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Sequence Prediction
Sequence of events

Outcomes w; € Q

w1, W2, W3z,
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Sequence Prediction

Sequence of events
W1, W2, W3, ...
Outcomes w; € Q

We try to predict the outcomes

Y1, W1, Y2, W2, V3, W3, ...

Predictions v € I
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Sequence Prediction

Sequence of events
W1, W2, W3, ...
Outcomes w; € Q

We try to predict the outcomes
Y1, W15 Y2, W2, V3, W3y -«
Predictions ~; € T

The quality of each prediction is measured by a loss function:

(v,w) — Ay,w) €R

-
The quality of the first T predictions: Lt = > A(7t, wt)
t=1

Goal: L — min
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Simple Loss

Two outcomes, two possible predictions
r=Q={0,1}

G 0 ify=uw,
NPy, ) = 1~ T,y = {1 % o

T .
Sooasimele(, ) is the number of errors
t=1
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Absolute Loss

Two outcomes: Q = {0,1}
Probabilistic predictions: I = {(v(0),~7(1)) € [0,1] | v(0) +~(1) = 1}
Ay, w) = [y(1) = w| = 4(0)AT™(0,w) + y(1)APE(1, w)

Z,Tﬂ A5 (y4 wy)  is the expected number of errors
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Brier Loss
G. Brier. Verification of Forecasts Expressed in Terms of Probability.
Monthly Weather Review, 1950.

Finitely many outcomes: Q ={1,...,r}

Probabilistic predictions:
F={v=00)....1nN) €0,1]" | X1 ~() = 1}
NP (7, 0) = 3 (1) = L)

=1

L’%f"e’ — min  encourages unbiased estimates of the true probabilities
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Logarithmic Loss

Finitely many outcomes: Q = {1,...,r}
Probabilistic predictions:

F={y=00)...-.2(N) €01 | i1 7() =1}

A%(y,w) = —Iny(w)

Measures the “quantity of information”.
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Logarithmic Loss

P is a probability measure on all sequences wywows ... € Q%

Prediction strategy:
Yt+1 = P( ‘ WA ...wt)

that is 74, 1(w) = %

log = W9 Py
Z)\ () = nH PW1 -wi-1) il

Ly - min <« thelikelihood P(wy ...wt) — max.
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Prediction with Expert Advice

Atstept | Expert1 Expert K | Learner
Prediction o0 K
Outcome
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Atstept | Expert1 e Expert K | Learner
Prediction o S o Yt
Outcome
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Prediction o S o Yt
Outcome Wt

Alexey Chernov (RHUL) PEA & Supermartingales 22 March 2010, Durham 9/28



Prediction with Expert Advice

Atstept | Expert1 Expert K | Learner
Prediction o o Yt
Outcome Wt

Loss At wi) MK, wr) | My, wi)

Alexey Chernov (RHUL)

PEA & Supermartingales

22 March 2010, Durham

9/28



Prediction with Expert Advice

Atstept | Expert1 Expert K | Learner
Prediction o o Yt
Outcome wt

Loss At wi) MK, we) | Ay, wr)

T T
LY =" A0fw)  Lr=)" Awmwr)
t=1 t=1

Goal: after each step T, for any Expert k,

L7 < L% 4+ something small
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Loss Bound
Theorem
If X is an n-mixable loss function, Learner has strategy that guarantees

T T K In K
Zt=1 Ay, wr) < Zt:1 (vt wt) + T

If \ is a convex loss function, Learner has strategy that guarantees

T

Zt:1 Ayt we) < 2;1 MK, wi) + O(VTInK).

(Both bounds hold uniformly for all T and for all k.)

Log loss and Brier loss are 1-mixable.
Absolute loss is convex but not mixable. Simple loss is not convex.

K
Ais n-mixable if VK ¥ € Tyw! 3y el vw e 0 >3~ whe—mA( w)

k=1
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Example: Bayesian Prediction (1)
Logarithmic loss Al°¢(v, w) = — Iny(w)
Experts are probability measures P!, ..., PK:

(W) =Prw | wr...wr_q)
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Example: Bayesian Prediction (1)
Logarithmic loss Al°¢(v, w) = — Iny(w)
Experts are probability measures P!, ..., PK:

(W) =Prw | wr...wr_q)

Learner’s strategy is a mixture:

K
P=> whpP*
k=1
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Example: Bayesian Prediction (1)
Logarithmic loss Al°¢(v, w) = — Iny(w)
Experts are probability measures P!, ..., PK:

’y’f—(cu) = Pk(w | wy ... wr_1)

Learner’s strategy is a mixture:
K
P=> whpP*
k=1

25_1 WkPk(w1 .. .wT_1w)
w)=Plw|w...wr_1)= =
et Sr7TT
K

WkHt 1 ’Yt K(wr) K(w
ZZ/ W TS Yiw )%( )

WT-1)
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Example: Bayesian Prediction (2)

Logarithmic loss A°¢(y,w) = — Invy(w)
Experts are probability measures P',..., PK
Learner’s strategy:

P:EK:lP"
k:1K
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Example: Bayesian Prediction (2)

Logarithmic loss A°¢(y,w) = — Invy(w)
Experts are probability measures P',..., PK
Learner’s strategy:

K
P=Y" _ P¥
> %P
k=1
Then forany wy ...wr
1
Pwi...wr) > RPk(m cowT)

Lt =—InPwi...wr) < —INPk(wy...w1)+InK =L +InK
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Counterexample: Simple Game of Prediction

w,y € {0,1}

; 0 ify=w,
)\smple(,y’w) =1 _]:[{’yzw} = {1 If,.y ?éw

Experts:

Outcome:
wr=1—1y

LT:T,L1+L2:T = LTZminkLk+T/2
T T
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Outline

e Motivation: Minimal Expected Loss, Calibration, Martingales
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Minimal Expected Loss

At step t, w; is sampled from a distribution P
and Learner knows the distributions P

Learner’s prediction: ~t = arg melp E:\(7, wy)
Y

Then

S L1 E(,wi)

IN

S EA(Y, wr)
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Minimal Expected Loss

At step t, w; is sampled from a distribution P
and Learner knows the distributions P

Learner’s prediction: ~t = arg melp E:\(7, wy)
Y

Then with high probability

S A wi) + O(VT)
[
S E (e, wr) < S B, wr)
[
S A, w) + O(VT)
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Calibration

Dawid, 1982

Sequence of outcomes w; € {0,1}:
Wi, W2, W3, - - .

We consider probability forecasts p; € [0, 1]:
p1!w1!p2! WZ; p35 st

Forecasts are well-calibrated if for any p € [0, 1]

Zl‘i pt=p i

#{t: bt = p}
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“Ignorant” Calibration

Theorem (Foster, Vohra, 1998)

There is a randomised strategy constructing p; given wy . ..wy_q S.t.
for any wiwo . . . the forecasts p; are well-calibrated with high probability

Alexey Chernov (RHUL) PEA & Supermartingales 22 March 2010, Durham 17/28



“Ignorant” Calibration

Theorem (Foster, Vohra, 1998)

There is a randomised strategy constructing p; given wy . ..wy_q S.t.
for any wiwo . . . the forecasts p; are well-calibrated with high probability

Generally:
P is a distribution on & € Q*°, Test(P, &) € {accept, reject}

Theorem (Sandroni, 2003)

If Test accepts & sampled from P with P-probability 1 — e for any P
then there is a randomised strategy that constructs P on-line given &
s.t. Test(P, &) accepts with probability 1 — e.
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Informal Idea: “Ignorant” Expected Loss

Given wy, wp, ... and Expert’'s ¥
we want to construct a distribution P s.t.

T T
E Z /\(71{37 Wt) = Z /\(71{37 Wt) + O(ﬁ)
t=1 t=1
and
T T
E> A w) =Y Af,wr) + O(VT)
t=1 t=1
where

vf = argmin Ex\(v, wy)
yel
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Martingales

wiws . .. sampled from some distribution P
St = S(wi, ..., wt)

S is a martingale if

E[St | wy,...,wi_1] = St
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Martingales

wiws . .. sampled from some distribution P
St = S(wi, ..., wt)

S is a martingale if

E[St | wy,...,wi_1] = St

Theorem (Ville, 1939)

If P(A) < e then a supermartingale S exists s.t.
liM¢ oo S(w1,. 5c ,wt) > 1/6 for s € A.
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Martingales

wiws . .. sampled from some distribution P
St = S(wi, ..., wt)

S is a martingale if

E[St | wy,...,wi_1] = St

Theorem (Ville, 1939)

If P(A) < e then a supermartingale S exists s.t.
liM¢ oo S(W1,. 5c ,wt) > 1/6 for s € A.

Sandroni theorem test: P{& | Test(P,w) = reject} < ¢
(i.e., uniformly P(Ap) < ¢)
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Game-Theoretic Supermartingales

Informally:

St is player’s capital after round ¢

wy is outcome of round t

distribution P is the rules of the game

If player has a uniform strategy for all P then S; is a function of P, &
and also player’s additional knowledge
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Game-Theoretic Supermartingales

Informally:

St is player’s capital after round ¢

wt is outcome of round t

distribution P is the rules of the game

If player has a uniform strategy for all P then S; is a function of P, &
and also player’s additional knowledge

wi,ws,... €0
w1, o, ... are distributions on Q
S is a game-theoretic supermartingale if for any =

/ S(e1 y T, W1, ..., €T, W,W)ﬂ'(d(.d)
Q

< S(ey,m,we, ..., T4, TT—1,WT—1)
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Levin’s Lemma

Lemma (Levin, 1976)

If s(m,w) is continuous in = and for some C

then there exists 7 s.t.

v /Q s(r, w)m(dw) < C

Vw s(mw) < C
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Levin’s Lemma

Lemma (Levin, 1976)
If s(m,w) is continuous in = and for some C

v /Q s(r, w)m(dw) < C

then there exists 7 s.t.
Vw s(mw) < C

Proof idea: Consider ¢(7', 7) = [, s(m,w)n’(dw)
s(m.0) = [ 5(m,)(4) = (35,7
< max¢(r', m) = minmax ¢(x’, 7) = maxmin ¢(z’, )

<maxg(r’,n') < C
7.l./
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Supermartingales for PEA: Mixable Games

If A\(y,w) is n-mixable then for any distribution 7 and forany v € I
/ TN &) -2 1 (dl) < 1
. <
where \(7,w) is a proper loss function: forany mr andany v € I

JREELCREY RUELE
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Supermartingales for PEA: Mixable Games

If A\(y,w) is n-mixable then for any distribution 7 and forany v € I
/ TN &) -2 1 (dl) < 1
A <
where \(m,w) is a proper loss function: for any = and any v € T

JREUCHEY PICRRLCE

K 1 T
Sy = Z <K Heﬂ(/\(ﬂtawt)—/\(vawt))>

k=1 t=1
is a supermartingale.
Choosing 7; by Levin’s lemma, we can guarantee that Sy < 1 for all T.
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Supermartingales for PEA: Logarithmic Loss

Consider A\°¢(y,w) = —In~(w) (which is 1-mixable)
For any distribution 7= and forany v € '

/ A (r ) -NH (0 1)
Q

_ Z e In7r(w)+|nfy(w)ﬂ_(w) — Mw(w) =1

weN weE

\Q

K1
=X % Hﬂ(wt <1

k=1 t=1
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Supermartingales for PEA: Convex Games

If A\(y,w) is convex then
for any distribution «, forany v € T, forany n > 0,

/ TN ) M)~ /271 < 1
. <
where \(7,w) is a proper loss (multi-)function: for any = and any v € I’

JREUCPHE PICRRLCE

K T
Sy = Z <}1< He??(/\(m,Wt)—/\(’Yf7wt))—772/2)

k=1 t=1

is a supermartingale.

Letting 7 = O(1/+/T) and choosing 7 by Levin’s lemma, we can
guarantee that St < 1 forall T.
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Laws of Probability (1)

Probability law: P(Ap) is small for any P
Game-theoretic supermartingales correspond to probability laws
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Laws of Probability (1)

Probability law: P(Ap) is small for any P
Game-theoretic supermartingales correspond to probability laws

Supermartingale for convex games: Hoeffding inequality
If X € [-1,1] then

EenX < oTEX+7?/2
For independent Xi,... Xy € [-1,1]

N
1
ol

> (Xn— EXp)

n=1

> 6] < 2e—¢*N/2
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Laws of Probability (2)

Supermartingale for mixable games:

A is proper n-mixable loss function,
P is any distribution, 7y = P(w | w1 ... w¢_1),
P',..., PK are any distributions and 7K = PK(w | wy ... wi_1)

T T
P{(D VTvk=1,....K Z)\(m,wt)EZ)\(w;‘7wt)+1In’;} <4
n
t=1 t=1

Special case: \°¢(7,w) = — In7(w)
P {JJ

Alexey Chernov (RHUL)
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Pk(cL)1...wt) )
VT k=1, K el s 0
v ’ ’ P(w1...wt) _K}
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