Prediction with Expert Advice and Game-Theoretic Supermartingales

Alexey Chernov

Computer Learning Research Centre and Department of Computer Science Royal Holloway University of London

22 March 2010, Durham

1/28

Outline

Framework of Prediction with Expert Advice

Motivation: Minimal Expected Loss, Calibration, Martingales

Defensive Forecasting

Sequence Prediction

Sequence of events

$$\omega_1, \omega_2, \omega_3, \ldots$$

Outcomes $\omega_t \in \Omega$

Sequence Prediction

Sequence of events

$$\omega_1, \omega_2, \omega_3, \ldots$$

Outcomes $\omega_t \in \Omega$

We try to predict the outcomes

$$\gamma_1, \omega_1, \gamma_2, \omega_2, \gamma_3, \omega_3, \dots$$

Predictions $\gamma_t \in \Gamma$

Sequence Prediction

Sequence of events

$$\omega_1, \omega_2, \omega_3, \ldots$$

Outcomes $\omega_t \in \Omega$

We try to predict the outcomes

$$\gamma_1, \omega_1, \gamma_2, \omega_2, \gamma_3, \omega_3, \ldots$$

Predictions $\gamma_t \in \Gamma$

The quality of each prediction is measured by a loss function:

$$(\gamma,\omega)\mapsto\lambda(\gamma,\omega)\in\mathbb{R}$$

The quality of the first T predictions: $L_T = \sum_{t=1}^{T} \lambda(\gamma_t, \omega_t)$

Goal: $L_T \rightarrow \min$

Simple Loss

Two outcomes, two possible predictions $\Gamma = \Omega = \{0, 1\}$

$$\lambda^{ ext{simple}}(\gamma,\omega) = 1 - \mathbb{I}_{\{\gamma=\omega\}} = egin{cases} 0 & ext{if } \gamma = \omega, \ 1 & ext{if } \gamma
eq \omega \end{cases}$$

 $\sum_{t=1}^{T} \lambda^{\text{simple}}(\gamma_t, \omega_t)$ is the number of errors

Absolute Loss

Two outcomes: $\Omega = \{0, 1\}$

Probabilistic predictions: $\Gamma = \{(\gamma(0), \gamma(1)) \in [0, 1]^2 \mid \gamma(0) + \gamma(1) = 1\}$

$$\lambda^{\mathrm{abs}}(\gamma,\omega) = |\gamma(1) - \omega| = \gamma(0)\lambda^{\mathrm{simple}}(0,\omega) + \gamma(1)\lambda^{\mathrm{simple}}(1,\omega)$$

 $\sum_{t=1}^{T} \lambda^{abs}(\gamma_t, \omega_t)$ is the expected number of errors

Brier Loss

G. Brier. Verification of Forecasts Expressed in Terms of Probability. *Monthly Weather Review*, 1950.

Finitely many outcomes: $\Omega = \{1, ..., r\}$

Probabilistic predictions:

$$\Gamma = \{ \gamma = (\gamma(1), \dots, \gamma(r)) \in [0, 1]^r \mid \sum_{j=1}^r \gamma(j) = 1 \}$$

$$\lambda^{\mathrm{Brier}}(\gamma,\omega) = \sum_{j=1}^{r} (\gamma(j) - \mathbb{I}_{\{\omega=j\}})^2$$

 $L_T^{\textit{Brier}} o \min$ encourages unbiased estimates of the true probabilities

Logarithmic Loss

Finitely many outcomes: $\Omega = \{1, \dots, r\}$

Probabilistic predictions:

$$\Gamma = \{ \gamma = (\gamma(1), \dots, \gamma(r)) \in [0, 1]^r \mid \sum_{j=1}^r \gamma(j) = 1 \}$$

$$\lambda^{\log}(\gamma,\omega) = -\ln\gamma(\omega)$$

Measures the "quantity of information".

Logarithmic Loss

P is a probability measure on all sequences $\omega_1\omega_2\omega_3\ldots\in\Omega^\infty$

Prediction strategy:

$$\gamma_{t+1} = P(\cdot \mid \omega_1 \dots \omega_t)$$

that is $\gamma_{t+1}(\omega) = \frac{P(\omega_1...\omega_t\omega)}{P(\omega_1...\omega_t)}$

$$L_T = \sum_{t=1}^T \lambda^{\log}(\gamma_t, \omega_t) = -\ln \prod_{t=1}^T \frac{P(\omega_1 \dots \omega_{t-1} \omega_t)}{P(\omega_1 \dots \omega_{t-1})} = -\ln P(\omega_1 \dots \omega_T)$$

 $L_T \to \min \quad \Leftrightarrow \quad \text{the likelihood } P(\omega_1 \dots \omega_T) \to \max.$

At step t	Expert 1	 Expert K	Learner
Prediction	γ_t^1	 γ_t^K	
Outcome			

At step t	Expert 1	 Expert K	Learner
Prediction	γ_t^1	 γ_t^K	γ_t
Outcome			

At step t	Expert 1		Expert K	Learner
Prediction	γ_t^1		γ_t^K	γ_t
Outcome		ω_t		

At step t	Expert 1		Expert K	Learner
Prediction	γ_t^1		γ_t^K	γ_t
Outcome		ω_t		
Loss	$\lambda(\gamma_t^1,\omega_t)$		$\lambda(\gamma_t^K, \omega_t)$	$\lambda(\gamma_t,\omega_t)$

At step t	Expert 1		Expert K	Learner
Prediction	γ_t^1		γ_t^K	γ_t
Outcome		ω_t		
Loss	$\lambda(\gamma_t^1,\omega_t)$		$\lambda(\gamma_t^K, \omega_t)$	$\lambda(\gamma_t,\omega_t)$

$$L_T^k = \sum_{t=1}^T \lambda(\gamma_t^k, \omega_t)$$
 $L_T = \sum_{t=1}^T \lambda(\gamma_t, \omega_t)$

Goal: after each step T, for any Expert k,

$$L_T \leq L_T^k + \text{something small}$$

Loss Bound

Theorem

If λ is an η -mixable loss function, Learner has strategy that guarantees

$$\sum_{t=1}^{T} \lambda(\gamma_t, \omega_t) \leq \sum_{t=1}^{T} \lambda(\gamma_t^k, \omega_t) + \frac{\ln K}{\eta}.$$

If λ is a convex loss function, Learner has strategy that guarantees

$$\sum_{t=1}^{T} \lambda(\gamma_t, \omega_t) \leq \sum_{t=1}^{T} \lambda(\gamma_t^k, \omega_t) + O(\sqrt{T \ln K}).$$

(Both bounds hold uniformly for all T and for all k.)

Log loss and Brier loss are 1-mixable.

Absolute loss is convex but not mixable. Simple loss is not convex.

 λ is η -mixable if $\forall K \, \forall \gamma^k \in \Gamma \, \forall w^k \quad \exists \gamma \in \Gamma \, \forall \omega \quad \mathrm{e}^{-\eta \lambda(\gamma,\omega)} \geq \sum_{k=1}^K w^k \mathrm{e}^{-\eta \lambda(\gamma^k,\omega)}$.

Example: Bayesian Prediction (1)

Logarithmic loss $\lambda^{\log}(\gamma, \omega) = -\ln \gamma(\omega)$ Experts are probability measures P^1, \dots, P^K :

$$\gamma_T^k(\omega) = P^k(\omega \mid \omega_1 \dots \omega_{T-1})$$

Example: Bayesian Prediction (1)

Logarithmic loss $\lambda^{\log}(\gamma, \omega) = -\ln \gamma(\omega)$ Experts are probability measures P^1, \dots, P^K :

$$\gamma_T^k(\omega) = P^k(\omega \mid \omega_1 \dots \omega_{T-1})$$

Learner's strategy is a mixture:

$$P = \sum_{k=1}^K w^k P^k$$

Example: Bayesian Prediction (1)

Logarithmic loss $\lambda^{\log}(\gamma,\omega) = -\ln \gamma(\omega)$ Experts are probability measures P^1,\ldots,P^K :

$$\gamma_T^k(\omega) = P^k(\omega \mid \omega_1 \dots \omega_{T-1})$$

Learner's strategy is a mixture:

$$P = \sum_{k=1}^K w^k P^k$$

$$\gamma_{T}(\omega) = P(\omega \mid \omega_{1} \dots \omega_{T-1}) = \frac{\sum_{k=1}^{K} w^{k} P^{k}(\omega_{1} \dots \omega_{T-1} \omega)}{\sum_{k=1}^{K} w^{k} P^{k}(\omega_{1} \dots \omega_{T-1})}$$
$$= \sum_{k=1}^{K} \frac{w^{k} \prod_{t=1}^{T-1} \gamma_{t}^{k}(\omega_{t})}{\sum_{i=1}^{K} w^{i} \prod_{t=1}^{T-1} \gamma_{t}^{i}(\omega_{t})} \gamma_{t}^{k}(\omega)$$

Example: Bayesian Prediction (2)

Logarithmic loss $\lambda^{\log}(\gamma,\omega) = -\ln \gamma(\omega)$ Experts are probability measures P^1,\ldots,P^K Learner's strategy:

$$P = \sum_{k=1}^{K} \frac{1}{K} P^k$$

Example: Bayesian Prediction (2)

Logarithmic loss $\lambda^{\log}(\gamma,\omega) = -\ln \gamma(\omega)$ Experts are probability measures P^1,\ldots,P^K Learner's strategy:

$$P = \sum_{k=1}^K \frac{1}{K} P^k$$

Then for any $\omega_1 \dots \omega_T$

$$P(\omega_1 \ldots \omega_T) \geq \frac{1}{K} P_k(\omega_1 \ldots \omega_T)$$

$$L_T = -\ln P(\omega_1 \dots \omega_T) \le -\ln P_k(\omega_1 \dots \omega_T) + \ln K = L_T^k + \ln K$$

Counterexample: Simple Game of Prediction

$$\omega, \gamma \in \{\mathbf{0}, \mathbf{1}\}$$

$$\lambda^{ ext{simple}}(\gamma,\omega) = \mathbf{1} - \mathbb{I}_{\{\gamma=\omega\}} = egin{cases} \mathbf{0} & ext{if } \gamma = \omega, \ \mathbf{1} & ext{if } \gamma
eq \omega \end{cases}$$

Experts:

$$\gamma_t^1 = 0, \ \gamma_t^2 = 1 \quad \forall t$$

Outcome:

$$\omega_t = \mathbf{1} - \gamma_t$$

$$L_T = T$$
, $L_T^1 + L_T^2 = T$ \Rightarrow $L_T \ge \min_k L_T^k + T/2$

Outline

Framework of Prediction with Expert Advice

Motivation: Minimal Expected Loss, Calibration, Martingales

3 Defensive Forecasting

Minimal Expected Loss

At step t, ω_t is sampled from a distribution P_t and Learner knows the distributions P_t

Learner's prediction:
$$\gamma_t = \arg\min_{\gamma \in \Gamma} \mathbf{E}_t \lambda(\gamma, \omega_t)$$

Then

$$\sum_{t=1}^{T} \mathbf{E}_t \lambda(\gamma_t, \omega_t) \leq \sum_{t=1}^{T} \mathbf{E}_t \lambda(\gamma_t^k, \omega_t)$$

Minimal Expected Loss

At step t, ω_t is sampled from a distribution P_t and Learner knows the distributions P_t

Learner's prediction:
$$\gamma_t = \arg\min_{\gamma \in \Gamma} \mathbf{E}_t \lambda(\gamma, \omega_t)$$

Then with high probability

$$\sum_{t=1}^{T} \lambda(\gamma_{t}, \omega_{t}) + O(\sqrt{T})$$

$$\parallel$$

$$\sum_{t=1}^{T} \mathbf{E}_{t} \lambda(\gamma_{t}, \omega_{t}) \leq \sum_{t=1}^{T} \mathbf{E}_{t} \lambda(\gamma_{t}^{k}, \omega_{t})$$

$$\parallel$$

$$\sum_{t=1}^{T} \lambda(\gamma_{t}^{k}, \omega_{t}) + O(\sqrt{T})$$

Calibration

Dawid, 1982

Sequence of outcomes
$$\omega_t \in \{0, 1\}$$
: $\omega_1, \omega_2, \omega_3, \dots$

We consider probability forecasts $p_t \in [0, 1]$: $p_1, \omega_1, p_2, \omega_2, p_3, \omega_3, \dots$

Forecasts are well-calibrated if for any $p \in [0, 1]$

$$\frac{\sum_{t: p_t = p} \omega_t}{\#\{t: p_t = p\}} \rightarrow p$$

"Ignorant" Calibration

Theorem (Foster, Vohra, 1998)

There is a randomised strategy constructing p_t given $\omega_1 \dots \omega_{t-1}$ s.t. for any $\omega_1 \omega_2 \dots$ the forecasts p_t are well-calibrated with high probability

"Ignorant" Calibration

Theorem (Foster, Vohra, 1998)

There is a randomised strategy constructing p_t given $\omega_1 \dots \omega_{t-1}$ s.t. for any $\omega_1 \omega_2 \dots$ the forecasts p_t are well-calibrated with high probability

Generally:

P is a distribution on $\vec{\omega} \in \Omega^{\infty}$, $Test(P, \vec{\omega}) \in \{accept, reject\}$

Theorem (Sandroni, 2003)

If Test accepts $\vec{\omega}$ sampled from P with P-probability 1 $-\epsilon$ for any P then there is a randomised strategy that constructs P on-line given $\vec{\omega}$ s.t. Test($P, \vec{\omega}$) accepts with probability 1 $-\epsilon$.

Informal Idea: "Ignorant" Expected Loss

Given $\omega_1, \omega_2, \ldots$ and Expert's γ^k we want to construct a distribution P s.t.

$$\mathbf{E} \sum_{t=1}^{T} \lambda(\gamma_{t}^{P}, \omega_{t}) = \sum_{t=1}^{T} \lambda(\gamma_{t}^{P}, \omega_{t}) + O(\sqrt{T})$$

and

$$\mathbf{E} \sum_{t=1}^{T} \lambda(\gamma_t^k, \omega_t) = \sum_{t=1}^{T} \lambda(\gamma_t^k, \omega_t) + O(\sqrt{T})$$

where

$$\gamma_t^P = \arg\min_{\gamma \in \Gamma} \mathbf{E}_t \lambda(\gamma, \omega_t)$$

Martingales

 $\omega_1\omega_2\dots$ sampled from some distribution P $S_t=S(\omega_1,\dots,\omega_t)$

 ${\cal S}$ is a martingale if

$$\mathbf{E}[S_t \mid \omega_1, \dots, \omega_{t-1}] = S_{t-1}$$

Martingales

 $\omega_1\omega_2\dots$ sampled from some distribution P $S_t = S(\omega_1,\dots,\omega_t)$

S is a martingale if

$$\mathbf{E}[S_t \mid \omega_1, \dots, \omega_{t-1}] = S_{t-1}$$

Theorem (Ville, 1939)

If $P(A) < \epsilon$ then a supermartingale S exists s.t.

$$\lim_{t\to\infty} S(\omega_1,\ldots,\omega_t) \geq 1/\epsilon$$
 for $\vec{\omega} \in A$.

Martingales

 $\omega_1\omega_2\dots$ sampled from some distribution P $S_t=S(\omega_1,\dots,\omega_t)$

S is a martingale if

$$\mathbf{E}[S_t \mid \omega_1, \dots, \omega_{t-1}] = S_{t-1}$$

Theorem (Ville, 1939)

If $P(A) < \epsilon$ then a supermartingale S exists s.t. $\lim_{t \to \infty} S(\omega_1, \dots, \omega_t) > 1/\epsilon$ for $\vec{\omega} \in A$.

Sandroni theorem test: $P\{\vec{\omega} \mid \textit{Test}(P,\omega) = \textit{reject}\} < \epsilon$ (i.e., uniformly $P(A_P) \le \epsilon$)

Outline

Framework of Prediction with Expert Advice

Motivation: Minimal Expected Loss, Calibration, Martingales

Defensive Forecasting

Game-Theoretic Supermartingales

Informally:

 S_t is player's capital after round t ω_t is outcome of round t distribution P is the rules of the game

If player has a uniform strategy for all P then S_t is a function of P, $\vec{\omega}$ and also player's additional knowledge

Game-Theoretic Supermartingales

Informally:

 S_t is player's capital after round t ω_t is outcome of round t distribution P is the rules of the game

If player has a uniform strategy for all P then S_t is a function of P, $\vec{\omega}$ and also player's additional knowledge

$$\omega_1,\omega_2,\ldots\in\Omega$$
 π_1,π_2,\ldots are distributions on Ω

 ${\it S}$ is a game-theoretic supermartingale if for any π

$$\int_{\Omega} S(e_1, \pi_1, \omega_1, \dots, e_T, \pi, \omega) \pi(d\omega)$$

$$\leq S(e_1, \pi_1, \omega_1, \dots, e_{T-1}, \pi_{T-1}, \omega_{T-1})$$

Levin's Lemma

Lemma (Levin, 1976)

If $s(\pi,\omega)$ is continuous in π and for some C

$$orall \pi \int_{\Omega} oldsymbol{s}(\pi,\omega)\pi(oldsymbol{d}\omega) \leq oldsymbol{C}$$

then there exists π s.t.

$$\forall \omega \quad s(\pi,\omega) \leq C$$

Levin's Lemma

Lemma (Levin, 1976)

If $s(\pi,\omega)$ is continuous in π and for some C

$$orall \pi \int_{\Omega} oldsymbol{s}(\pi,\omega)\pi(oldsymbol{d}\omega) \leq oldsymbol{C}$$

then there exists π s.t.

$$\forall \omega \quad s(\pi,\omega) \leq C$$

Proof idea: Consider $\phi(\pi',\pi) = \int_{\Omega} s(\pi,\omega)\pi'(d\omega)$

$$egin{aligned} s(\pi,\omega_0) &= \int_\Omega s(\pi,\omega) \delta_{\omega_0}(m{d}\omega) = \phi(\delta_{\omega_0},\pi) \ &\leq \max_{\pi'} \phi(\pi',\pi) = \min_\pi \max_{\pi'} \phi(\pi',\pi) = \max_{\pi'} \min_\pi \phi(\pi',\pi) \ &\leq \max_{\pi'} \phi(\pi',\pi') \leq C \end{aligned}$$

Supermartingales for PEA: Mixable Games

If $\lambda(\gamma,\omega)$ is η -mixable then for any distribution π and for any $\gamma\in\Gamma$

$$\int_{\Omega} \mathrm{e}^{\eta(\lambda(\pi,\omega)-\lambda(\gamma,\omega))}\pi(d\omega) \leq 1$$

where $\lambda(\pi,\omega)$ is a proper loss function: for any π and any $\gamma\in\Gamma$

$$\int_{\Omega} \lambda(\pi,\omega) \pi(extbf{ extit{d}}\omega) \leq \int_{\Omega} \lambda(\gamma,\omega) \pi(extbf{ extit{d}}\omega)$$

Supermartingales for PEA: Mixable Games

If $\lambda(\gamma,\omega)$ is η -mixable then for any distribution π and for any $\gamma\in\Gamma$

$$\int_{\Omega} \mathrm{e}^{\eta(\lambda(\pi,\omega)-\lambda(\gamma,\omega))} \pi(d\omega) \leq 1$$

where $\lambda(\pi,\omega)$ is a proper loss function: for any π and any $\gamma\in\Gamma$

$$\int_{\Omega} \lambda(\pi,\omega) \pi(extbf{d}\omega) \leq \int_{\Omega} \lambda(\gamma,\omega) \pi(extbf{d}\omega)$$

$$S_T = \sum_{k=1}^K \left(\frac{1}{K} \prod_{t=1}^T e^{\eta(\lambda(\pi_t, \omega_t) - \lambda(\gamma_t^k, \omega_t))} \right)$$

is a supermartingale.

Choosing π_t by Levin's lemma, we can guarantee that $S_T \leq 1$ for all T.

Supermartingales for PEA: Logarithmic Loss

Consider $\lambda^{\log}(\gamma,\omega)=-\ln\gamma(\omega)$ (which is 1-mixable) For any distribution π and for any $\gamma\in\Gamma$

$$\begin{split} \int_{\Omega} \mathrm{e}^{\lambda^{\log}(\pi,\omega) - \lambda^{\log}(\gamma,\omega)} \pi(\boldsymbol{d}\omega) \\ &= \sum_{\omega \in \Omega} \mathrm{e}^{-\ln \pi(\omega) + \ln \gamma(\omega)} \pi(\omega) = \sum_{\omega \in \Omega} \frac{\gamma(\omega)}{\pi(\omega)} \pi(\omega) = 1 \end{split}$$

$$S_T = \sum_{k=1}^K \frac{1}{K} \prod_{t=1}^T \frac{\gamma_t^k(\omega_t)}{\pi_t(\omega_t)} \le 1$$

Supermartingales for PEA: Convex Games

If $\lambda(\gamma,\omega)$ is convex then for any distribution π , for any $\gamma\in\Gamma$, for any $\eta>0$,

$$\int_{\Omega} \mathrm{e}^{\eta(\lambda(\pi,\omega)-\lambda(\gamma,\omega))-\eta^2/2} \pi(\textit{d}\omega) \leq 1$$

where $\lambda(\pi,\omega)$ is a proper loss (multi-)function: for any π and any $\gamma\in\Gamma$

$$\int_{\Omega} \lambda(\pi,\omega) \pi(extbf{ extit{d}}\omega) \leq \int_{\Omega} \lambda(\gamma,\omega) \pi(extbf{ extit{d}}\omega)$$

$$S_T = \sum_{k=1}^K \left(rac{1}{K} \prod_{t=1}^T \mathrm{e}^{\eta(\lambda(\pi_t,\omega_t) - \lambda(\gamma_t^k,\omega_t)) - \eta^2/2}
ight)$$

is a supermartingale.

Letting $\eta = O(1/\sqrt{T})$ and choosing π_t by Levin's lemma, we can guarantee that $S_T \le 1$ for all T.

Laws of Probability (1)

Probability law: $P(A_P)$ is small for any PGame-theoretic supermartingales correspond to probability laws

Laws of Probability (1)

Probability law: $P(A_P)$ is small for any PGame-theoretic supermartingales correspond to probability laws

Supermartingale for convex games: Hoeffding inequality If $X \in [-1, 1]$ then

$$\mathbf{E}\mathrm{e}^{\eta X} \le \mathrm{e}^{\eta \mathbf{E}X + \eta^2/2}$$

For independent $X_1, \dots X_N \in [-1, 1]$

$$P\left[\frac{1}{N}\left|\sum_{n=1}^{N}(X_n-\mathbf{E}X_n)\right|>\epsilon\right]\leq 2\mathrm{e}^{-\epsilon^2N/2}$$

Laws of Probability (2)

Supermartingale for mixable games:

 λ is proper η -mixable loss function,

P is any distribution, $\pi_t = P(\omega \mid \omega_1 \dots \omega_{t-1})$,

 P^1,\ldots,P^K are any distributions and $\pi_t^k=P^k(\omega\mid\omega_1\ldots\omega_{t-1})$

$$P\left\{\vec{\omega} \middle| \forall T \forall k = 1, \dots, K \sum_{t=1}^{T} \lambda(\pi_t, \omega_t) \ge \sum_{t=1}^{T} \lambda(\pi_t^k, \omega_t) + \frac{1}{\eta} \ln \frac{K}{\delta} \right\} \le \delta$$

Special case: $\lambda^{\log}(\pi,\omega) = -\ln \pi(\omega)$

$$P\left\{ \vec{\omega} \left| \forall T \ \forall k = 1, \dots, K \quad \frac{P^k(\omega_1 \dots \omega_t)}{P(\omega_1 \dots \omega_t)} \ge \frac{\delta}{K} \right. \right\} \le \delta$$

References

N. Cesa-Bianchi, G. Lugosi. *Prediction, Learning, and Games*. Cambridge University Press, Cambridge, England, 2006.

G. Shafer, V. Vovk. *Probability and Finance: It's Only a Game*! Wiley, New York, 2001.

V. Vovk. Predictions as statements and decisions.

http://arxiv.org/abs/cs/0606093

A. Chernov, Y. Kalnishkan, F. Zhdanov, V. Vovk. Supermartingales in Prediction with Expert Advice. ALT 2008.

http://arxiv.org/abs/1003.2218

http://vovk.net/df/index.html
http://onlineprediction.net/

These slides:

pareto.cs.rhul.ac.uk/~chernov/PEAmartingales.pdf