). If m < 2P(n)
then MAX LIN AA is FPT.
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Pseudo-boolean Functions and Max Lin AA

Smaller Kernels

Using the Excess Theorem:

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

For each fixed integral r > 2 MAX r-LIN AA admits a kernel on
O(k log k) variables.

Theorem (Crowston, GG, Jones, Kim, Ruzsa, SWAT 2010)

For each fixed integral r > 2 MAX EXAcCT r-SAT AA admits a
kernel on O(k log k) variables.
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Betweenness AA

Betweenness AA

o Let V ={v1,...,vn} be a set of variables and let C be a set
of m betweenness constraints of the form (v;, {vj, vk}).

@ Given a bijection av: V—{1,...,n}, we say that a constraint
(vi, {vj, vi}) is satisfied if either a(vj) < a(vi) < afwv) or
a(vk) < avi) < a(y)).

o BETWEENNESS: find a bijection « satisfying the max number
of constraints in C.

@ Tight Lower Bound: m/3, the expectation number of satisfied
constraints is m/3.
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Betweenness AA

Difficulties

o BETWEENNESS AA: Is there « that satisfies > m/3 + &
constraints? (k is the parameter)

@ Benny Chor's question in Niedermeier's book (2006): What is
the parameterized complexity of BETWEENNESS AA?

e Difficult to estimate E(X?), practically impossible to do
E(X*), but we cannot use Hypercontractive Inequality as X is
not a polynomial of constant-bounded degree.

@ What to do?
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Betweenness AA

Way Around Difficulties-1

e Gutin, Kim, Mnich and Yeo [JCSS, ta]: BETWEENNESS AA
has an O(k?)-kernel.

@ An instance (V,C), where V is the set of variables and
C ={C,...,Cp} is the set of betweenness constraints.

@ A random function ¢ : V — {0,1,2,3}.
@ ¢-compatible bijections a: if ¢(v;) < ¢(v;) then
a(vi) < a(v)).
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Betweenness AA

Way Around Difficulties-2

@ Let o be a random ¢-compatible bijection and vp(a) =1 if
Cp is satisfied and 0, otherwise.

o Let the weights w(Cp, ¢) = E(rp(c)) —1/3 and
w(C, ) =311 w(Cp, 9).

If w(C,¢) > k then (V,C) is a YES-instance of BETWEENNESS
AA.

@ Thus, to solve BETWEENNESS AA, it suffices to find ¢ for
which w(C, ¢) > k.

@ We may forget about bijections « !
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Betweenness AA

Thank youl!

@ Questions?

o Comments?
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