Polynomial-size Kernels for Problems Parameterized Above Tight Lower Bounds

Gregory Gutin

Department of Computer Science Royal Holloway, University of London

Fredericia 2009, 27th November 2009

イロン イヨン イヨン イヨン

Outline

1 Introduction

- **2** Various Parameterizations
- **3** Strictly Above/Below Expectation Method
- 4 Linear Ordering Problem AA
- **5** Exact *r*-SAT AA
- 6 Betweenness AA

Iin-2 AA

Various Parameterizations Strictly Above/Below Expectation Method Linear Ordering Problem AA Exact r-SAT AA Betweenness AA Lin-2 AA

Outline

1 Introduction

- **2** Various Parameterizations
- 3 Strictly Above/Below Expectation Method
- 4 Linear Ordering Problem AA
- 5 Exact r-SAT AA
- 6 Betweenness AA

D Lin-2 AA

<ロ> (日) (日) (日) (日) (日)

Various Parameterizations Strictly Above/Below Expectation Method Linear Ordering Problem AA Exact r-SAT AA Betweenness AA Lin-2 AA

Fixed-parameter Tractability

- A parameterized problem Π: a set of pairs (*I*, *k*) where *I* is the main part and *k* (usually an integer) is the parameter.
- Π is fixed-parameter tractable (FPT) if membership of (I, k)in Π can be decided in time $O(f(k)|I|^c)$, where |I| is the size of I, c = O(1) and f(k) is a computable function.
- The idea: for small values of k, $O(f(k)|I|^c)$ is not too large.

Various Parameterizations Strictly Above/Below Expectation Method Linear Ordering Problem AA Exact r-SAT AA Betweenness AA Lin-2 AA

Fixed-parameter Tractability

- Π is fixed-parameter tractable (FPT) if membership of (I, k)in Π can be decided in time $O(f(k)|I|^c)$, where |I| is the size of I, c = O(1) and f(k) is a computable function.
- Examples of FPT problems:
 - Does a graph G have a vertex cover of size ≤ k? An algorithm of runtime O(1.2852^k + kn) (Chen, Kanj and Jia, 2001) instead of an O(n^km)-algorithm.
 - Does a digraph D have a spanning out-tree with ≤ k leaves? Algorithms of runtime 4^kn^{O(1)} (Kneis, Langer and Rossmanith, 2008) and 3.72^kn^{O(1)} (Daligault, Gutin, Kim and Yeo, 2009) instead of an O(n^km)-algorithm.

Introduction Various Parameterizations Strictly Above/Below Expectation Method Linear Ordering Problem AA

Exact r-SAT AA Betweenness AA Lin-2 AA

Kernelization

- A kernelization of Π polynomial-time algorithm that maps an instance (x, k) ∈ Π to an instance (x', k') ∈ Π (the kernel) such that
 - (x, k) is YES iff (x', k') is YES
 - $k' \leq f(k)$ and $|x'| \leq g(k)$ for some functions f and g.
- The function g(k) is called the size of the kernel.
- A parameterized problem is FPT if and only if it is decidable and admits a kernelization.
- Wanted: low degree polynomial-size kernels (for preprocessing).

Various Parameterizations Strictly Above/Below Expectation Method Linear Ordering Problem AA Exact r-SAT AA Betweenness AA Lin-2 AA

Parameterized Algorithms Monographs

- R. G. Downey and M. R. Fellows. *Parameterized Complexity*. Springer Verlag, 1999.
- J. Flum and M. Grohe. *Parameterized Complexity Theory*. Springer Verlag, 2006.
- R. Niedermeier. *Invitation to Fixed-Parameter Algorithms*. Oxford University Press, 2006.

Outline

Introduction

- **2** Various Parameterizations
- **3** Strictly Above/Below Expectation Method
- 4 Linear Ordering Problem AA
- 5 Exact r-SAT AA
- 6 Betweenness AA

7 Lin-2 AA

<ロ> (日) (日) (日) (日) (日)

Various Parameterizations

- Above we considered standard parameterizations: the parameter is the size of a set to optimize.
- Parameterizations using structural parameters such as treewidth, cliquewidth, the number of vertices to delete to make *G* bipartite, etc.
- Parameterizations above and below tight bounds.

Acyclic Subgraphs of Digraphs: Standard Parameterization

- Given a digraph D = (V, A), find an acyclic subgraph H = (V, B) of D with the maximum number of arcs.
- Standard parameterization: k = |B|. Namely, does D have an acyclic subgraph with at least k arcs?
- Standard parameterization is FPT as |B| ≥ |A|/2: if k ≤ |A|/2 the answer is YES otherwise |V| ≤ |A| + 1 ≤ 2k and we use a brute-force algorithm of running time |A|^{O(1)}(2k)! to check whether the answer is YES.
- k is supposed to be small (for |A|^{O(1)}(2k)! to be tractable), but k > |A|/2 is large when |A| is large.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Acyclic Subgraphs of Digraphs: Parameterization above the Average

- Parameterization Above Tight Lower Bound: Does D = (V, A) have an acyclic subgraph with at least |A|/2 + k arcs? [ACYCLIC AA]
- The bound is tight: For symmetric digraphs, k = 0: a digraph
 D is symmetric if xy ∈ A implies yx ∈ A.
- Mahajan, Raman and Sikdar (2009): Is ACYCLIC AA fixed-parameter tractable?

Outline

1 Introduction

2 Various Parameterizations

3 Strictly Above/Below Expectation Method

- 4 Linear Ordering Problem AA
- 5 Exact r-SAT AA
- 6 Betweenness AA

7 Lin-2 AA

Strictly Above/Below Expectation Method (SABEM): Symmetric Case

- SABEM was recently introduced by GG, Kim, Szeider and Yeo [IWPEC'09].
- Apply some reduction rules to reduce the problem to its special case.
- Introduce a random variable X such that if Prob(X ≥ k) > 0 then the answer to the problem AA is YES.
- If X is symmetric, then Prob($X \ge \sqrt{\mathbb{E}(X^2)}$) > 0.
- If $k \leq \sqrt{\mathbb{E}(X^2)}$ then YES. Otherwise, $\sqrt{\mathbb{E}(X^2)} < k$ and we can often solve the problem using a brute force algorithm.

・ロン ・回と ・ヨン・

Strictly Above/Below Expectation Method: Asymmetric Case

Lemma (Alon, GG, Krivelevich, 2004; Alon, GG, Kim, Szeider, Yeo, SODA'2010)

Let X be a real random variable and suppose that its first, second and forth moments satisfy $\mathbb{E}(X) = 0$, $\mathbb{E}(X^2) = \sigma^2 > 0$ and $\mathbb{E}(X^4) \le b(\mathbb{E}(X^2))^2$, respectively. Then Prob($X > \frac{\sigma}{2\sqrt{b}}$) > 0.

Lemma (Hypercontractive Inequality, Bonami, Gross, 1970s)

Let $f = f(x_1, ..., x_n)$ be a polynomial of degree r in n variables $x_1, ..., x_n$. Define a random variable X by choosing a vector $(\varepsilon_1, ..., \varepsilon_n) \in \{-1, 1\}^n$ uniformly at random and setting $X = f(\varepsilon_1, ..., \varepsilon_n)$. Then $\mathbb{E}(X^4) \leq 9^r (\mathbb{E}(X^2))^2$.

Outline

Introduction

2 Various Parameterizations

3 Strictly Above/Below Expectation Method

- 4 Linear Ordering Problem AA
- 5 Exact r-SAT AA
- 6 Betweenness AA

7 Lin-2 AA

<ロ> (日) (日) (日) (日) (日)

Reduction Rule for Linear Ordering Problem AA

- LINEAR ORDERING AA: each arc *ij* has positive integral weight w_{ij}, does D = (V, A) have an acyclic subgraph of weight at least W/2 + k, where W = ∑_{ii∈A} w_{ij}?
- Reduction rule: Assume D has a directed 2-cycle iji;
 - if $w_{ij} = w_{ji}$ delete the cycle,
 - if $w_{ij} > w_{ji}$ delete the arc *ji* and replace w_{ij} by $w_{ij} w_{ji}$,
 - if $w_{ji} > w_{ij}$ delete the arc *ij* and replace w_{ji} by $w_{ji} w_{ij}$.
- Thus, we've reduced LINEAR ORDERING AA to the one on oriented graphs.

SABEM for Linear Ordering AA-1

- Let D = (V, A) be an oriented graph, let n = |V|.
- Consider a random bijection: $\alpha : V \rightarrow \{1, ..., n\}$ and a random variable $X(\alpha) = \frac{1}{2} \sum_{ij \in A} \varepsilon_{ij}(\alpha)$, where $\varepsilon_{ij}(\alpha) = w_{ij}$ if $\alpha(i) < \alpha(j)$ and $\varepsilon_{ij}(\alpha) = -w_{ij}$, otherwise.
- $X(\alpha) = \sum \{ w_{ij} : ij \in A, \alpha(i) < \alpha(j) \} W/2$. Thus, the answer is YES iff there is an $\alpha : V \rightarrow \{1, \ldots, n\}$ such that $X(\alpha) \ge k$.

• Since
$$\mathbb{E}(\varepsilon_{ij}) = 0$$
, we have $\mathbb{E}(X) = 0$.

イロン イヨン イヨン イヨン

SABEM for Linear Ordering AA-2

Lemma

$$\mathbb{E}(X^2) \geq W^{(2)}/12$$
, where $W^{(2)} = \sum_{ij \in A} w_{ij}^2$.

Since X is symmetric, we have Prob($X \ge \sqrt{W^{(2)}/12}$) > 0. Hence, if $\sqrt{W^{(2)}/12} \ge k$, there is an $\alpha : V \rightarrow \{1, \ldots, n\}$ such that $X(\alpha) \ge k$ and, thus, the answer is YES. Otherwise, $|A| \le W^{(2)} < 12 \cdot k^2$. Thus, we have:

Theorem (GG, Kim, Szeider, Yeo, IWPEC'09)

LINEAR ORDERING AA *is fixed-parameter tractable*.

Outline

- Introduction
- 2 Various Parameterizations
- **3** Strictly Above/Below Expectation Method
- 4 Linear Ordering Problem AA
- **5** Exact *r*-SAT AA
- 6 Betweenness AA
- **7** Lin-2 AA

<ロ> (日) (日) (日) (日) (日)

Exact *r*-SAT

- EXACT *r*-SAT: A CNF formula \mathcal{F} which contains *m* clauses each with *r* literals. Is there a truth assignment satisfying all *m* clauses of \mathcal{F} ?
- MAX EXACT *r*-SAT: Find a truth assignment satisfying the max number of clauses.
- The prob. of a clause to be satisfied: $1 2^{-r}$.
- The average number of satisfied clauses: (1 2^{-r})m. This lower bound is tight.

・ロト ・回ト ・ヨト ・ヨト

Exact r-SAT AA-1

- EXACT r-SAT AA: Is there a truth assignment satisfying $\geq (1 2^{-r})m + k2^{-r}$ clauses?
- Mahajan, Raman and Sikdar (2009): What is the parameterized complexity of EXACT *r*-SAT AA for each fixed *r*?
- Alon, GG, Kim, Szeider and Yeo (SODA 2010): EXACT *r*-SAT AA is FPT for each fixed *r*.

Exact r-SAT AA-2

- -1 =true.
- $X = \sum_{C \in \mathcal{F}} [1 \prod_{x_i \in var(C)} (1 + \varepsilon_i x_i)]$, where $\varepsilon_i \in \{-1, 1\}$ and $\varepsilon_i = 1$ iff x_i is in C.
- For a truth assignment τ , we have $X = 2^r (\operatorname{sat}(\tau, F) (1 2^{-r})m).$
- The answer to EXACT *r*-SAT AA is YES iff $X \ge k$.

・ロン ・回と ・ヨン・

Exact r-SAT AA-3

- After algebraic simplification X = X(x₁, x₂,..., x_n) can be written as X = ∑_{I∈S} X_I, where X_I = c_I ∏_{i∈I} x_i, each c_I is a nonzero integer and S is a family of nonempty subsets of {1,..., n} each with at most r elements. [This is a Fourier expansion of X.]
- $\mathbb{E}(X) = 0$ [Condition 1 of the Alon et al. inequality]
- $\mathbb{E}(X^2) = \sum_{I \in S} c_I^2 > 0$ [by Parseval's Theorem]
- By Hypercontractive Inequality, 𝔼(𝑋⁴) ≤ 9^r𝔼(𝑋²)².
 [Condition 2 of the Alon et al. inequality]

・ロト ・回ト ・ヨト ・ヨト

Exact r-SAT AA-4

- By the Alon et. al. inequality, $\operatorname{Prob}(X \geq \frac{\sqrt{\mathbb{E}(X^2)}}{2 \cdot 3^r}) > 0.$
- $\mathbb{E}(X^2) = \sum_{I \in \mathcal{S}} c_I^2 \ge |\mathcal{S}| > 0$
- If $k \leq \frac{\sqrt{|\mathcal{S}|}}{2 \cdot 3^r}$ then YES.
- Otherwise n' ≤ r|S| ≤ 4r9^rk² = O(k²) (n' is the number of variables in the Fourier expansion of X).
- Thus, an $m^{O(1)}2^{O(k^2)}$ -time algorithm.
- More work gives: $O(k^2)$ -size kernel.

イロン イヨン イヨン イヨン

Outline

Introduction

- **2** Various Parameterizations
- **3** Strictly Above/Below Expectation Method
- 4 Linear Ordering Problem AA
- 5 Exact r-SAT AA
- 6 Betweenness AA

7 Lin-2 AA

<ロ> (日) (日) (日) (日) (日)

Betweenness AA

- Let V = {v₁,..., v_n} be a set of variables and let C be a set of m betweenness constraints of the form (v_i, {v_j, v_k}).
- Given a bijection α : $V \rightarrow \{1, ..., n\}$, we say that a constraint $(v_i, \{v_j, v_k\})$ is satisfied if either $\alpha(v_j) < \alpha(v_i) < \alpha(v_k)$ or $\alpha(v_k) < \alpha(v_i) < \alpha(v_j)$.
- Betweenness: find a bijection *α* satisfying the max number of constraints in *C*.
- Tight Lower Bound: m/3, the expectation number of satisfied constraints is m/3.
- BETWEENNESS AA: Is there α that satisfies ≥ m/3 + κ constraints? (κ is the parameter)

・ロト ・回ト ・ヨト ・ヨト

Difficulties

- Benny Chor's question in Niedermeier's book (2006): What is the parameterized complexity of BETWEENNESS AA?
- Difficult to estimate E(X²), practically impossible to do E(X⁴), but we cannot use Hypercontractive Inequality as X is not a polynomial of constant-bounded degree.
- What to do?

・ロト ・日本 ・モート ・モート

Way Around Difficulties-1

- Gutin, Kim, Mnich and Yeo: BETWEENNESS AA is FPT.
- An instance (V, C), where V is the set of variables and $C = \{C_1, \ldots, C_m\}$ is the set of betweenness constraints.
- A random function ϕ : $V \rightarrow \{0, 1, 2, 3\}$.
- ϕ -compatible bijections α : if $\phi(v_i) < \phi(v_j)$ then $\alpha(v_i) < \alpha(v_j)$.

Way Around Difficulties-2

- Let α be a random ϕ -compatible bijection and $\nu_{\rho}(\alpha) = 1$ if C_{ρ} is satisfied and 0, otherwise.
- Let the weights $w(C_p, \phi) = \mathbb{E}(\nu_p(\alpha)) 1/3$ and $w(\mathcal{C}, \phi) = \sum_{p=1}^m w(C_p, \phi)$.

Lemma

If $w(\mathcal{C}, \phi) \geq \kappa$ then (V, \mathcal{C}) is a YES-instance of BETWEENNESS AA.

- Thus, to solve BETWEENNESS AA, it suffices to find ϕ for which $w(\mathcal{C}, \phi) \geq \kappa$.
- We may forget about bijections α !

・ロン ・回 と ・ 回 と ・ 回 と

Outline

- Introduction
- 2 Various Parameterizations
- **3** Strictly Above/Below Expectation Method
- 4 Linear Ordering Problem AA
- **5** Exact *r*-SAT AA
- 6 Betweenness AA

Lin-2 AA

- A system of linear equations over GF(2): $\sum_{i \in I_j} z_i = b_j$, $I_j \subseteq \{1, \ldots, n\}, j = 1, \ldots, m$. Equation j has weight $w_j \in \mathbb{Z}_+$.
- The problem MAX LIN-2 asks for an assignment of values to the variables that maximizes the total weight of the satisfied equations.

Lin-2 AA

- Let $W = w_1 + \cdots + w_m$. A greedy-type algorithm guarantees a solution of weight $\geq W/2$.
- LIN-2 AA: Does the system have a solution of weight $\geq W/2 + k$?
- Mahajan, Raman and Sikdar (2009): What is the parameterized complexity of LIN-2 AA?

Lin-2 AA

- $X = \sum_{j=1}^{m} X_j$, where $X_j = (-1)^{b_j} w_j \prod_{i \in I_j} x_i$, $x_i \in \{-1, 1\}$.
- Observe that $X_j = w_j$ if equation j is satisfied and $X_j = -w_j$, otherwise.
- The answer to LIN-2 AA is YES iff $X \ge 2k$.
- Difficulty: in general |*I_j*| is not bounded from above [we cannot apply Hypercontractive Inequality].

Lin-2 AA

- Not proved to be FPT yet, but proved FPT [GG, Kim, Szeider, Yeo, IWPEC'09] in three cases:
- Case 1: There exists a set *U* of variables such that each equation of *S* contains an odd number of variables from *U*. [Symmetric *X*]
- Case 2: ≤ O(1) variables in each equation. [Alon et al. inequality + Hypercontractive Inequality]
- Case 3: Every variable in ≤ O(1) equations. [Alon et al. inequality + 𝔅(X⁴) bounded without Hypercontractive Inequality]

・ロト ・回ト ・ヨト ・ヨト

Thank you!

- Questions?
- Comments?

・ロト ・回ト ・ヨト ・ヨト

æ